
Recommending Customizable Products: A Multiple Choice
Knapsack Solution

Aravind Sivaramakrishnan, Madhusudhan Krishnamachari, Vidhya Balasubramanian
Department of Computer Science & Engineering∗, Amrita School of Engineering,

Amrita Vishwa Vidyapeetham (University), Coimbatore, India

ABSTRACT
Recommender systems have become very prominent over
the past decade. Methods such as collaborative filtering
and knowledge based recommender systems have been de-
veloped extensively for non-customizable products. How-
ever, as manufacturers today are moving towards customiz-
able products to satisfy customers, the need of the hour is
customizable product recommender systems. Such systems
must be able to capture customer preferences and provide
recommendations that are both diverse and novel. This pa-
per proposes an approach to building a recommender sys-
tem that can be adapted to customizable products such as
desktop computers and home theater systems. The Cus-
tomizable Product Recommendation problem is modeled as
a special case of the Multiple Choice Knapsack Problem,
and an algorithm is proposed to generate desirable prod-
uct recommendations in real-time. The performance of the
proposed system is then evaluated.

CCS Concepts
•Information systems → Content ranking; Recom-
mender systems; Personalization; E-commerce infrastruc-
ture;

Keywords
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1. INTRODUCTION
In today’s ever-growing competitive global marketplace, man-
ufacturers are moving away from non-customizable products
to customizable products in order to fulfill consumer require-
ments. Product customization is becoming more prevalent
in a large range of products, from laptops and mobile phones
to clothing and footwear. Such customization options have
left the customers with a varied amount of choices. However,
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an abundance of choice can be confusing to the customer
and may hinder the decision making process. To mitigate
this, recommendation systems that help customers select the
right customized product is the need of the hour.

The problem with existing recommendation systems is that
they have been developed extensively only for non-customiz-
able products, where the product specifications are already
fixed by the manufacturers. In the case of customizable
products, the user has the option to choose the individual
features of the product. However, the user might not have
enough domain knowledge or experience and thus, may not
be able to provide a complete set of feature specifications. In
such cases, the system must be able to provide novel prod-
uct suggestions based on user requirements. It is desirable
to adapt existing recommender systems to operate on cus-
tomizable products.

There are several challenges in designing such a recommender
system. Consider for example, the case where the customer
provides a set of feature specifications for a BMW 7 Series,
and a cost threshold. These specifications are in the form
of constraints on the final product. In some cases, the user
might not be able to provide a complete set of constraints
for all the features of a product. In such cases, when some
of the features are left to the discretion of the system, the
system must still be able to provide suggestions based on
the specified constraints. It must also be able to recom-
mend products without any prior knowledge about the user.
Since the range of options is huge, approaches based on gath-
ering purchase data of users might not be suitable for this
problem. Therefore the recommender system must primar-
ily be based on the features of a product. In addition, such
a recommendation system for customizable products must
be able to provide suggestions to a user, in situ.

One of the challenges of this problem lies in representing the
feature specifications and cost threshold accurately. In the
example discussed previously, the number of possible vari-
ations in the BMW 7 Series could reach 1017[19]. Thus,
providing good recommendations subject to the given con-
straints may prove to be difficult mainly due to the sheer
size of the search space. When such a system is deployed
for real-time commercial use, it must be able to provide
quick recommendations that are both effective and efficient.
Care must be taken to provide recommendations that do not
overspend on a particular feature. Thus, the recommenda-
tion system problem boils down to an optimization problem
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as follows: given a set of feature specifications, each with
corresponding cost and selection reward, the system must
determine which instance of each feature to include in the
product so that the total cost is within the threshold, and
the total reward is as high as possible.

In this paper, we propose a suitable representation for the
feature specifications and cost threshold. The problem of
finding the best possible customization is modeled as a spe-
cial case of the Multiple Choice Knapsack Problem (MCKP),
which is an NP-Hard problem. Since we are primarily in-
terested in a set of recommendations, i.e., the candidate so-
lutions, they can be identified in polynomial time using a
greedy algorithm [4].

The main contributions of this paper are as follows.

• A formal definition of the Customizable Product Rec-
ommendation problem as an optimization problem.

• Modelling the Customizable Product Recommendation
problem as a special case of the Multiple Choice Knap-
sack Problem (MCKP).

• Results of applying a greedy algorithm for identifying
solutions to the Customizable Product Recommenda-
tion Problem.

The rest of this paper is structured as follows. In Section 2,
we survey the available literature on various state-of-the-art
recommender system approaches. In Section 3, we formally
define the Customizable product recommendation problem
and model it as a special case of the MCKP. In Section 4,
we describe a greedy algorithm to identify candidate solu-
tions to the MCKP. We apply the algorithm to the case
of customizable desktop computers and customizable home
theater systems. The results are discussed in detail in Sec-
tion 5, and avenues for future work are proposed in Section
6.

2. RELATED WORK
The problem of finding and suggesting similar products to
users has attracted a lot of attention in the field of Infor-
mation Retrieval [3] in recent years. Recommender systems
have been developed for a variety of applications. Collab-
orative filtering [15] is a commonplace technique used by
E-commerce websites like Amazon to suggest similar prod-
ucts to the user. Under collaborative filtering, users are
recommended items that people with similar tastes and pref-
erences have liked in the past. Other E-commerce services
that suggest movies to the user employ content-based rec-
ommender systems[9], which keep track of the movies a user
browses, builds a user profile and suggests similar movies to
the user. Algorithms such as k-nearest neighbors[2] and the
Pearson correlation have been used for the measurement of
similarity scores.

In recent years, hybrid recommender systems[1] have been
widely used by websites such as Netflix wherein a collab-
orative filtering recommender system and a content-based
system work in tandem. Knowledge based recommender

systems [16] have been developed for scenarios where col-
laborative filtering and content-based filtering cannot be ap-
plied, or when sufficient information has not been gathered
for such systems to operate effectively. They rely on knowl-
edge models of the product domain in order to provide effec-
tive recommendations. Various deep learning techniques[17]
have also been proposed for providing effective product rec-
ommendations to users. However, most of these approaches
focus primarily on user behavior, but not on product prop-
erties, which must also play a major role in the recommen-
dations.

The above mentioned approaches focus primarily on off-
the-shelf products. However, approaches for recommend-
ing customizable products (along with their customizable
components) have not gained much prominence. One of
the few solutions that address this problem is by Moon et
al who proposed an agent-based recommender system [11]
that recommends products after learning customer prefer-
ences through a market-based learning mechanism. A mass
customization recommendation system for the automotive
industry was proposed by Mavridou et al [10], which mines
user preferences from feedback and survey data filled out by
people who have already purchased cars. Stormer proposed
an approach [14] that applies collaborative filtering to cal-
culate the most common product options and propose them
as recommendations for customers. More recently, Wang et
al [18] proposed a Customizable Product Recommendation
system that builds a probabilistic model based on whether
users bought a particular item given a set of specifications.

Such systems are a step forward in providing customizable
product recommendations to the user, but they generally re-
quire a large amount of user preference data before they can
provide suggestions[12]. In the case of a customizable prod-
uct, each user might be having varying requirements in the
form of feature specifications. Hence, a recommendation sys-
tem for customization must be able to provide suggestions
using only feature specifications from the user. Designing
a knowledge-based recommender system for customizable
products would require the recommendation knowledge to
be well-defined in an explicit fashion, which is an arduous
task[8]. A robust system must also be able to use the same
knowledge representation across different product domains.

Our goal is to propose a greedy approach for providing rec-
ommendations for customizable products, using primarily
the feature properties of the product, and the initial user
specifications. Subsequent user feedback, such as in the
case of systems discussed above, are beyond the scope of
this paper. Although a knapsack optimization based ap-
proach to recommender systems has been proposed for non-
customizable products[5], the same strategy has not yet been
investigated for the Customizable Product Recommendation
problem. Our approach models the Customizable Product
Recommendation problem as a special case of the Multiple
Choice Knapsack Problem (MCKP), first proposed by Sinha
and Zoltners [13].

3. PROBLEM FORMULATION
In order to solve the Customizable Product Recommenda-
tion problem, it is necessary to formally define the prob-
lem. In this section, we first formally define the Customiz-



able Product Recommendation problem and then proceed to
model it as a special case of the Multiple Choice Knapsack
Problem (MCKP).

3.1 Formal Definition of the Customizable Prod-
uct Recommendation Problem

Let a customizable product X be defined by a set of n fea-
tures, {N1, N2, ..., Nn}. Each feature Ni consists of m mod-
els {xi1, xi2, ...xim}. The value of m for each Ni may vary.
Each feature example xij has a corresponding cost wij . The
user may provide values from {xi1, xi2, ...xim} for a partic-
ular feature Ni, or he may set Ni = 0, indicating that no
preference is specified. Thus, each feature example Nij will
have a desirability value pij which is dependent on the user
selection for Ni and the value of xij . The user should also
specify a cost threshold W for the recommended product.
The Customizable Product Recommendation problem can
be defined as follows.

Given a minimum user requirement specification for n fea-
tures {N1, N2, ..., Nn}, the system must return a candidate
set of solutions S, where each candidate solution Y ∈ S is

specified by {y1, y2, ..., yn}. The top c values of
n∑

i=1

pij , j ∈ yi
are chosen for every Y ∈ S subject to the following con-
straints:

(i)

n∑
i=1

wij ≤W, j ∈ yi (1)

(ii)wij ≤ ε(1 ≤ i ≤ m, j ∈ yi) (2)

The recommended product may have a higher configuration
than the user specification, but care must be taken to avoid
the recommendation of lower configurations. For example,
in the case of a recommender system for customizable lap-
tops, if the user has specified requirement of 4GB of RAM,
the system must be able to prune all values of RAM that are
less than 4GB. However, the system may recommend 6GB of
RAM to the user, as long as it is within the user’s cost spec-
ification, and all other requirements have been met. The
constraint specified by (1) ensures that the recommended
product does not exceed the cost threshold specified by the
user. Constraint (2) ensures that the system does not over-
spend on a particular feature.

Thus, the customizable product recommender system has
to select one feature example for each feature, such that the
total cost of all feature examples does not exceed the cost
threshold. In addition, the feature examples selected must
meet the minimum user requirements. The recommendation
problem thus defined is a constrained optimization problem
and can be mapped directly to a special case of the Knap-
sack Problem, i.e., the Multiple Choice Knapsack Problem
(MCKP), which is described below.

3.2 MCKP Definition
Consider a collection of items subdivided into n classes.
Each set of items belonging to class i is denoted by Ni.
Each item xij ∈ Ni has an associated profit pij and a selec-
tion cost wij . The objective is to pick exactly one item from
each class, with maximal total profit, while obeying that the
total cost of the chosen items must not exceed W. Let sij

be a binary value that denotes the selection of an item xij .
Then, the MCKP can be defined as

maximize

n∑
i=1

∑
j∈Ni

pijsij (3)

subject to

n∑
i=1

∑
j∈Ni

wijsij ≤W,∑
j∈Ni

sij = 1, for all 1 ≤ i ≤ n

sij ∈ {0, 1}, for all 1 ≤ i ≤ n and xij ∈ Ni

Thus, if a particular product is being defined by n features,
with each feature example xij ∈ Ni having a selection cost
of wij and a selection reward pij , it is easy to model the
Customizable Product Recommendation problem as a spe-
cial case of the MCKP. The cost of each feature example wij

is the price of the component. W is the cost threshold, as
specified by the user. The profit for each feature example
pij can be mapped to the component’s desirability value as
explained below.

3.3 Assigning Desirability Values
All feature examples within a class Ni are initially sorted
in increasing order of component quality. For example, in
the case of desktop computer configuration, a sorted feature
array for the RAM feature would be {2GB, 4GB, 6GB,...}.

In the case of quantifiable features such as RAM or Moni-
tor size, the desirability value pij can be defined as follows.
When the user specification for Ni is xij , the base desirabil-
ity value is defined as pij = 1.

Let vij be a function that returns the value of the feature
example xij . For example, v(2GB) = 2, v(6GB) = 6, and so
on. Every selection xik, where vik ≥ vij must hence be pro-
portionally rewarded. Let xim be the final feature example
in Ni. First, we define unit value of a feature example ṽik
as

ṽik =
vik
vij

(4)

Then the desirability value pik can be defined as

pik =

(
1− ṽik

wik

)
× ṽik (5)

In the case of non-quantifiable features, such as Operating
System in the case of desktop computers, the desirability
value pij for every item can be defined as follows. When the
user specification for Ni is xij , the base desirability value
pij = 1. The desirability value of xik is denoted by pik and
can be defined as

pik = k − j + 1 (6)

The cost constraint specified by (1) is modeled by the cost
constraint of the MCKP. Also, since one feature example
has to be chosen from each feature, overspending will not
occur, and thus, the constraint specified by (2) is upheld as
well.



As the MCKP is an NP-Hard problem, recommending a
single product based on the user specifications cannot be
achieved in polynomial time. However, as a set of candidate
solutions needs to be provided as recommendations, we make
use of a greedy algorithm that generates these candidate so-
lutions in polynomial time. A greedy approach is preferable
as the recommended products will have maximum desirabil-
ity value for the given cost. In the next section, we describe
in detail the greedy algorithm used to solve the customized
product recommendation problem.

4. PROPOSED ALGORITHM
In this section, we use a classic greedy approach proposed
for the MCKP[7] to solve the Customizable Product Recom-
mendation problem. The described greedy algorithm solves
the MCKP by reducing it into an instance of the 0-1 knap-
sack problem (KP), and then selecting a single item from
each class. We also propose different approaches for gener-
ating multiple recommendations.

4.1 Algorithm Description
Initially, feature examples with pij < 1 are removed from
the search space to ensure that configurations lower than
the user specifications are not returned by the recommender
system. Next, LP-Dominated items are removed from each
class Ni. An item xia with cost wia and profit pia is said to
LP-Dominate xib with cost wib and pib in a class Ni iff wib >
wia, and pib < pia. Item xib is said to be LP-Dominated[7].
Once the LP-Dominated items are removed from Ni, the
subset of Ni obtained is denoted by Ri. The LP-Bound
solution to the MCKP can be found by using the algorithm
outlined in Algorithm 1.

1. For each class Ni, remove all items with pij < 1.

2. For each class Ni, sort the items according to
increasing costs and derive Ri. The size of Ri is ri.

3. Construct an instance of a KP by setting p̃ij := pij -
pi,j−1, w̃ij := wij - wi,j−1 for each class Ri and j =
2,...,ri.

4. Sort the items according to decreasing incremental
efficiencies ẽij := p̃ij / w̃ij and store them in e.

5. Use Algorithm Greedy-Replace (Algorithm 2) to
return the candidate solutions.

Algorithm 1: MCKP-Greedy

Initialize the knapsack with xi1∀Ni;
Set iter = 1;
Return knapsack and Continue;
while iter ≤ length(e) do

Replace xij with e[iter], where e[iter] ∈ Ni;
if cost of new knapsack ≤ W then

Set iter = iter + 1;
Return new knapsack and Continue;

else
Stop;

end

end
Algorithm 2: Greedy-Replace

We shall illustrate the working of the described algorithm
with an example. Consider a product defined by three fea-
tures {N1, N2, N3}. The desirability values have been allo-
cated for each component as per the user specifications as
shown in Table 1. The cost threshold provided by the user
is W = 60.

i j wij pij
1 1 5 1

2 10 2
3 25 3
4 70 3
5 65 4

2 1 10 1
2 40 1
3 35 2

3 1 10 1
2 20 2
3 95 2
4 40 3
5 85 4

Table 1: Instance of MCKP

After removal of the LP-dominated items and renumbering
the remaining items, we have R1 = {1,2,3,4}, R2 = {1,2}, R3

= {1,2,3,4} as given in Table 2. The incremental efficiencies

i j wij pij
1 1 5 1

2 10 2
3 25 3
4 65 4

2 1 10 1
2 35 2

3 1 10 1
2 20 2
3 40 3
4 85 4

Table 2: Instance of MCKP after removal of LP-Dominated
items

in sorted order can be given as e = {e12= 1
5
, e32 = 1

10
, e13 =

1
15

, e33 = 1
20

, e22 = 1
25

, e14 = 1
40

, e34 = 1
45
}. Choosing the

smallest costs in each class, the capacity of the knapsack w =
w11 + w21 + w31 = 25. The Greedy-Replace algorithm first
chooses component (1,2), increasing the capacity to 30, then
it chooses component (3,2) getting w = 40, component (1,3)
with w = 55. When component (3,3) is chosen, the capacity
of the knapsack exceeds W , and hence the optimal solution
becomes {x13, x21,x32}. The total desirability value of the
solution is z = 3 + 1 + 2 = 6. Other candidate solutions for
the knapsack can be obtained by returning the intermediate
solutions. In this particular example, {x12, x21, x32} is also
a candidate solution with a total desirability value z = 5.

The cost of removal of LP-Dominated items from a single
class Ni is O(n logn). After the Knapsack instance is con-
structed, the cost of sorting the items according to their
incremental efficiencies is also O(n logn). Sorting the can-
didate solutions also takes O(n logn) time. Thus, the worst



case running time of the above algorithm can be described
as O(

∑
Ni

(ni logni) + n logn).

The Greedy-Replace approach described in Algorithm 2 is
guaranteed to find a solution with a high desirability value
per unit cost in O(n) time, but it might not generate enough
solution choices. In the above example, only a set of 4 rec-
ommendations are returned by Greedy-Replace. A good rec-
ommender system must be able to produce a diverse set of
results for the user to choose from. Also, these results must
be returned in a short amount of time. Hence we design
solutions for generating a candidate set of recommendation.
There are several approaches that can be used for the selec-
tion of candidate solutions, and they are discussed below.

Initialize the knapsack with xi1∀Ni;
set iter = 1;
Return knapsack and continue;
while iter ≤ length(e) do

Replace xij ,xi+1,j ,...xi+n−1,j ;
if cost of new knapsack ≤ W then

Set iter = iter + 1;
Return new knapsack;
Initialize the knapsack with xi1∀Ni;

else
Stop;

end

end
Algorithm 3: n-Swap

Initialize the knapsack with xi1∀Ni;
set iter = 1;
Return knapsack and continue;
while iter ≤ length(e) do

Replace xij with e[iter], where e[iter] ∈ Ni;
if cost of new knapsack ≤ W then

Set iter = iter + 1;
Return new knapsack and continue;

else
Remove e[0];
Initialize the knapsack with xi1∀Ni;
Set iter = 1;

end

end
Algorithm 4: 1-Pop

4.2 Alternative Selection Approaches
The most obvious way to generate multiple recommenda-
tions is by selecting components from e, and swapping them
with the components present in the initial knapsack if the
new cost does not exceed the threshold. Therefore, the first
approach that we propose is the n-Swap algorithm, outlined
in Algorithm 3. In this approach, a single instance of the
knapsack is generated after replacing the components in the
knapsack with n components from the incremental efficien-
cies list e. Then, the initial knapsack is restored and the
process is repeated until all components in e are exhausted.
The top c candidate solutions are then returned by remov-

ing duplicate solutions and sorting the candidate solutions
in decreasing order of profits per unit value.

In the above example, the n-Swap algorithm selects n com-
ponents from e such that each component belongs to a dif-
ferent class and swaps them with the components present in
the initial state of the knapsack {x11, x21, x31}. For exam-
ple, 2-Swap may select components (3,2) and (2,2) from e,
and swap them with (3,1) and (2,1) in the initial knapsack to
obtain a candidate solution {x11, x22, x32 with a total cost
c = 5 + 35 + 20 = 60 and a total desirability value z = 5.
For a given value of k, k-Swap has a worst-case complexity
of O(nk).

For a given value of n, 1-Swap is performed, followed by
2-Swap, and so on, until n-Swap. The value of n cannot
exceed the total number of features. For high values of n,
n-Swap may be computationally expensive. The desirability
value of the recommendations may also not be comparable
to Greedy-Replace. Therefore, we propose an approach, 1-
Pop, described in Algorithm 4, that iterates Greedy-Replace
over different versions of e. In this approach, after the knap-
sack obtained through Greedy-Replace has exceeded the cost
threshold, the first item from the incremental efficiencies list
e is popped, and Greedy-Replace is repeated. This process
is repeated until all items in e is exhausted. The top c can-
didate solutions are then returned by removing duplicate
solutions and sorting the candidate solutions in decreasing
order of profits per unit value.

In the above example, the 1-Pop algorithm runs a single iter-
ation of Greedy-Approach, and then pops e12 from e. Then
it chooses component (3,2), with a capacity of 35. When
component (1,3) is chosen, the capacity of the knapsack in-
creases to 55. In the next iteration, the capacity of the
knapsack exceeds W , and hence, the intermediate solutions
are returned, and e32 is popped from e. This process is
repeated until e is empty. As 1-Pop involves n iterations
of Greedy-Replace, the worst case complexity of 1-Pop is
O(n2).

5. EXPERIMENTAL RESULTS
In this section, we evaluate our approach for the Customiz-
able Product Recommendation problem for two types of cus-
tomizable products: desktop computers and home theater
systems, so as to qualify the adaptivity of the system.

5.1 Experimental Setup
We first describe the data that was used to obtain the exper-
imental results. The indexing of the various feature compo-
nents within the dataset is imperative to obtain the correct
results, and is discussed in Section 5.1.1. Then, we outline
the architecture of the system used as well as a detailed
description of the same.

5.1.1 Dataset
The dataset for both desktop computers and home theater
systems were sourced from multiple e-commerce websites.
For desktop computers, the features chosen were: Hard Disk
capacity, Graphics Card memory, Monitor size, Operating
System, Processor and RAM. Out of these features, Hard
Disk capacity, Graphics Card memory, Monitor Size and



Figure 1: System architecture

Feature Capacity Instance Price (in $) Desirability value
RAM 4GB Corsair Vengeance DDR3 46.99 0.9997

4GB Transcend DDR3-1333 DDR3 36.99 0.9996
8GB Corsair Vengeance DDR3 90.49 1.9993
8GB Kingston HyperX DDR3 88.49 1.9993
16GB G.Skill Ripjaws X DDR3 218.49 3.9988

Operating Linux/DOS DOS 0 0.0000
System Windows 7 Microsoft Windows 7 Home Premium 89.99 1.0000

Windows 7 Microsoft Windows 7 Professional 128.49 1.0000
Windows 8.1 Microsoft Windows 8.1 Professional 160.99 2.0000

Hard 250GB Seagate 51.49 0.4999
Disk 500GB WD Caviar Blue 57.99 0.9997

Capacity 500GB HP SATA 52.99 0.9997
1TB Toshiba 59.49 1.9989
2TB WD Caviar Green 93.99 3.9972

Table 3: Sample dataset for desktop computers

RAM are quantifiable features, and hence, Equation 5 can be
used to calculate their respective desirability values. Oper-
ating System and Processor cannot be quantified, and hence,
their desirability values are naively calculated using Equa-
tion 6. For home theater systems, the feature set consisted
of: Television screen size, Blu-Ray player, Receiver, Univer-
sal Remote and Speakers. Television screen size and Re-
ceivers are the only quantifiable features in the case of home
theatre systems.

In both cases, the feature examples are ordered in increas-
ing order of component quality. For example, in the case
of RAM for desktop computers, 4GB examples are followed
by 8GB examples, and so on. In cases where the ”quality”
of a component is ambiguous, the feature examples are or-
dered in increasing order of cost, as general user perception
would associate a high cost in a particular product with a
high product quality as well. For example, in the case of
Operating systems for desktop computers, the ”quality” of a
Linux OS, which is free, and a Windows 8.1 operating sys-
tem, which lies in the $120-180 range, is ambiguous. Hence,
Linux OS is placed at a lower index than Windows 8.1. A
sample of the dataset for desktop computers is provided in
Table 3. The indicated desirability values are for a user se-
lection of 4GB RAM, Windows 7 OS, and 500 GB Hard Disk
Capacity.

5.1.2 System Architecture
Given the dataset we now discuss the architecture of the
proposed recommendation system. The overall system ar-
chitecture is shown in Figure 1. The dataset is stored of-
fline in the form of a stock inventory. The user gives a set
of feature specifications to the recommender engine, which
then applies the MCKP-Greedy algorithm to generate a set
of candidate solutions. The top c candidate solutions from
this set are returned to the user as recommendations for
the provided feature specifications. The selection of the top
c candidate solutions depends on the method used for re-
placing the items in the current state of the knapsack with
the items present in the incremental efficiencies list e. The
candidate results are displayed to the user, as a set of rec-
ommendations. Using this system, we evaluate the proposed
methodology. We first compare the selection approaches so
as to identify the best approach for identifying the final can-
didate list. The best approach is chosen, and the results re-
turned by that approach are evaluated using standard met-
rics as described in in Section 5.3.

5.2 Comparative study of selection approaches
In order to measure the performance of the system, it is nec-
essary to identify the best approach for identifying candidate
solutions. We evaluate the following selection approaches:
Greedy-Replace, 1-Pop, 1-Swap, 2-Swap and 3-Swap using
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Figure 2: Number of recommendations

the following metrics: number of recommendations, desir-
ability value per unit cost and time complexity.

5.2.1 Input case description
The experimental results discussed in the remainder of this
section were obtained on a computer with the following con-
figurations: Intel(R) Core(TM) i5-2450M having clock speed
of 2.50GHz CPU with 5.90GB of usable RAM. For both
desktop computers and home theater systems, three cases
of user input were taken to evaluate the various selection
approaches. The different user requirements specifications
for desktop computers are:

• Case 1: 500 GB Hard Disk capacity, 1GB Graphics
memory, 24 inch Monitor, Windows 7 OS, Intel i5 Pro-
cessor, 4GB RAM (cost threshold: $ 650)

• Case 2: 1TB Hard Disk capacity, 2GB Graphics mem-
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Figure 3: Average desirability value per unit cost

ory, 15.6 inch Monitor, Windows 8 OS Intel i7 Proces-
sor, 8GB RAM (cost threshold: $ 885)

• Case 3: 2TB Hard Disk capacity, 3GB Graphics mem-
ory, 24 inch Monitor, Linux/DOS, Intel i7 Processor,
16GB RAM (cost threshold: $ 1210)

In the case of home theater systems, no user specification
was provided for the universal remote feature. The different
user requirements specifications are:

• Case 1: 40 inch TV, Blu-Ray player with WiFi, 5 chan-
nel Receiver, Bookshelf speakers (2 pair) (Cost thresh-
old: $ 2500)

• Case 2: 48 inch TV, Blu-Ray player (Universal), 7
channel Receiver, Sound Bar (Cost threshold: $ 4500)



Method User Input 1 User Input 2 User Input 3
Greedy-Replace 3.01 1.803 1.512

1-Pop 3.01 1.803 1.512
1-Swap 2.206 1.658 1.112
2-Swap 2.206 1.658 1.112
3-Swap 2.206 1.658 1.112

(a) Desktop computers

Method User Input 1 User Input 2 User Input 3
Greedy-Replace 5.143 4.722 2.883

1-Pop 5.143 4.722 2.883
1-Swap 5.143 4.722 2.883
2-Swap 5.152 4.722 2.883
3-Swap 5.152 4.722 2.883

(b) Home theater systems

Figure 4: Maximum desirability value per unit cost

• Case 3: 32 inch TV, Blu-Ray player with WiFi, 7 chan-
nel Receiver, Floor Standing speakers (2 pair) (Cost
threshold: $ 3000)

5.2.2 Number of recommendations
The number of recommendations returned by each of the
selection approaches discussed above for all the given user
specifications is provided in Figure 2. 1-Pop generates more
recommendations than Greedy-Replace as it performs sev-
eral iterations of Greedy-Replace. Both 2-Swap and 3-Swap
are able to generate a large number of recommendations for
the given user specifications as they perform more swaps
than Greedy-Replace and 1-Pop. However, a diverse set of
solutions is not the only factor that determines the effective-
ness of the system.

5.2.3 Desirability value per unit cost
The desirability of the returned results also plays a role in
deciding the effectiveness of the approach. By calculating
the desirability value per unit cost for all the recommenda-
tions returned, the average desirability value per unit cost
pavg and the maximum desirability value per unit cost pmax

are estimated for all the selection approaches. The values
for pavg for all the selection approaches are shown in Figure
3. 2-Swap and 3-Swap are found to have lower values of pavg
when compared to other methods such as Greedy-Replace
and 1-Pop. This is because each step in a single iteration of
Greedy-Replace results in an increase in desirability value.
As 2-Swap and 3-Swap consider all possible combinations
by swapping feature examples, they are not guaranteed to
return recommendations with high desirability values.

It can be inferred from Figure 4 that both Greedy-Replace
and 1-Pop methods return high values of pavg, However,
from Figure 2, we see that 1-Pop returns more recommen-
dations than Greedy-Replace. From Figure 4, where we have
tabulated the values of pmax for the different selection ap-
proaches, it is observable that in some cases, such as for
desktop computers (Figure 4(a)), only Greedy-Replace and
1-Pop are able to return the items with maximum desirabil-
ity value per unit cost for a given set of user specifications.
In the case of home theatres (Figure 4(b)), all approaches
are found to suggest the recommendation that has the maxi-
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Figure 5: Ratio of number of recommendations to time taken

mum desirability value per unit cost for the given set of user
specifications.

5.2.4 Time complexity
It is also essential to measure the time complexity of the
various selection approaches so that they can be scaled to
real-time scenarios. However, as all approaches return dif-
ferent number of recommendations, it is counter-intuitive to
compare their running times. Hence, to measure the time
complexity of a particular approach, we shall define the ra-
tio between the number of recommendations returned to the
time taken to generate those recommendations as r. The
values of r for the different selection approaches are plotted
in Figure 5.

In most cases, 1-Pop is able to achieve high values of r. Thus,
we are able to conclude that 1-Pop is a computationally ef-
ficient and an effective approach for finding the candidate



set of solutions for a given set of user specifications. It is
able to generate a sufficiently large number of recommenda-
tions with high desirability values in a short amount of time.
We therefore select 1-pop as our chosen strategy for gener-
ating candidate solutions and the overall recommendation
algorithm using 1-pop is evaluated in Section 5.3.

5.3 Evaluation Metrics
In order to measure the performance of the proposed rec-
ommender system, it is necessary to evaluate the results
suggested by the system against a ground truth. To es-
tablish the ground truth for the customized product rec-
ommendation problem, a sample population of users were
presented with the results of the recommender system for
both desktop computers and home theater systems. Among
these results, they were asked to select a total number of
10 products that they would consider buying given the re-
quirements specifications. Each product was then assigned a
preference score equal to the number of users who preferred
that particular product. The products were then ranked ac-
cording to their preference value, forming the set RG. These
results were then compared against the top 10 recommenda-
tions returned by the 1-Pop selection approach for the same
user specifications, denoted by RS . The elements in RS are
ranked according to their desirability value per unit cost.

An important performance of the relevance of results re-
turned by the recommender system is given by its precision
and recall values. The precision of a recommender system is
the proportion of recommendations returned by the system
that the user has judged to be good recommendations from
the ground truth. The recall of a recommender system is the
proportion of the good recommendations as judged by the
user that are returned by the system. Thus, we can define
precision and recall as follows.

precision =
|RS | ∩ |RG|
|RS |

(7)

recall =
|RS | ∩ |RG|
|RG|

(8)

After measuring the relevance of the results returned by the
system, it is necessary to evaluate the system’s rankings of
the recommended products. We can measure the ranking
quality of the system using the Normalized Discounted Cu-
mulative Gain (NDCG) measure [6]. Given the preference
scores for each recommendation reli in RS , we can define
the Discounted Cumulative Gain (DCG) as

DCGc =

c∑
i=1

2reli − 1

log2 (i+ 1)
(9)

The DCG of the rankings in RG can be defined as the ideal
DCG, or the IDCG. Thus we can define the NDCG of the
recommendations as

nDCGc =
DCGc

IDCGc
(10)

The precision, recall and NDCG values for the different user
specifications are provided in Figure 6. In the case of desk-
top computers, an average of 6-7 recommendations that are

User Input Precision Recall NDCG
Case 1 0.8 0.8 0.8344
Case 2 0.6 0.6 0.7928
Case 3 0.6 0.6 0.6900

(a) Desktop computers

User Input Precision Recall NDCG
Case 1 0.7 0.7 0.8705
Case 2 0.6 0.6 0.8784
Case 3 0.3 0.3 0.8300

(b) Home theater systems

Figure 6: Precision, Recall and NDCG values

returned by the system are preferred by the user. In the
case of home theater systems, an average of 5-6 recommen-
dations that are returned by the system are preferred by the
user. This performance we believe is due to the modelling
of the desirability value of the product and its components,
which is able to provide recommendations that capture the
user preference. Also, as we use the 1-Pop approach for the
MCKP, most of the recommendations obtained have high
desirability values per unit cost. The user is likely to agree
with an average of 77% of the rankings returned by the sys-
tem in the case of desktop computers, and with an average
of 86% of the rankings returned by the system in the case of
home theater systems. Thus, ranking the recommendations
in decreasing order of desirability value per unit cost proves
to be an effective ranking measure.

6. CONCLUSION AND FURTHER WORK
In this paper, we have presented an approach to solve the
Customizable Product Recommendation problem by mod-
elling it as a special case of the Multiple Choice Knapsack
Problem. We proposed a greedy algorithm for solving the
Customizable Product Recommendation problem, as well as
additional selection approaches for generating a more diverse
set of recommendations. We were also able to identify one
of those approaches, 1-Pop, as the best method overall. The
performance of our recommendation system was then evalu-
ated on two types of products: desktop computers and home
theater systems, using empirical measures such as precision,
recall and NDCG.

The results generated by the recommender system are highly
dependent on the desirability value of a particular compo-
nent. Hence, better understanding of user behavior and
modelling of component desirability is necessary to build
a system which achieves high degree of performance. In
this paper, we have assumed that the selection of feature
components belonging to a particular class are independent
of the selection of feature components from another class.
However, this might not always be the case. A more robust
system must be developed to account for feature classes that
are dependent on each other. Subsequent user feedback af-
ter the initial recommendations has not been covered in this
paper, and is an interesting avenue to explore in the future.
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