500 COMPUTATIONAL COMPLEXITY THEORY

COMPUTATIONAL COMPLEXITY THEORY

Complexity theory is the part of theoretical computer
science that attempts to prove that certain transformations
from input to output are impossible to compute using a
reasonable amount of resources. Theorem 1 below illus-
trates the type of “impossibility” proof that can sometimes
be obtained (1); it talks about the problem of determining
whether alogic formula in a certain formalism (abbreviated
WSL1S) is true.

Theorem 1. Any circuit of Axp, OR, and NotT gates
that takes as input a WSI1S formula of 610 symbols and
outputs a bit that says whether the formula is true must
have at least 101 %2gates.

This is a very compelling argument that no such circuit
will ever be built; if the gates were each as small as a proton,
such a circuit would fill a sphere having a diameter of 40
billion light years! Many people conjecture that somewhat
similar intractability statements hold for the problem of
factoring 1000-bit integers; many public-key cryptosys-
tems are based on just such assumptions.

It is important to point out that Theorem 1 is specific
to a particular circuit technology; to prove that there is
no efficient way to compute a function, it is necessary to
be specific about what is performing the computation.
Theorem 1 is a compelling proof of intractability precisely
because every deterministic computer that can be pur-
chased today can be simulated efficiently by a circuit con-
structed with AnDp, Or, and Nor gates. The inclusion of the
word “deterministic” in the preceding paragraph is signifi-
cant; some computers are constructed with access to
devices that are presumed to provide a source of random
bits. Probabilistic circuits (which are allowed to have some
small chance of producing an incorrect output) might be a
more powerful model of computing. Indeed, the intract-
ability result for this class of circuits (1) is slightly weaker:

Theorem 2. Any probabilistic circuit of AND, OR, and
Not gates that takes as input a WSIS formula of 614
symbols and outputs a bit that says whether the formula
is true (with error probability at most 1/3) must have at
least 10'*gates.

The underlying question of the appropriate model of
computation touseis central to the question of how relevant
the theorems of computational complexity theory are. Both
deterministic and probabilistic circuits are examples of
“classical” models of computing. In recent years, a more

Wiley Encyclopedia of Computer Science and Engineering, edited by Benjamin Wah.

Copyright © 2008 John Wiley & Sons, Inc.

powerful model of computing that exploits certain aspects
of the theory of quantum mechanics has captured the
attention of the research communities in computer science
and physics. It seems likely that some modification of
theorems 1 and 2 holds even for quantum circuits. For
the factorization problem, however, the situation is
different. Although many people conjecture that classical
(deterministic or probabilistic) circuits that compute the
factors of 1000-bit numbers must be huge, it is known that
small quantum circuits can compute factors (2). It remains
unknown whether it will ever be possible to build quantum
circuits, or to simulate the computation of such circuits
efficiently. Thus, complexity theory based on classical
computational models continues to be relevant.

The three most widely studied general-purpose “realis-
tic” models of computation today are deterministic, prob-
abilistic, and quantum computers. There is also interest in
restricted models of computing, such as algebraic circuits or
comparison-based algorithms. Comparison-based models
arise in the study of sorting algorithms. A comparison-
based sorting algorithm is one that sorts n items and is
not allowed to manipulate the representations of those
items, other than being able to test whether one is greater
than another. Comparison-based sorting algorithms
require time (Q(nlogn), whereas faster algorithms are
sometimes possible if they are allowed to access the bits
of the individual items. Algebraic circuits operate under
similar restrictions; they cannot access the individual bits
of the representations of the numbers that are provided
as input, but instead they can only operate on those num-
bers via operations such as +, x, and +. Interestingly, there
is also a great deal of interest in “unrealistic” models of
computation, such as nondeterministic machines. Before
we explain why unrealistic models of computation are of
interest, let us see the general structure of an intract-
ability proof.

DIAGONALIZATION AND REDUCIBILITY

Any intractability proof has to confront a basic question:

How can one prove that there is not a clever algorithm for
a certain problem? Here is the basic strategy that is used to
prove theorems 1 and 2. There are three steps.

Step 1 involves showing that there is program A that
uses roughly 2" bits of memory on inputs of size n such that,
for every input length n, the function that A computes on
inputs of length n requires circuits as large as are required
by any function on n bits. The algorithm A is presented by
a “diagonalization” argument (so-called because of simi-
larity to Cantor’s “diagonal” argument from set theory).
The same argument carries through essentially unchanged
for probabilistic and quantum circuits. The problem com-
puted by A is hard to compute, but this by itself is not very
interesting, because it is probably not a problem that any-
one would ever want to compute.

Step 2 involves showing that there is an efficiently
computable function fthat transforms any input instance
x for A into a WS1S formula ¢(i.e., f(x) = ¢) with the pro-
perty that A outputs “1” on input x if and only if the formula
is true. If there were a small circuit deciding whether a

COMPUTATIONAL COMPLEXITY THEORY 501

formula is true, then there would be a small circuit for the
problem computed by A. As, by step 1, there is no such small
circuit for A, it follows that there is no small circuit deciding
whether a formula is true.

Step 3 involves a detailed analysis of the first two steps,
in order to obtain the concrete numbers that appear in
Theorem 1.

Letusfocus on step 2. The function fis called a reduction.
Any function g such that x is in B if and only if g(x) isin C is
said to reduce B to C. (This sort of reduction makes sense
when the computational problems B and C are problems
that require a “yes or no” answer; thus, they can be viewed
as sets, where x is in B if B outputs “yes” on input x. Any
computational problem can be viewed as a set this way. For
example, computing a function & can be viewed as the set
{(x, 7) : the ith bit of flx) is 1}.)

Efficient reducibility provides a remarkably effective
tool for classifying the computational complexity of a great
many problems of practical importance. The amazing thing
about the proof of step 2 (and this is typical of many
theorems in complexity theory) is that it makes no use at
all of the algorithm A, other than the fact that A uses at
most 2" memory locations. Every problem that uses at most
this amount of memory is efficiently reducible to the pro-
blem of deciding whether a formula is true. This provides
motivation for a closer look at the notion of efficient redu-
cibility.

EFFICIENT COMPUTATION, POLYNOMIAL TIME

Many notions of efficient reducibility are studied in com-
putational complexity theory, but without question the
most important one is polynomial-time reducibility. The
following considerations explain why this notion of redu-
cibility arises.

Let us consider the informal notion of “easy” functions
(functions that are easy to compute). Here are some con-
ditions that one might want to satisfy, if one were trying to
make this notion precise:

- If f and g are easy, then the composition f o g is also
easy.

« Iffis computable in time n? on inputs of length 7, then
f is easy.

These conditions might seem harmless, but taken
together, they imply that some “easy” functions take
time n'% to compute. (This is because there is an “easy”
function fthat takes input of length n and produces output
of length n2. Composing this function with itself takes time
n*, etc.) At one level, it is clearly absurd to call a function
“easy” if it requires time n'°° to compute. However, this is
precisely what we do in complexity theory! When our goal is
to show that certain problems require superpolynomial
running times, it is safe to consider a preprocessing step
requiring time n1% as a “negligible factor”.

A polynomial-time reduction f is simply a function that
is computed by some program that runs in time bounded
by p(n) on inputs of length n, for some polynomial p. (That is,
for some constant k£, the running time of the program

502 COMPUTATIONAL COMPLEXITY THEORY

computingfis at mostn” + & on inputs of length n.) Note that
we have not been specific about the programming language
in which the program is written. Traditionally, this is made
precise by saying that fis computed by a Turing machine in
the given time bound, but exactly the same class of poly-
nomial-time reductions results, if we use any other reason-
able programming language, with the usual notion of
running time. This is a side-benefit of our overly generous
definition of what it means to be “easy” to compute.

If fis a polynomial-time reduction of A to B, we denote
thisA <? B.Note that this suggests an ordering, where B is
“larger” (i.e., “harder to compute”) than A. Any efficient
algorithm for B yields an efficient algorithm for A; if A
is hard to compute, then B must also be hard to compute.
If A <P B and B <P A, this is denoted A=?B.

One thing that makes complexity theory useful is that
naturally-arising computational problems tend to clump
together into a shockingly small number of equivalence
classes of the =2 relation. Many thousands of problems
have been analyzed, and most of these fall into about a
dozen equivalence classes, with perhaps another dozen
classes picking up some other notably interesting groups
of problems.

Many of these equivalence classes correspond to inter-
esting time and space bounds. To explain this connection,
first we need to talk about complexity classes.

COMPLEXITY CLASSES AND COMPLETE SETS

A complexity class is a set of problems that can be computed
within certain resource bounds on some model of computa-
tion. For instance, P is the class of problems computable by
programs that run in time at most n* + % for some constant
k; “P” stands for “polynomial time.” Another important
complexity class is EXP: the set of problems computed by
programs that run for time at most 27*** on inputs of length
n. P and EXP are both defined in terms of time complexity.
It is also interesting to bound the amount of memory used
by programs; the classes PSPACE and EXPSPACE consist
of the problems computed by programs whose space
requirements are polynomial and exponential in the input
size, respectively.

An important relationship exists between EXP and the
game of checkers; this example is suitable to introduce the
concepts of “hardness” and “completeness.”

Checkers is played on an 8-by-8 grid. When the rules are
adapted for play on a 10-by-10 grid, the game is known as
“draughts” (which can also be played on boards of other
sizes). Starting from any game position, there is an optimal
strategy.The task of finding an optimal strategy is a natural
computational problem. N x N-Checkers is the function
that takes as input a description of a N x N draughts board
with locations of the pieces, and returns as output the move
that a given player should make, using the optimal strat-
egy. It is known that there is a program computing the
optimal strategy for N x N-Checkers that runs in time
exponential in NZ; thus, N x N-Checkers € EXP.

More interestingly, it is known that for every problem
A€cEXP, A <P N x N-Checkers. We say that A <P Nx
N-Checkers is hard for EXP (3).

More generally, if C is any class of problems, and B is a
problem such that A <? B for every A € C, then we say that
Bis hard for C. If B is hard for C and B € C, then we say that
B is complete for C. Thus, in particular, N x N-Checkers
is complete for EXP. This means that the complexity of N x
N-Checkers is well understood, in the sense that the fastest
program for this problem cannot be too much faster than
the currently known program. Here is why: We know (via a
diagonalization argument) that there is some problem A in
EXP that cannot be computed by any program that runs in
time asymptotically less than 2". As N x N-Checkers is
complete for EXP, we know there is a reduction from A
to N x N-Checkers computable in time n” for some %, and
thus N x N-Checkers requires running time that is asymp-
totically at least 27",

Itissignificant to note that this yields only an asymptotic
lower bound on the time complexity of N x N-Checkers.
Thatis, it says that the running time of any program for this
problem must be very slow on large enough inputs, but (in
contrast to Theorem 1) it says nothing about whether this
problem is difficult for a given fixed input size. For instance,
itis stillunknown whether there could be a handheld device
that computes optimal strategies for 100 x 100-Checkers
(although this seems very unlikely). To mimic the proof of
Theorem 1, it would be necessary to show that there is a
problem in EXP that requires large circuits. Such problems
are known to exist in EXPSPACE; whether such problems
exist in EXP is one of the major open questions in computa-
tional complexity theory.

The complete sets for EXP (such as N x N-Checkers)
constitute one of the important =2 -equivalence classes;
many other problems are complete for PSPACE and EXP-
SPACE (and of course every nontrivial problem that can be
solved in polynomial time is complete for P under <2
reductions). However, this accounts for only a few of the
several =2 -equivalence classes that arise when consider-
ing important computational problems. To understand
these other computational problems, it turns out to be
useful to consider unrealistic models of computation.

UNREALISTIC MODELS: NONDETERMINISTIC MACHINES
AND THE CLASS NP

Nondeterministic machines appear to be a completely
unrealistic model of computation; if one could prove this
to be the case, one would have solved one of the most
important open questions in theoretical computer science
(and even in all of mathematics).

A nondeterministic Turing machine can be viewed as a
program with a special “guess” subroutine; each time this
subroutine is called, it returns a random bit, zero or one.
Thus far, it sounds like an ordinary program with a random
bit generator, which does not sound so unrealistic. The
unrealistic aspect comes with the way that we define
how the machine produces its output. We say that a non-
deterministic machine accepts its input (i.e., it outputs one)
if there is some sequence of bits that the “guess” routine
could return that causes the machine to output one; other-
wise it is said to reject its input. If we view the “guess” bits as
independent coin tosses, then the machine rejects its input

if and only if the probability of outputting one is zero;
otherwise it accepts. If a nondeterministic machine runs
for ¢ steps, the machine can flip ¢ coins, and thus, a non-
deterministic machine can do the computational equivalent
of finding a needle in a haystack: If there is even one
sequence r of length ¢ (out of 2’ possibilities) such that
sequence r leads the machine to output one on input
x, then the nondeterministic machine will accept x, and
it does it in time ¢, rather than being charged time 2’ for
looking at all possibilities.

A classic example that illustrates the power of nonde-
terministic machines is the Travelling Salesman Problem.
The input consists of a labeled graph, with nodes (cities)
and edges (listing the distances between each pair of cities),
along with abound B. The question to be solved is as follows:
Does there exist a cycle visiting all of the cities, having
length at most B? A nondeterministic machine can solve
this quickly, by using several calls to the “guess” subroutine
to obtain a sequence of bits 7 that can be interpreted as a list
of cities, and then outputting one if r visits all of the cities,
and the edges used sum up to at most B.

Nondeterministic machines can also be used to factor
numbers; given an n-bit number x, along with two other
numbers a and b with a <b, a nondeterministic machine
can accept whether there is a factor of x that lies between a
and b.

Of course, this nondeterministic program is of no use at
all in trying to factor numbers or to solve the Traveling
Salesman Problem on realistic computers. In fact, it is hard
to imagine that there will ever be an efficient way to
simulate a nondeterministic machine on computers that
one could actually build. This is precisely why this model is
so useful in complexity theory; the following paragraph
explains why.

The class NP is the class of problems that can be solved
by nondeterministic machines running in time at most
n* + k on inputs of size n, for some constant %; NP stands
for Nondeterministic Polynomial time. The Traveling
Salesman Problem is one of many hundreds of very impor-
tant computational problems (arising in many seemingly
unrelated fields) that are complete for NP. Although it is
more than a quarter-century old, the volume by Garey and
Johnson (4) remains a useful catalog of NP-complete pro-
blems. The NP-complete problems constitute the most
important =2 -equivalence class whose complexity is unre-
solved. If any one of the NP-complete problems lies in P,
then P = NP. As explained above, it seems much more likely
that P is not equal to NP, which implies that any program
solving any NP-complete problem has a worst-case running
time greater than n'°%%° on all large inputs of length n.

Of course, even if Pisnot equal to NP, we would still have
the same situation that we face with N x N-Checkers, in
that we would not be able to conclude that instances of
some fixed size (say n = 1,000) are hard to compute. For
that, we would seem to need the stronger assumption that
there are problems in NP that require very large circuits; in
fact, this is widely conjectured to be true.

Although it is conjectured that deterministic machines
require exponential time to simulate nondeterministic
machines, it is worth noting that the situation is very
different when memory bounds are considered instead. A

COMPUTATIONAL COMPLEXITY THEORY 503

classic theorem of complexity theory states that a nonde-
terministic machine using space s(n) can be simulated by a
deterministic machine in space s(n)®. Thus, if we define
NPSPACE and NEXPSPACE by analogy to PSPACE and
EXPSPACE using nondeterministic machines, we obtain
the equalities PSPACE = NPSPACE and EXPSPACE =
NEXPSPACE.
We thus have the following six complexity classes:

P C NP C PSPACE C EXP C NEXP C EXPSPACE

Diagonalization arguments tell us that P#EXP, NP #
NEXP, and PSPACE #EXPSPACE. All other relationships
are unknown. For instance, it is unknown whether P =
PSPACE, and it is also unknown whether PSPACE =
NEXP (although at most one of these two equalities can
hold). Many in the community conjecture that all of these
classes are distinct, and that no significant improvement
on any of these inclusions can be proved. (That is, many
people conjecture that there are problems in NP that
require exponential time on deterministic machines, that
there are problems in PSPACE that require exponential
time on nondeterministic machines, that there are pro-
blems in EXP that require exponential space, etc.) These
conjectures have remained unproven since they were first
posed in the 1970s.

A THEORY TO EXPLAIN OBSERVED DIFFERENCES IN
COMPLEXITY

Itis traditional to draw a distinction between mathematics
and empirical sciences such as physics. In mathematics,
one starts with a set of assumptions and derives (with
certainty) the consequences of the assumptions. In con-
trast, in a discipline such as physics one starts with exter-
nal reality and formulates theories to try to explain (and
make predictions about) that reality.

For some decades now, the field of computational com-
plexity theory has dwelt in the uncomfortable region
between mathematics and the empirical sciences. Com-
plexity theory is a mathematical discipline; progress is
measured by the strength of the theorems that are proved.
However, despite rapid and exciting progress on many
fronts, the fundamental question of whether P is equal to
NP remains unsolved.

Until that milestone is reached, complexity theory can
still offer to the rest of the computing community some of
the benefits of an empirical science, in the following sense.
All of our observations thus far indicate that certain pro-
blems (such as the Traveling Salesman Problem) are intrac-
tible. Furthermore, we can observe that with surprisingly
few exceptions, natural and interesting computational pro-
blems can usually be shown to be complete for one of a
handful of well-studied complexity classes. Even though we
cannot currently prove that some of these complexity
classes are distinct, the fact that these complexity classes
correspond to natural or unnatural models of computation
gives us an intuitively appealing explanation for why these
classes appear to be distinct. That is, complexity theory
gives us a vocabulary and a set of plausible conjectures that

504 COMPUTATIONAL COMPLEXITY THEORY

helps explain our observations about the differing compu-
tational difficulty of various problems.

NP AND PROVABILITY

There are important connections between NP and math-
ematical logic. One equivalent way of defining NP is to say
that a set A is in NP if and only if there are short proofs of
membership in A. For example, consider the Traveling
Salesman Problem. If there is a short cycle that visits all
cities, then there is a short proof of this fact: Simply
present the cycle and compute its length. Contrast this
with the task of trying to prove that there is not a short
cycle that visits all cities. For certain graphs this is
possible, but nobody has found a general approach that
is significantly better than simply listing all (exponen-
tially many) possible cycles, and showing that all of them
are too long. That is, for NP-complete problems A, it seems
to be the case that the complement of A (denoted co-A) is
not in NP.

The complexity class coNP is defined to be the set of all
complements of problems in NP; coNP = {co — A : A € NP}.
This highlights what appears to be a fundamental dif-
ference between deterministic and nondeterministic
computation. On a deterministic machine, a set and its
complement always have similar complexity. On nondeter-
ministic machines, this does not appear to be true (although
if one could prove this, one would have a proof that P is
different from NP).

To discuss the connections among NP, coNP, and logic
in more detail, we need to give some definitions related to
propositional logic. A propositional logic formula consists
of variables (which can take on the values TRUE and FALSE),
along with the connectives Anp, OR, and Nort. A formula is
said to be satisfiable if there is some assignment of truth
values to the variables that causes it to evaluate to TRUE; it
is said to be a tautology if every assignment of truth values
to the variables causes it to evaluate to TRUE. SAT is the set
of all satisfiable formulas; TAUT is the set of all tautologies.
Note that the formula ¢ is in SAT if and only if “Nor¢” is not
in TAUT.

SAT is complete for NP; TAUT is complete for coNP.
[This famous theorem is sometimes known as “Cook’s
Theorem” (5) or the “Cook-Levin Theorem” (6).]

Logicians are interested in the question of how to prove
that a formula is a tautology. Many proof systems have
been developed; they are known by such names as resolu-
tion, Frege systems, and Gentzen calculus. For some of
these systems, such as resolution, it is known that certain
tautologies of n symbols require proofs of length nearly
2™(7). For Frege systems and proofs in the Gentzen calcu-
lus, it is widely suspected that similar bounds hold,
although this remains unknown. Most logicians suspect
that for any reasonable proof system, some short tautol-
ogies willrequire very long proofs. Thisis equivalent to the
conjecture that NP and coNP are different classes; if every
tautology had a short proof, then a nondeterministic
machine could “guess” the proof and accept if the proof
is correct. As TAUT is complete for coNP, this would imply
that NP = coNP.

The P versus NP question also has a natural inter-
pretation in terms of logic. Two tasks that occupy mathe-
maticians are as follows:

1. Finding proofs of theorems.
2. Reading proofs that other people have found.

Most mathematicians find the second task to be con-
siderably simpler than the first one. This can be posed as a
computational problem. Let us say that a mathematician
wants to prove a theorem ¢ and wants the proof to be at
most 40 pages long. A nondeterministic machine can take
as input ¢ followed by 40 blank pages, and “guess” a proof,
accepting if it finds a legal proof. If P = NP, the mathema-
tician can thus determine fairly quickly whether there is a
short proof. A slight modification of this idea allows the
mathematician to efficiently construct the proof (again,
assuming that P = NP). That is, the conjecture that P is
different than NP is consistent with our intuition that
finding proofs is more difficult than verifying that a given
proof is correct.

In the 1990s researchers in complexity theory discov-
ered a very surprising (and counterintuitive) fact about
logical proofs. Any proof of a logic statement can be encoded
in such a way that it can be verified by picking a few bits at
random and checking that these bits are sufficiently con-
sistent. More precisely, let us say that you want to be 99.9%
sure that the proof'is correct. Then there is some constant
and a procedure such that, no matter how long the proof'is,
the procedure flips O(log n) coins and picks % bits of the
encoding of the proof, and then does some computation,
with the property that, if the proof'is correct, the procedure
accepts with probability one, and if the proof is incorrect,
then the procedure detects that there is a flaw with prob-
ability at least 0.999. This process is known as a probabi-
listically checkable proof. Probabilistically checkable proofs
have been very useful in proving that, for many optimiza-
tion algorithms, it is NP-complete not only to find an
optimal solution, but even to get a very rough approxima-
tion to the optimal solution.

Some problems in NP are widely believed to be intract-
able to compute, but are not believed to be NP-complete.
Factoring provides a good example. The problem of comput-
ing the prime factorization of a number can be formulated
in several ways; perhaps the most natural way is as the set
FACTOR ={(x, i, b): the ith bit of the encoding of the prime
factorization of x is b}. By making use of the fact that
primality testing lies in P (8), set FACTOR is easily seen
to lie in NP N coNP. Thus, FACTOR cannot be NP-complete
unless NP = coNP.

OTHER COMPLEXITY CLASSES: COUNTING,
PROBABILISTIC, AND QUANTUM COMPUTATION

Several other computational problems appear to be inter-
mediate in complexity between NP and PSPACE that are
related to the problem of counting how many accepting
paths a nondeterministic machine has. The class #P is the
class of functions f for which there is an NP machine M
with the property that, for each string x, f(x) is the number

of guess sequences r that cause M to accept input x. #P is a
class of functions, instead of being a class of sets like all
other complexity classes that we have discussed. #P is
equivalent in complexity to the class PP (probabilistic
polynomial time) defined as follows. A set A is in PP if
there is an NP machine M such that, for each string x, x is
in A if and only if more than half of the guess sequences
cause M to accept x. If we view the guess sequences as flips
of a fair coin, this means that x is in A if and only the
probability that M accepts x is greater than one half. It is
not hard to see that both NP and coNP are subsets of PP;
thus this is not a very “practical” notion of probabilistic
computation.

In practice, when people use probabilistic algorithms,
they want to receive the correct answer with high prob-
ability. The complexity class that captures this notion is
called BPP (bounded-error probabilistic polynomial time).
Some problems in BPP are not known to lie in P; a good
example of such a problem takes two algebraic circuits as
input and determines whether they compute the same
function.

Early in this article, we mentioned quantum computa-
tion. The class of problems that can be solved in polynomial
time with low error probability using quantum machines is
called BQP (bounded-error quantum polynomial time).
FACTOR (the problem of finding the prime factorization
of a number) lies in BQP (2). The following inclusions are
known:

P C BPP C BQP C PP C PSPACE
P C NP C PP

No relationship is known between NP and BQP or between
NP and BPP. Many people conjecture that neither NP nor
BQP is contained in the other.

In contrast, many people now conjecture that BPP = P,
because it has been proved that if there is any problem
computable in time 2" that requires circuits of nearly
exponential size, then there is an efficient deterministic
simulation of any BPP algorithm, which implies that P =
BPP (9). This theorem is one of the most important in a
field that has come to be known as derandomization,
which studies how to simulate probabilistic algorithms
deterministically.

INSIDE P

Polynomial-time reducibility is a very useful tool for clar-
ifying the complexity of seemingly intractible problems, but
it is of no use at all in trying to draw distinctions among
problems in P. It turns out that some very useful distinc-
tions can be made; to investigate them, we need more
refined tools.

Logspace reducibility is one of the most widely used
notions of reducibility for investigating the structure of
P; a logspace reduction f is a polynomial-time reduction
with the additional property that there is a Turing
machine computing f that has (1) a read-only input tape,
(2) a write-only output tape, and (3) the only other data

COMPUTATIONAL COMPLEXITY THEORY 505

structure it can use is a read/write worktape, where it
uses only O(log n) locations on this tape on inputs of length
n. If A is logspace-reducible to B, then we denote this by
A §f,‘;g B. Imposing this very stringent memory restriction
seems to place severe limitations on polynomial-time com-
putation; many people conjecture that many functions
computable in polynomial time are not logspace-computa-
ble. However, it is also true that the full power of polynomial
time is not exploited in most proofs of NP-completeness. For
essentially all natural problems that have been shown to be
complete for the classes NP, PP, PSPACE, EXP, and so on
using polynomial-time reducibility, it is known that
they are also complete under logspace reducibility. That
is, for large classes, logspace reducibility is essentially as
useful as polynomial-time reducibility, but logspace reduci-
bility offers the advantage that it can be used to find
distinctions among problems in P.

Logspace-bounded Turing machines give rise to some
natural complexity classes inside P: If the characteristic
function of a set A is a logspace reduction as defined in the
preceding paragraph, then A lies in the complexity class L.
The analogous class, defined in terms of nondeterministic
machines, is known as NL. The class #P also has a logspace
analog, known as #L. These classes are of interest primarily
because of their complete sets. Some important complete
problems for L are the problem of determining whether two
trees are isomorphic, testing whether a graph can be
embedded in the plane, and the problem of determining
whether an undirected graph is connected (10). Determin-
ing whether a directed graph is connected is a standard
complete problem for NL, as is the problem of computing
the length of the shortest path between two vertices in a
graph. The complexity class #L characterizes the complex-
ity of computing the determinant of an integer matrix as
well as several other problems in linear algebra.

There are also many important complete problems for
P under logspace reducibility, such as the problem of
evaluating a Boolean circuit, linear programming, and
certain network flow computations. In fact, there is a
catalog of P-complete problems (11) that is nearly as
impressive as the list of NP-complete problems (4).
Although many P-complete problems have very efficient
algorithms in terms of time complexity, there is a sense
in which they seem to be resistent to extremely fast
parallel algorithms. This is easiest to explain in terms
of circuit complexity. The size of a Boolean circuit can be
measured in terms of either the number of gates or the
number of wires that connect the gates. Another impor-
tant measure is the depth of the circuit: the length of the
longest path from an input gate to the output gate. The
problems in L, NL, and #L all have circuits of polynomial
size and very small depth (O(log®n)). In contrast, all
polynomial-size circuits for P-complete problems seem
to require a depth of at least nl/%.

Even a very “small” complexity class such as L has an
interesting structure inside it that can be investigated
using a more restricted notion of reducibility than gﬁgg
that is defined in terms of very restricted circuits. Further
information about these small complexity classes can be
found in the textbook by Vollmer (12).

506 COMPUTATIONAL COMPLEXITY THEORY

We have the inclusions L C NL C P C NP C PP C PSPACE.
Diagonalization shows that NL #PSPACE, but no other
separations are known. In particular, it remains unknown
whether the “large” complexity class PP actually coincides
with the “small” class L.

TIME-SPACE TRADEOFFS

Logspace reducibility (and in general the notion of Turing
machines that have very limited memory resources) allows
the investigation of another aspect of complexity: the
tradeoff between time and space. Take, for example, the
problem of determining whether an undirected graph is
connected. This problem can be solved using logarithmic
space (10), but currently all “space-efficient” algorithms
that are known for this problem are so slow that they will
never be used in practice, particularly because this problem
can be solved in linear time (using linear space) using a
standard depth-first-search algorithm. However, there is
no strong reason to believe that no fast small-space algo-
rithm for graph connectivity exists (although there have
been some investigations of this problem, using “restricted”
models of computation, of the type that were discussed at
the start of this article).

Some interesting time-space tradeoffs have been
proved for the NP-complete problem SAT. Recall that it
is still unknown whether SAT lies in the complexity
class L. Also, although it is conjectured that SAT is not
solvable in time n* for any k, it remains unknown whether
SAT is solvable in time O(n). However, it is known that if
SAT is solvable in linear time, then any such algorithm
must use much more than logarithmic space. In fact, any
algorithm that solves SAT in time n'” must use memory
n’* for some £(13,14).

CONCLUSION

Computational complexity theory has been very successful
in providing a framework that allows us to understand why
several computational problems have resisted all efforts to
find efficient algorithms. In some instances, it has been
possible to prove very strong intractibility theorems, and in
many other cases, a widely believed set of conjectures
explains why certain problems appear to be hard to com-
pute. The field is evolving rapidly; several developments
discussed here are only a few years old. Yet the central
questions (such as the infamous P vs. NP question) remain
out of reach today.

By necessity, a brief article such as this can touch on
only a small segment of a large field such as computational
complexity theory. The reader is urged to consult the texts
listed below, for a more comprehensive treatment of the
area.

FURTHER READING

D.-Z. Du and K.-1. Ko, Theory of Computational Complexity. New
York: Wiley, 2000.

L. A. Hemaspaandra and M. Ogihara, The Complexity Theory
Companion. London: Springer-Verlag, 2002.

D. S. Johnson, A catalog of complexity classes, in J. van Leeuwen,
(ed.), Handbook of Theoretical Computer Science, Vol. A:
Algorithms and Complexity. Cambridge, MA: MIT Press, 1990,
pp. 69-161.

D. Kozen, Theory of Computation. London: Springer-Verlag, 2006.
C. Papadimitriou, Computational Complexity. Reading, MA:
Addison-Wesley, 1994.

1. Wegener, Complexity Theory: Exploring the Limits of Efficient
Algorithms. Berlin: Springer-Verlag, 2005.

BIBLIOGRAPHY

1. L. Stockmeyer and A. R. Meyer, Cosmological lower bound
on the circuit complexity of a small problem in logic, J. ACM,
49: 753784, 2002.

2. P. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J.
Comput. 26: 1484-1509, 1997.

3. J.M. Robson, N by N Checkersis EXPTIME complete, STAM oJ.
Comput.13: 252267, 1984.

4. M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guideto the Theory of NP-Completeness. San Francisco, CA:
Freeman, 1979.

5. S. Cook, The complexity of theorem proving procedures, Proc.
3rd Annual ACM Symposium on Theory of Computing
(STOC), 1971, pp. 151-158.

6. L.Levin, Universal search problems, Problemy Peredachi Infor-
matsii, 9: 265—266, 1973 (in Russian). English translation: B. A.
Trakhtenbrot, A survey of Russian approaches to perebor
(brute-force search) algorithms, Ann. History Comput., 6:
384400, 1984.

7. A. Haken, The intractability of resolution, Theor. Comput.
Sci., 39: 297-308, 1985.

8. M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann.
Math., 160: 781-793, 2004.

9. R. Impagliazzo and A. Wigderson, P=BPP unless E has sub-
exponential circuits, Proc. 29th ACM Symposium on Theory of
Computing (STOC), 1997, pp. 220-229.

10. O. Reingold, Undirected ST-connectivity in log-space, Proc.
37th Annual ACM Symposium on Theory of Computing
(STOC), 2005, pp. 376-385.

11. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel
Computation: P-Completeness Theory. New York: Oxford Uni-
versity Press, 1995.

12. H. Vollmer, Introduction to Circuit Complexity. Berlin:
Springer-Verlag, 1999.

13. L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas, Time-
space lower bounds for satisfiability, J. ACM, 52: 835-865,
2005.

14. R. Williams, Better time-space lower bounds for SAT and
related problems, Proc. 20th Annual IEEE Conference on
Computational Complexity (CCC), 2005, pp. 40—49.

ERric ALLENDER
Rutgers University
Piscataway, New Jersey

