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Abstract. This paper summarizes a series of three lectures the first author was in-
vited to present at the NZMRI summer 2000 workshop, held in Kaikoura, New Zealand.
Lecture 1 presents the goals of computational complexity theory. We discuss (a) what
complexity provably can never deliver, (b) what it hopes to deliver but thus far has not,
and finally (c) where it has been extremely successful in providing useful theorems. In so
doing, we introduce nondeterministic Turing machines. Lecture 2 presents alternation, a
surprisingly-useful generalization of nondeterminism. Using alternation, we define more
complexity classes, and inject clarity into a confusing situation. In Lecture 3 we present
a few of the most beautiful results in computational complexity theory. In particular, we
discuss (a) the algebraic approach to circuit complexity, (b) circuit lower bounds, and
(c) derandomization.

1. Lecture 1

Warning: This brief survey cannot take the place of a comprehen-
sive textbook. Readers looking for a more detailed account of the
topics introduced here may wish to consult books such as [HU79,
BDG95, BDG90, Vol99, Pap94, DK00] or survey chapters such as
[ALR99, BS90].

To illustrate what we would like complexity theory to do, it may be best to
start by considering a “dream result” that complexity theory cannot prove (yet).
Consider the following elusive goal, currently far beyond our capabilities.

Prove: Any circuit of NAND gates that will factor 600 digit numbers
must have ≥ 2100 gates.

If this could be proved, surely it would place public-key cryptography on a firm
foundation, and would show that factoring is hard with any computing technology.

Or would it? Note that factoring is easy using “quantum circuits” [Sho97].
This example forces us to consider the following questions:
∗Supported in part by NSF grant CCR-9734918.
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• Are any functions this complex?

Answer: Yes! Just count.
The number of functions on 600 bits is exactly 22600

.
A circuit of size 2100 can be described in 300× 2100 bits.
Thus, the number of functions with circuits of size 2100 will be less than the
number of descriptions of size 300 · 2100, and 22100·300 <<<<<< 22600

.

• Are any interesting functions this complex? (The function shown to exist in
the preceding paragraph is probably something that nobody would want to
compute, anyway!)

Answer: Consider the following theorem of Stockmeyer [Sto74].

Theorem 1.1 (Stockmeyer). Any circuit that takes as input a formula (in
the language of WS1S, the weak second-order theory of one successor) with
up to 616 symbols and produces as output a correct answer saying whether
the formula is valid or not, requires at least 10123 gates.

To quote Stockmeyer:

Even if the gates were the size of a proton and were connected
by infinitely thin wires, the network would densely fill the known
universe.

The validity problem (even for formulae in the language WS1S) is a fairly
interesting problem. It frequently arises in work in the computer-aided ver-
ification community.

• Aren’t all theorems of this sort meaningless? Theorems of this sort all de-
pend on a particular technology. For instance, factoring is easy on quantum
circuits, which shows that theorems about NAND circuits are probably ir-
relevant. In fact, any function f is easy with f-gates.

Two answers:

– For every technology there is a complexity theory. Many theorems are
invariant under change of technology. (In fact, even Stockmeyer’s the-
orem can be re-proved for quantum circuits, with only slightly different
constants.)

– Complexity theory is (in part) an empirical study. All observations so
far show that existing computations can be implemented “efficiently”
with NAND gates. Similarly, all existing programming languages are
roughly “equivalent”. Theorems about NAND circuits will become
irrelevant only after someone builds a computer that cannot be effi-
ciently simulated by NAND circuits. (More to the point, theorems
about NAND circuits will be interesting as long as most computation
is done by computers that can be implemented with NAND circuitry.)
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To obtain concrete results, it helps to have a theoretical framework. As a
foundation for this framework, we define classes of easy functions.

A complication here is that some functions are “hard” to compute, simply
because the output is long, although each bit is easy. (For instance, the exponen-
tiation function x 7→ 2x has an exponentially long output, although the ith bit of
2x can be computed in time linear in the length of the binary representation of i,
and hence in many regards it is an “easy” function.) As a solution, we focus on
functions with a single bit of output f : {0, 1}∗ −→ {0, 1}. Equivalently, we focus
on languages {x : f(x) = 1}.

We define Dtime(t) as the set of all languages whose characteristic functions can
be computed in time t(n) on inputs of length n. Similarly, we can define Dspace(t)
to be the set of all languages whose characteristic functions can be computed using
at most t(n) memory locations on inputs of length n.

Another complication that arises is the question of what kind of computer is
doing the computation. What kind of programming language do we use?

We choose to measure time on a multi-tape Turing machine. (We’ll use the
abbreviation “TM ” for “Turing machine”.) While this may seem to be an absurd
choice, at first glance, we should note that any choice of technology would be
arbitrary and would soon be obsolete. Turing machines have a very simple ar-
chitecture (they’re the original “RISC” machine), which makes some proofs more
simple. Also, for any program implemented on any machine ever built, run-time
t(n) can be simulated in time ≤ t(n)3 on a Turing machine. Fine distinctions may
be lost, but the big picture remains the same.

Finally, now, we have the basic objects of complexity theory, Dtime(t) and
Dspace(t). Note that we have chosen worst-case running time in the definition of
our complexity classes. This is a reasonable choice, although certainly there are
also good reasons for considering average-case complexity. The complexity theory
for average-case computation is considerably more complicated. For a survey,
consult [Wan97].

A reasonable goal might be to first try to prove “If we have more resources, we
can compute more”. That is, if t << T , then Dtime(t) ( Dtime(T ).

So, how much bigger must T be?

• t+ 1 ≤ T?

• t = o(T )?

• t · log t = o(T )?

• 2t ≤ T?

• 22222t

≤ T?

Surprisingly, none of these work in general. Consider the following theorem.
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Theorem 1.2 (Gap Theorem1). Let r be any computable function. Then there
exist computable functions t such that:

Dtime(t) = Dtime(r(t))

So we have “weird” functions t such that [t, r(t)] is a “no-man’s land”, i.e. every
Turing Machine runs in time t(n), or takes time more than r(t(n)), for all large
input lengths n.

In response to the Gap Theorem, we are going to consider only “reasonable”
time bounds, using the following definition.

Definition 1.1. A function t is time-constructible if there is a TM that, on all
inputs of length n, runs for exactly t(n) steps.

Every time bound you’d ever care about is time-constructible: n logn, n2,
n2.579 logn, 2n, nlog n, . . .

Theorem 1.3. Let t and T be time-constructible functions such that T is “a little
bigger than t”. Then:

Dtime(t) ( Dtime(T )

Proof. (by diagonalization)
We will build a TM, M , running in time T , such that ∀ i (Mi runs in time t ⇒

∃x : Mi(x) 6= M(x)).

M : on input x,
count the number of 1’s at the start; that is, x = 1i0x′,
compute n = |x|,
compute T (n),
simulate as many moves of Mi(x) as possible in time T (n).
If this simulation runs to completion and Mi(x) = 1,
then halt and output 0, otherwise halt and output 1.

The time required for the computation above is ≤ n+n+T (n)+T (n) ≤ 4T (n),
so L(M) ∈ Dtime(4T (n)) = Dtime(T (n)).

(The last equality follows from a weird fact about Turing Machines: “constant
factors don’t matter”. This is not realistic, but it is convenient and doesn’t hurt
the relevance of the theory.)

Let Mi run in time t.
The time required to simulate Mi(x) ≈ t(|x|) · (“penalty (i)”) � T (|x|) for

large x = 1i0x′. Thus, the simulation can run to completion, and Mi(x) 6= M(x).
ut

1In this brief write-up, we will not worry about providing careful citations to the original
articles where fundamental results were proved. (In this case, it was [Bor72a].) Rather, the
reader who wants more details should consult one of the standard texts on the subject, as listed
in the introduction.
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The above is an example of a diagonalizationargument. Diagonalization is good
at creating monsters (things that have an unpleasant property, use huge resources,
etc.). An amazing fact: Interesting problems have monsters sitting inside them!

A case in point:

Theorem 1.4 (Part of the proof of Stockmeyer’s Theorem). ∃A∈Dspace(2n), A
requires circuits of size ≥ 2n/2 on every input length.

Proof. Here is the outline of an algorithm that runs in exponential space, and
differs from any function having a small circuit.

On input x of length n:
For each bit-string y of length 2n (representing a possible truth-table for A ∩Σn)

For each circuit C of size 2n/2

If C(z) = y(z) for all z ∈ Σn

then (y is easy)
Get next y

EndFor
At this point, y represents a function computed by no circuit of size ≤ 2n/2.
Output the xth bit of y. ut

The preceding theorem shows that there is a monster living in Dspace(2n).
The rest of Stockmeyer’s theorem involves showing that this monster can be found
lurking inside the validity problem.

More precisely, there is an efficient reduction from A to WS1S, i.e. an easy
function f such that x ∈ A⇔ f(x) ∈WS1S.

If WS1S had small circuits, then so would A. In fact, such a reduction exists
for every B ∈ Dspace(2n), so WS1S is “harder than” everything in Dspace(2n).

The truly unexpected and fundamental observation is the following:

Most “natural” problems are “hard” for some
complexity class in this sense.

Since this is such an important notion, it is worthwhile spending some time defining
it properly.

To formalize the notion of a “reduction”, we need to revisit the notion of an
“easy function”.

Desiderata:

• If f and g are easy, then so is f ◦ g.

• If f is computable in time n2, then f is easy.

Unfortunately, these two seemingly harmless desiderata have the unpleasant
implication that there are “easy” functions requiring time n1000. This forces us to
consider some tough choices:

• give up on our desiderata, or
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• try to justify our (ridiculous) definition of “easy”.

We choose the second option. The justification is that we are not really inter-
ested in the notion of “easy functions”, but rather we are interested in functions
that are “difficult” to compute. Note that if a function is not “easy” (i.e. if it’s
not computable in time nk for any k) then it really is “difficult” in an intuitively
appealing sense.

Definition 1.2 (m-reduction). A ≤Pm B if ∃ k ∃ f , computable in time nk + k,
such that x ∈ A⇔ f(x) ∈ B.

The relation ≤Pm defines a partial order on equivalence classes (where A ≡Pm B
if A ≤Pm B ≤Pm A).

Intuitively, this partial order corresponds to the “is no harder than” relation,
in the sense that “A ≤Pm B” should roughly mean the same thing as “A is no
harder than B”. It is slightly more precise to translate this as “A is not too much
harder than B”, as is made precise below:

Theorem 1.5. Let A ≤Pm B. Then B ∈ Dtime(t(n)) ⇒ ∃ k : A ∈ Dtime(nk +
t(k + nk)), and B ∈ Dspace(t(n))⇒ ∃ k : A ∈ Dspace(nk + t(k + nk)).

We now face a new problem. We have two useful tools (≤Pm reducibility, and
Dtime and Dspace classes), but the notions of “easiness” they give don’t mesh
perfectly. What is needed is to modify the time and space complexity classes, in
order to obtain classes with some nice closure properties.

Definition 1.3 (Closure). Let C be a class of languages. C is closed w.r.t. ≤Pm if:

A ≤Pm B and B ∈ C ⇒ A ∈ C

Some classes with nice closure properties:

• P =
⋃
k Dtime(nk)

• PSPACE =
⋃
k Dspace(nk)

• EXP =
⋃
k Dtime(2n

k

)

• EXPSPACE = Dspace(2n
O(1)

)

Now it is time to give a formal definition of the notion of “hardness” that we
introduced earlier.

Definition 1.4 (Hardness). A is hard for C, under ≤Pm, if:

∀B ∈ C , B ≤Pm A

Hardness may be viewed as a lower bound on the complexity of A.

Definition 1.5 (Completeness). A is complete for C, under ≤Pm, if:
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• A ∈ C and

• A is hard for C under ≤Pm.

Completeness may be viewed as a tight lower bound on the complexity of A.
A surprise! Nice complexity classes have interesting complete problems.

Complexity class Complete problems
P anything with a reasonable algorithm

PSPACE {(M,ϕ) : M � ϕ} (Here, M is a finite structure and
ϕ is a first-order logic statement.
Equivalently, M is a database, and ϕ is a
question that is being asked about the database.)

RegExp (∪ , · , ∗) (This is the problem, given regular
expressions r and s using the operations
(∪ , · , ∗), of determining if r and s are
equivalent, in the sense that L(r) = L(s).)

EXP n× n checkers [Rob84]
n× n Go [Rob84]

EXPSPACE RegExp (∪ , · , ∗ ,2 ) where α2 = α · α

This is starting to look promising! Taking as our starting point a natural
formalization of the venerable mathematical concept of “reducibility”, we have
focused on complexity classes that are closed under this reducibility, and discovered
that there are natural complete problems for these complexity classes, and thus
we have “tight” lower bounds on the complexity of many of these problems. It
is natural to wonder if this approach can be pushed further, to give a better
understanding of even more computational problems.

At this point, however, we encounter a disappointment. There are many equiv-
alence classes under ≤Pm that seem not to correspond to Dtime and Dspace classes.

Shock! They correspond to time and space classes on “fantasy” machines.
That is, in order to use the tools of reducibility and completeness to understand
the complexity of a wider range of problems, we will need to define some very
“unrealistic” models of computation.

Nondeterministic machines have ≥ 1 “legal” moves at any given time.
An NDTM (NonDeterministic Turing Machine) is said to accept x in time

t if there exists a sequence of ≤ t legal moves leading to “accept”. (Similarly,
the machine is said to accept in space s if there exists a sequence of legal moves
leading to “accept”, where no more than s memory locations are accessed along
this sequence of moves.)

We can think of an NDTM computation as a computation tree, as shown here:
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Note that, because of the existential quantifier in the definition of what it means
for an NDTM to accept an input x, nondeterministic Turing machines can quickly
solve search problems that seemingly require exponential time for a deterministic
machine to solve. Now, just as for “ordinary” deterministic machines, we can also
define complexity classes for nondeterministic machines.

• Ntime(t)

• Nspace(t)

• NP =
⋃
k Ntime(nk)

If you have doubts about the wisdom of introducing wildly-unrealistic models of
computing such as the NDTM, we now argue that more-than-adequate justification
is provided by the following list of NP -complete problems:

• Traveling Salesperson Problem (see page 9)

• SAT (Boolean Satisfiability)

• Clique

• Hamiltonian path

• 3-Colorability

• . . . hundreds more . . .

Review - Lecture 1

• Reducibility is a tool to expose unexpected relationships among seemingly
unrelated problems.
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• Some equivalence classes ≡PM correspond to Dtime and Dspace classes, but
many seem not to.

• Non-determinism provides a “computational” view of some of these “prob-
lematic” ≡PM classes, and helps explain their (perceived) computational in-
tractability.

A historical reality check: It didn’t quite happen this way. Theoreticians
like non-deterministic TM ’s, and had studied them for years before it turned out
that they were useful in practice. NP-completeness was initially seen as a “cute”
translation of some notions from recursive function theory to complexity theory.

Complexity classes seem to differ from each other.

For example: A ∈ Dtime(t)⇒ A ∈ Dtime(t).
In contrast: A ∈ Ntime(t)⇒ A ∈ Ntime(2O(t)) seems optimal.

In particular: coNP = {A : A ∈ NP}. The standard coNP-complete problem
is TAUT = {ϕ : ϕ is a tautology}. Tautologies have proofs. It seems as if a proof
of a tautology on n variables needs to be of size ≈ 2n. The question of whether
tautologies have short proofs is equivalent to the question of the Ntime complexity
of coNP .

coNP ⊆ Ntime(t(nO(1)))⇔ tautologies have “proofs” of size t(n) [CR79].

The conjectured situation is illustrated here:

coNP NP

P

An example: Traveling Salesperson Problem

TSP = {(G, k) : ∃ a path of length ≤ k visiting all cities on the map G}

An NDTM guesses the path, then checks that the path is valid, and computes
the length of the path.

This illustrates the typical way to “program” an NDTM via the “guess and
check” method (verifying the guess using a deterministic computation). Thus,
for problems in NP we can check solutions easily. It seems more difficult to find
solutions.
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2. Lecture 2

2.1. Alternation

NDTM ’s are like ∃ quantifiers; an NDTM accepts if there exists an accepting
path. Similarly, we can define ∀ machines, where all paths must be accepting.
Alternating machines allow both ∃ and ∀ states. In the accompanying figure, note
that the universal node at the root of the computation tree is accepting, since for
all of the existential nodes that are its children, there exist descendents labeled
“1”.

E

T
IM

E

A

E

A

E

0 01 10 1

As for nondeterministic machines, we can define complexity classes Atime(t) and
Aspace(t) for alternating machines.

Why do we consider these notions? Alternation clarifies the relationship be-
tween time and space. To see this, first consider the following chains of inclusions
(some of which are trivial, but some of which require proof).

Dtime(t) ⊆ Ntime(t) ⊆ Atime(t) ⊆ Dspace(t)

⊆ Nspace(t) ⊆ Aspace(t) ⊆ Dtime(2O(t))

Nspace(t) ⊆ Atime(t2) ⊆ Dspace(t2) [Savitch’s Theorem]

Dtime(t) ⊆ Aspace(log t)

As a consequence, we see that deterministic time classes correspond to alter-
nating space classes, and vice versa. That is, we have the following corollaries:

• P = Aspace(logn)

• PSPACE = Atime(nO(1))
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• EXP = Aspace(nO(1))

• EXPSPACE = Atime(2n
O(1)

)

The equality Dspace(tO(1)) = Atime(tO(1)) holds even for bounds t as small
as logn (although we need to modify the definition of Turing machine to allow
“random access” to the input, in order to obtain a useful notion of a machine
whose running time is significantly less than the length of its input).

It is natural to wonder if there is an even stronger equivalence between deter-
ministic space and alternating time. In particular, the question

Dspace(logn) ???= Atime(logn)

is of great interest. Deterministic logspace is usually denoted L, and alternating
log time is usually denoted NC 1. Thus this question can be restated as:

L
???= NC 1

With regard to this question, note that we know Atime(logn) ⊆ Dspace(logn), but
whether Dspace(logn) ⊆ Atime(logn) is unknown (and it is not widely believed
to hold).

Not only is it unknown if P = NP , but it is also unknown if P = Atime(nO(1)).
Similarly, it is not known if alternating space-bounded classes are more power-
ful than deterministic space-bounded classes. However, it is useful to note that
alternation adds power to either time- or space-bounded computation. That is,

Theorem 2.1. Either Atime is more powerful than Dtime or Aspace is more
powerful than Dspace.

To see why this is true, note that if Aspace(nO(1)) = Dspace(nO(1)) and
Dtime(nO(1)) = Atime(nO(1)), then it follows that P = EXP , which we know
isn’t true.

It is little wonder that most complexity theoreticians conjecture that alterna-
tion adds power to both time- and space-bounded computation.

Note however that nondeterminism does not add much power to space-bounded
computation. The inclusion

Nspace(s) ⊆ Atime(s2) ⊆ Dspace(s2)

is usually referred to as Savitch’s Theorem. (More precisely, the simulation of
nondeterministic space-bounded Turing machines by deterministic ones using only
quadratically-more space is called by this name. Alternation provides a useful
intermediate step.) It is instructive to see how the proof goes, because this gives
you some sense of how to program an alternating machine.

Proof of Savitch’s Theorem (Nspace(s)⊆Atime(s2)). A configuration of a machine
consists of:

• input head position
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• work head(s) position(s)

• work tape contents

Note: the input is not part of the configuration.
We’ll assume s(n) ≥ logn. Thus a configuration has ≤ O(s(n)) bits of infor-

mation. If an NDTM has an accepting path, it has an accepting path with no
repeated configurations, which therefore has length ≤ 2O(s(n)).

Our goal: determine if there is a computation path of length 2c·s(n) from the ini-
tial configuration to the accepting configuration. We write C `k D to mean there
is a path of length less than or equal to k from configuration C to configuration
D.

Path(C,D, T )
Begin

If T ≤ 1
then accept if C = D or C `1 D
else (we want to accept if there is some B such that C `T/2 B `T/2 D)
∃ “guess” configuration B
∀ verify:

Path(C,B, T/2)
Path(B,D, T/2)

End ut

At this point we have given proofs of almost all of the nontrivial relations
among the deterministic and alternating time- and space-bounded classes. One
interesting inclusion remains: the simulation of deterministic time by alternating
space.

Proof of Dtime(t) ⊆ Aspace(log t). First, observe that if A ∈ Dtime(t), then A is
accepted by a 1-tape TM in time t2.

Since log(t2) ∈ O(log t) we may assume wlog that A is accepted in time t by a
1-tape TM. (That is, the proof would be the same if we used a machine running
in time t2, but notationally it would be messier.)

We write the machine execution as a table. Consider a table with t rows (one
row for each of t time steps), and t columns (one column for each memory location).
Thus the ith row contains a “picture” of the TM at time i, and the total size of
the table is t2. Everything we do here is very local. The TM head moves at most
one step, writes in one cell, and/or changes state at each time step. Thus, the jth
cell in row i of the table is determined by locations (j − 1, j, and j + 1) of row
i− 1.

Our goal is to verify that entry (t, 1) is equal to “(b, qacc)”, where qacc is the
accept state of the TM.
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t b, qacc b . . . . . . b b . . . b
t − 1 α, qb b . . . . . . b b . . . b

. . . . . .

. . . . . .

. . . . . .
2 σ x2, q1 . . . . . . xn b . . . b

time 1 x1, q0 x2 . . . . . . xn b . . . b
cell 1 2 . . . . . . n n+ 1 . . . t

Verify(i, j, γ) (cell (i, j) of table contains γ)
If i = 1

then (accept ⇔ γ is correct)
else

∃ guess γ1, γ2, γ3 such that γγ γ
3

γ

1 2 is legal
∀ check

Verify(i− 1, j − 1, γ1)
Verify(i− 1, j, γ2)
Verify(i− 1, j + 1, γ3)

End ut

The preceding theorems give some motivation for studying alternation; it clari-
fies the relationship between time and space. Later on, we will see some additional
motivation, but first we should discuss some of the fundamental properties of com-
plexity classes.

2.2. Fundamental Properties; Hierarchy Theorems

Complexity classes seem to differ from each other. For example, A ∈ Dtime(t)⇒
A ∈ Dtime(t), but in contrast, A ∈ Ntime(t) ⇒ A ∈ Ntime(2O(t)) seems opti-
mal. How about nondeterministic space-bounded classes? Are they closed under
complementation?

Note that Savitch’s Theorem implies that A ∈ Nspace(s) ⇒ A ∈ Nspace(s2).
People had believed that this quadratic overhead might be optimal. Surprisingly,
Immerman [Imm88] and Szelepcsényi [Sze88] proved that Nspace(s) is closed under
complementation!

Another problem related to the complementation of NDTM ’s is that direct
diagonalization doesn’t work. To see why, consider the diagonalization argument
we gave in Lecture 1, to prove the time hierarchy theorem. The crucial step
there was to carry out a simulation of a machine Mi on input x, and to accept if
and only if the simulation does NOT accept. Determining if an NDTM does not
accept seems to be difficult for an NDTM, in that it seems to involve simulating
a ∀ quantifier with an ∃ quantifier. (For space-bounded Turing machines, the
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Immerman-Szelepcsényi theorem allows us to prove an Nspace hierarchy theorem
using fairly straightforward diagonalization.)

It turns out that it is possible to prove an Ntime hierarchy theorem, too. Before
we state the theorem and give the proof, let us first demonstrate that there really
is a fundamental difference between the Dtime and Ntime hierarchies. We know:

Dtime(n2) ( Dtime(n3)

Dtime(22n) ( Dtime((22n)1.5)

using the Dtime hierarchy theorem. In contrast, the corresponding questions for
Ntime are much more interesting:

Ntime(n2) ( Ntime(n3)? YES

Ntime(22n) ( Ntime((22n)1.5)? open question

Furthermore, the open question mentioned in the preceding paragraph will not
yield to any straightforward attack. To illustrate why, it is necessary to introduce
a useful way to modify the model of computation, by providing certain functions
at no cost. This gives rise to “Oracle Turing Machines”, and the classes DtimeB(t),
NtimeB(t), PSPACEB, PB, NPB , etc. These classes have access to an “oracle”
B, which means that machines can write a string z on a “query tape” and in one
step receive an answer to the question “Is z ∈ B?” The time and space hierarchy
theorems that we proved carry over unchanged to these “oracle” classes. In fact,
most simulation and diagonalization proofs carry over unchanged from ordinary
Turing machines to “oracle” Turing machines.

Now the hierarchy theorem and the open question posed above can be stated
more forcefully [RS81]:

∀B NtimeB(n2) ( NtimeB(n3)? YES!

∀B NtimeB(22n) ( NtimeB((22n)1.5)? NO! ∃B where these are equal!

Now, let us state and prove the nondeterministic time hierarchy theorem.

Theorem 2.2 ([SFM78, Ž83]). Let t and T be time-constructible, such that t(n+
1) = o(T (n)). Then Ntime(t) ( Ntime(T ).

Proof. Partition N into intervals

[start(i1, y1) , end(i1, y1)] [start(i2, y2) , end(i2, y2)] . . .

such that end(i, y) is exponentially bigger than start(i, y), and (i1, y1), (i1, y2), . . .
is an enumeration of N× {0, 1}∗.

On input 1n:
Find region (i, y) containing n

m := start(i, y)
z := end(i, y)

If n = z
then accept ⇔Mi(1m) does not accept in T (m) time
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else accept ⇔Mi(1n+1) accepts in T (n) time
End

The running time of this algorithm is within O(T (n)). We show that the set it
accepts is not in the smaller running time as follows: Assume, for contradiction,
that Mi accepts this set in Ntime(t). Let m = start(i, y) for some large y.

1m ∈ A⇔ Mi(1m+1) accepts in time T (m)
⇔ 1m+1 ∈ A
⇔ 1m+2 ∈ A

.

.

.
⇔ 1end(i,y) ∈ A
⇔ Mi does not accept 1m

⇔ 1m /∈ A
ut

2.3. Alternation and Circuit Complexity

Consider a logspace bounded ATM. There are nO(1) configurations, and they have
a natural graph structure. Assume wlog that the input is consulted only at halting
configurations. This is a circuit!

• ∃ configurations are ∨ gates.

• ∀ configurations are ∧ gates.

• Halting configurations are input gates (or constants).

That is, an ATM gives, for all n, a description of a circuit Cn for the ATM, on
inputs of length n.

A circuit family {Cn : n ∈ N} that is “easy to describe” is called a uniform
circuit family.

Below, we list some characterizations of important complexity classes in terms
of alternating machines, and (equivalently) in terms of uniform circuits. In so
doing, we introduce a new complexity measure for alternating machines: Alts,
which counts the number of times the machine “alternates” between ∃ and ∀
states along any path.
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P = Aspace(logn)
= uniform poly-size circuits

AC 1 = Aspace(O(logn)) Alts(O(1))
= uniform log-depth poly-size unbounded fan-in ∧, ∨ circuits
= O(logn) time on a PRAM with nO(1) processors

NC 1 = Atime(logn)
= uniform log-depth fan-in 2 circuits

AC 0 = Atime(O(logn)) Alts(O(1))
= unbounded fan-in ∧, ∨ circuits of poly size and O(1) depth
= First-order logic (+,×, >)

By “First-order logic (+,×, >)” we mean the class of languages for which there
exists a first-order logic formula with predefined function symbols for addition
and multiplication, and an order relation. As an example of how a first-order
logic formula can define a language, please consider the simple regular set 0∗1∗

consisting of all strings x such that there is some position i with the property that
all bits of x after i are 1, and all bits of x before i are zero. Equivalently, it is the
set

{x : x � ∃i ∀j (j > i→ x[j]) ∧ (i > j → ¬x[j])}

For many more reasons than merely the connection to first-order logic, AC 0 is
a fundamental complexity class (even if it is a very small subset of P ).

One advantage of a very small subset of P is that it provides us a tool for
“looking inside” P . Note for instance that we have already encountered the com-
plexity classes L and NC 1. Do these classes correspond to natural computational
problems, in the same way that P and NP and PSPACE do? In order to formu-
late a notion of “completeness” to talk about subclasses of P , it is first necessary
to formulate a notion of reducibility under which these complexity classes will be
closed. AC 0 gives an ideal notion of reducibility for this purpose. That is, we
define ≤AC 0

m reducibility by analogy to ≤Pm reducibility; A ≤AC 0

m B means that
there is a function f computable in AC 0 such that x ∈ A iff f(x) ∈ B.

Almost every natural computational problem is complete for some complexity
class under AC 0 reducibility. It seems that nature presents us with computational
problems corresponding in deep ways to notions of non-determinism, counting,
and circuits, and AC 0 reducibility helps elucidate this structure.

Below is a short list of some important complexity classes, along with some
standard complete problems. We won’t present definitions or complete references
here. For more details, you can consult [GHR95, ABO99, CM87, Ete97, Bus93].
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Complexity Class Complete Problems under ≤AC 0

m

P linear programming
circuit evaluation
least fixed point evaluation

C=L matrix singularity
many questions in linear algebra (rank etc.)

NL finding shortest paths
transitive closure

L graph acyclicity
tree isomorphism
Is A before B?2

NC 1 formula evaluation
regular sets

Two of the classes listed in this table need to be defined. NL is the class
of languages accepted by nondeterministic machines using space O(logn). The
related class C=L is defined in terms of counting the number of accepting paths of
NL machines. More precisely, a language A is in C=L if there is a nondeterministic
logspace-bounded machineM with the property that x is in A if and only if exactly
half of the computation paths of M on input x are accepting. It is not hard to
show that

NC 1 ⊆ L ⊆ NL ⊆ C=L ⊆ P

Advantages of using ≤AC 0

m :

• interesting structure is revealed

• completeness ⇒ lower bounds

To illustrate what is meant by “lower bounds”, consider:

A complete for PSPACE under ≤AC 0

m ⇒ A /∈ NL
under ≤Pm ⇒ [nothing]

A complete for NP under ≤AC 0

m ⇒ A /∈ AC 0

under ≤Pm ⇒ [nothing]

The fact that no language in AC 0 can be complete for NP is not entirely easy
to prove! A much more interesting fact is that Parity /∈ AC 0. That is, an AC 0

computation cannot tell if the number of 1’s in an input string is odd or even.
3This is a frustratingly simple problem. The input is a graph that wlog consists of a sequence

of edges forming a simple path (but in random order), and two points A and B. The question
is: does point A come before point B on the line?
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3. Lecture 3

3.1. Branching Programs

We have another way to view L (Dspace(logn)). We use branching programs.

1

accept

reject1

1

0

0

0

An easy observation . . .

L = {A : A has uniform branching programs of polynomial size}
Since we need only remember where we are at each step of the execution, a poly-
size branching program can be simulated in log space.

It is also interesting to consider non-uniform circuits and branching programs.
That is, instead of studying what can be computed by small circuits or branching
programs that are easy to build, we simply concentrate on small circuits/branching
programs. Most of the complexity classes that we have seen thus far come in both
uniform and non-uniform flavors. For instance, we have the classes:

• P/poly

• NL/poly

• L/poly

Where, for a class C, we define C/poly to be:

{A : ∃B ∈ C
∃{αn : n ∈ N} |αn| = nO(1)

∀x x ∈ A⇔ (x, α|x|) ∈ B}

Similarly, one could define NC 1/poly , AC 0/poly, and so on, but for sociological
reasons these classes are usually referred to simply as NC 1, AC 0, etc., and if one
wants to focus on the uniform classes one typically specifies uniform NC 1, etc.
(The fact that there are different versions of uniformity is yet another complication
that it is best to simply avoid here in this discussion.)

Just as there has been important work concentrating on circuits of depth O(1),
there has been a parallel line of research investigating branching programs of width
1, 2, etc. One of the most lovely theorems about branching programs describes
what happens when you consider width O(1).
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Theorem 3.1 (Barrington’s Theorem [Bar89]). (A shock!) NC 1 is equal to {A :
A has uniform branching programs of polynomial size and width O(1)}.

In fact, width 5 suffices.

Proof. ⊇ This direction is easy; just use divide and conquer.

start . . . . . accept
. . . . . accept
. . . . . reject
. . . . . accept
. . . . . accept
. . . . . reject
x2 x8 x3 x53 x1

I1 I2 I3 Im−1 Im

The diagram above shows a width-5 branching program. (For simplicity, the
edges are not shown.) The next-to-last row indicates which input variable is
queried in each column. For instance, at each node in the first column, the second
input bit is read; in the second column, the eighth bit is read, etc. The “instruc-
tion” Ij in the jth column is given by the edges leading from the jth column to
column j + 1, saying where to go if the bit is 1 and where to go if the bit is 0.

Note that an input x determines a relation Θj in {Θj0 ,Θj1} for each instruction
Ij , where Θjb is the subset of {1, 2, 3, 4, 5}×{1, 2, 3, 4, 5} corresponding to the edges
that are followed if the input bit read in instruction j is b.

Input x is accepted⇔ Θ1◦Θ2◦. . .◦Θm−1◦Θm maps “start” to “accept”. Note
that each Θj can be encoded by O(1) bits, and computing the composition of two
adjacent Θ’s can be done by a constant amount of circuitry; thus in O(1) depth the
sequence of m relations can be replaced by m/2 relations of the form Θ2j−1 ◦Θ2j .
Continuing in this way for O(logm) steps is thus sufficient to determine if x is
accepted or not.

⊆ We will show how to simulate circuits by restricted branching programs, so
that every Θj is a permutation, and

• x is accepted ⇔ Θ1 ◦Θ2 ◦ . . . ◦Θm−1 ◦Θm is a 5-cycle

• x is rejected ⇔ Θ1 ◦Θ2 ◦ . . . ◦Θm−1 ◦Θm is the identity

It is not too hard to see that all 5-cycles are equivalent, in the sense that if there
is a restricted branching program for a problem using one 5-cycle π, then for any
other 5-cycle ρ there is an equivalent branching program of the same size, using ρ.

First note that (via DeMorgan’s laws) we can simulate OR gates by AND and
NOT gates. Thus the theorem follows easily from the following lemma:

Lemma 3.2. If A is recognized by a circuit of {∧,¬} gates of depth d, then A has
a (restricted) branching program of length 4d.
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Basis d = 1 (trivial)
Inductive step (2 cases)

• case 1. output gate is ¬ (easy)

• case 2. output is C1 ∧C2

Let P1 have size 4d−1 and accept C1 with π = (1, 2, 3, 4, 5).
Let P2 accept C2 with ρ = (1, 3, 5, 4, 2).
Let P3 accept C1 with π−1.
Let P4 accept C2 with ρ−1.
Then P1P2P3P4 accepts C1 ∧ C2 with πρπ−1ρ−1 = (1,3,2,5,4).

If C1 rejects, then P1, P3 are the identity and P2, P4 cancel; and similarly for
C2. If both C1 and C2 evaluate to 1, then πρπ−1ρ−1 is a 5-cycle, and in particular
is not the identity. ut

Although Barrington’s theorem has a very simple and elegant proof, there
is still not a good intuitive understanding of how a width-5 branching program
computes the MAJORITY function (the problem of determining if there are more
1’s than 0’s in an input string x).

3.2. The Algebraic Approach to Circuit Complexity

Elements such as π and ρ exist only in non-solvable groups (and monoids). It is
natural to ask what happens if we consider branching programs built from solvable
algebras.

We won’t present the formal definitions here (but see [MPT91]), but this can
be formalized, and a pleasant outcome is that computation over solvable algebras
turns out to be exactly what one obtains when one augments AC 0 with modular
counting gates. More precisely:

• NC 1 = “poly-size branching programs over non-solvable monoids”

• ACC 0 = “poly-size branching programs over solvable monoids”
=
⋃
m AC 0(m)

• AC 0(m) = poly-size circuits of depth O(1) with ∧,∨,Modm gates

AC 0(m) is the current frontier for proofs of circuit lower bounds. For AC 0(p),
where p is prime, we can prove things:

Theorem 3.3 ([Smo87] (see [BS90])). Let p be prime. Let m not be a power of
p. Then Modm /∈ AC 0(p).

The restriction that p be prime is important, as the following list of open
questions illustrates.

Open questions:
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• Is NP = uniform AC 0(6), depth-3?

• Is Ntime(2n) ⊆ non-uniform AC 0(6), depth-3?

Proof Sketch of the lower bound for AC 0(2). The proof consists of two main steps:

1st step: A ∈ AC 0(2)⇒ A is recognized by a probabilistic circuit of
size 2logO(1) n

depth 2
gates: Mod2 (at output), ∧ of fan-in logO(1) n

2nd step: Mod3 is not computed by a circuit of this sort.

We have time only to say a few words about the first of these two steps. How-
ever, this step is interesting in its own right (and it introduces an interesting
example of probabilistic computation). Note that it says that the algebraic struc-
ture of AC 0(2) is such that it allows any depth k circuit to be replaced by a
probabilistic depth two circuit of “almost” polynomial size.

First, let us see how to replace a single OR gate by a probabilistic depth-two
circuit of the desired form. (An AND gate can be simulated in a similar way.)

To simulate:

V

x 2x nx1

we will use:

V

x b

V

x b

V

x b n1

+

1 1 22 n

In this new circuit, the bits b1, . . . , bn are probabilistic bits, chosen at random.
If any of the original bits x1, . . . , xn are 1, then with probability one-half an even
number of those bits will “survive” being masked by the random bits. The output
gate of the circuit (labeled “+” in the figure) is a Mod2 gate (also known as a
Parity gate).

Note that:
∨ xi = 0⇒ output = 1
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∨ xi = 1⇒ Prob(output = 0) = 1/2

Now take O(logn) independent copies of this and ∧ together.

++

O(log n)
independent
copies

V

Now, ∨ xi = 0⇒ output = 1
∨ xi = 1⇒ Prob(output = 0) ≥ 1− 1

nO(1)

Replace all ∧ and ∨ gates in an AC 0(2) circuit by sub-circuits of this form.
The output is correct with Prob ≥ 1− 1

nO(1) .
This circuit can be viewed as a polynomial over GF (2). That is, a ∧ gate

is computing multiplication in GF(2), and a Parity gate is computing addition.
The degree of this polynomial is logO(1) n. Rewriting each polynomial in sum-of-
product form gives us the desired family of probabilistic depth-2 circuits. ut

ACC 0 probably does not have complete sets under ≤AC 0

m . The preceding theo-
rem shows that there could be no complete set for ACC 0 in AC 0(p) for any prime
p.

One other class that probably has no complete sets under ≤AC 0

m is

TC 0 = poly-size circuits, depth O(1), of MAJORITY gates

However, TC 0 does have complete sets, if we consider a slightly more general form
of reducibility: AC 0 Turing reducibility ≤AC 0

T .

Definition 3.1 (Turing reducibility). A ≤AC 0

T B if there is a family of circuits
{Cn}, of size nO(1), depth O(1), with gates: ∧,∨,¬,“B”, recognizing A.

Why care about TC 0?

• It is a good theoretical model of “neural nets”.

• Here is a sample of some complete problems under ≤AC 0

T :

– Multiplication

– Sorting

– MAJORITY
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– Division4

Aside: You might be wondering what the superscripts “1” and “0” denote, in
classes such as NC 1, TC 0, etc. There is actually a family of infinitely many
complexity classes, with the following naming scheme:

(bounded fan-in) NCk

(unbounded fan-in) ACk

(unbounded fan-in, with mod gates) ACCk

(threshhold circuits) TCk

 circuits of depth logk n

For all k, NC k ⊆ AC k ⊆ ACCk ⊆ TCk ⊆ NC k+1. The union of all of these classes
is known as NC , and it is a way of formalizing the class of problems for which a
feasible number of processors can provide massive speed-up through parallelism.

Earlier, we claimed that TC 0 is unlikely to have a complete set. Here is one
reason why this seems unlikely.

Theorem 3.4. TC 0 has a complete set under ≤AC 0

m ⇒ ∃ k : every set in TC 0

has depth k circuits of size nlogO(1) n.

This theorem is an easy consequence of the following lemma.

Lemma 3.5. Every ≤AC 0

m reduction is computed by a depth-3 TC 0 circuit of size
nlogO(1) n.

We already have seen how to start the proof of this lemma. Namely, any
AC 0 circuit can be simulated by a probabilistic depth-two AC 0 circuit of the size
indicated, where the probabilistic circuit has the property that, for every input
x of length n, the probability (over the choice of random bits) of computing an
incorrect output bit is at most 1/4. Thus if we take 10n independent copies
of these circuits, and take the MAJORITY vote of the independent depth two
circuits (which is easy to do in depth three with MAJORITY gates), then we have
a probabilistic circuit that, on each input x, computes the correct output with
probability at least 1− (1/22n).

However, we need a deterministic circuit, and we have only a probabilistic cir-
cuit. Now we appeal to a standard trick: make the circuit deterministic. Consider
the following (exponentially big) matrix, with a row for each possible n-bit input,
and a column for each possible sequence of random bits. Put a 1 in column y of
row x if probabilistic sequence y causes the circuit to produce the correct output
input x, and put a 0 in that entry otherwise.

4When these lectures were presented, division was known to be hard for TC0, but it was still
unknown whether division was in uniform TC0. At the time, division was known only to lie in
nonuniform TC0 [RT92]. In the mean time, this has been resolved [Hes01].
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2m random sequences
2n inputs x

000 . . .0 0 0 1 . . . . . . 1
000 . . .1

.

.

.

. 1 1 0 . . . . . . 1

.

.

.
111 . . .1 0 1 0 . . . . . . 1

Each row has ≥ 2m(1− 1
22n ) 1’s (for “good” random sequences).

Total # of 0’s ≤ (2n · 2m

22n ) < 2m. That is, there are fewer 0’s than there are
columns, and thus some column is all 1’s. We hardwire these bits in, instead of
using “random” bits. This gives us a deterministic circuit.

Note: This is a non-uniform construction. It shows that a sequence exists, but
provides no clue about how to find it, other than by brute-force search.

3.3. Derandomization

This sort of non-uniform construction of a deterministic algorithm from a random-
ized algorithm is not very satisfying. This leads to the important problem: can
probabilistic algorithms be simulated by uniform deterministic algorithms?

BPP is the class of problems that can be solved by probabilistic polynomial-
time algorithms with negligible error probability. It is useful to give a typical
example of a problem in BPP but not known to be in P .

{(f, g) : f and g are arithmetic expressions for

multivariate polynomials of degree nO(1) with f = g}

f = g ⇔ f − g = 0
⇔ a random x satisfies (f − g)(x) = 0

That is, an easy probabilistic algorithm can determine if two multivariate poly-
nomials are equal; no efficient deterministic algorithm for this task is known.

There is a fundamental problem with implementing probabilistic algorithms;
where do we get random bits? It might be possible to hook the computer up to a
Geiger counter to extract some theoretically-random bits, but nobody uses truly
random sources in real life. Rather, people make use of some off-the-shelf gener-
ator that “seems to work well enough”. It would be nice to have a deterministic
algorithm.

There is good news! Recent indications are that we can simulate a probabilistic
algorithm deterministically with some “small” overhead.
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Theorem 3.6 ([IW97]). If ∃A ∈ Dtime(2O(n)) such that A requires circuits of
size 2εn then BPP = P .

The hypothesis to this theorem seems very likely to be true. We know that
there are classes only “slightly” larger than Dtime(2O(n)) that contain problems
that are this hard. Unfortunately, at this time, we know of no proof that there
is anything in Dtime(2O(n)) that does not have linear -size depth-three AC 0(6)
circuits!

However, under the very likely assumption that there is in fact something
in Dtime(2O(n)) that requires large circuits, then anything you can do with a
probabilistic algorithm, can be done efficiently with a deterministic algorithm.

The proof is fairly complicated. The main idea is that a probabilistic algorithm
gives us a statistical test. Typical random sequences make the algorithm produce
the correct output; an algorithm that produces one answer for most truly ran-
dom bits and produces a different answer for some “pseudorandom” bits therefore
distinguishes the pseudorandom bits from truly random bits. The question boils
down to: “Can you generate ‘static’ random sequences that are indistinguishable
from truly random sequences using an easy-to-compute statistical test?”

If a function is hard to compute by a small circuit, then it is in some sense
unpredictable and “random-looking”. The proof proceeds by starting with this
intuition and making it precise, by coming up with a specific way to use a “hard”
function to produce a pseudorandom bit generator.5

3.4. Epilogue

In these three lectures, we have presented the theoretical framework that com-
plexity theoreticians have developed to prove that certain functions are hard to
compute. Rather than an unstructured collection of unrelated problems, it has
emerged that real-world computational problems (with a few exceptions) natu-
rally fall into a few fundamental equivalence classes corresponding to complete
sets for complexity classes.

Many of the fundamental open questions in complexity can be posed as asking
if there is a simple reduction from one problem to another. That is,

Is A ≤AC 0

m B?

For instance:

L 6= NP ⇔ Travelling Salesperson Problem �AC 0

m Is A before B?

Showing that there is not a reduction from one problem to another frequently
seems nearly impossible. But there are some examples of arguments that show
exactly that.

5There is a large and active community working in derandomization; the paper [IW97] cited
above builds on a great deal of earlier work, and other exciting developments have followed.
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For instance, consider the result of [AAI+97] showing that

{A : A is NP -complete under ≤AC 0

m } ( {A : A is NP-complete under ≤Pm}

That is, there is a set that is complete for NP under poly-time reductions that
is not complete under AC 0 reducibility. The argument shows that Parity �AC 0

m

Encoding(SAT), using a particular error-correcting encoding of SAT.
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