In the previous lecture, we presented Toda polynomials P_k having the property that

\[
x \equiv 0 \pmod{m} \implies P_k(x) \equiv 0 \pmod{m^k}
\]
\[
x \equiv 1 \pmod{m} \implies P_k(x) \equiv 1 \pmod{m^k}
\]

P_k has degree $2k - 1$.
Let p be prime, let

\[Q_k(x) = 1 - P_k(x^{p-1})\]

Q_k has degree $(p - 1)(2k - 1) = O(k)$

\[
x \equiv 0 \pmod{p} \implies Q_k(x) \equiv 1 \pmod{p^k}
\]
\[
x \equiv 1 \pmod{p} \implies Q_k(x) \equiv 0 \pmod{p^k}
\]

Thus,

\[Q_k\left(\sum_{i=1}^{n} x_i\right) \equiv \text{Mod}_p(x_1, x_2, \cdots, x_k) \pmod{p^k}\]

Now consider a circuit:

\[
\begin{array}{c}
\text{Mod}_p \\
\cdots
\end{array}
\]
\[
\begin{array}{c}
f \\
\text{Mod}_p
\end{array}
\]
\[
\begin{array}{c}
\text{Mod}_p \\
\cdots
\end{array}
\]
\[
\begin{array}{c}
x_{11} \cdots x_{1m} \\
\cdots
\end{array}
\]
\[
\begin{array}{c}
x_{r1} \cdots x_{rm}
\end{array}
\]

\[
\text{← f symmetric}
\]
\[
\text{← } r = 2^{\log^O(1)n} \text{ Mod}_p \text{ gates}
\]

Define $g(l) = f([l \text{ mod } p^k])$ (where we have chosen k such that $p^k > l$, and $k > \log r = \log^O(1)n$)

Note this circuit computes
This completes the proof of Lemma 1 from the preceding lecture, which thus also completes the proof of Theorem 2 from that lecture, which states that any set in ACC is accepted by a probabilistic depth-2 family of circuits of size $2^{\log O(1)n}$ with small fan-in AND gates at level 1 and a symmetric gate at level 2. However, a stronger version of this theorem also holds, showing that sets in ACC have deterministic circuits of this type.

In the proof of Theorem 2 in the previous lecture, we replaced the circuit

$$\land \quad \uparrow \quad \lor \quad x_1 \quad \cdots \quad \cdots \quad x_n$$

with a $O(1)$ depth circuit with \oplus and \land of small fan-in with $O(n)$ probabilistic bits. Now we do it with $\log O(1)n$ probabilistic bits with error probability $1/n^k << 1/(\text{size of circuit})$.

First, let’s see that this does give us a deterministic version of Theorem 2.

Assume that $ACC \leftrightarrow O(1)$ depth circuits with Mod_p’s and \land’s of $\log O(1)n$ fan-in, with $\log O(1)n$ probability bits (Note, this means all of the subcircuits that are used to replace the \lor gates use the same probabilistic bits). \(\iff\)

Consider a circuit C where $n^t \lor$ gates have been replaced by probabilistic circuits having error probability $\leq 1/n^k << 1/n^t$.

$$\text{Prob}[C \text{ gives the wrong answer}]$$

$$\leq \text{Prob}[\text{some gate gives the wrong answer}]$$
\[\leq \sum_i \text{Prob}[\text{Gate } #i \text{ gives the wrong answer}] \]
\[\leq n^l/n^k < 1/n^a < 1/2 \]

Thus if we make a copy of the circuit for each sequence of probabilistic bits, we get a deterministic circuit accepting our original language.

Now the proof of Theorem 2 from the previous lecture can be applied to this circuit, yielding a deterministic depth 2 circuit for our ACC language.

Conclusion Every set \(L \in ACC \) can be recognized by a depth-two (deterministic) circuit with a symmetric gate at the root, and \(2^{\log^{O(1)} n} \) AND gates (with fan-in \(\log^{O(1)} n \)) on level 1.

The proof of the so-called “Valiant-Vazirani” lemma that is used to reduce the number of probabilistic bits is deferred to the next lecture.

There was also a discussion of some other issues in circuit complexity.

\(TC^0 = \{ L | L \text{ is accepted by constant depth } n^{O(1)} \text{ polynomial size majority circuits} \} \)

\(NC^1 = \{ L | L \text{ is accepted by } O(1) \text{ depth } n^{O(1)} \text{ size circuit of } \land, \lor, Mod_{m_1}, \ldots, Mod_{m_j} \text{ gates, where } m_i = n^{O(1)} \text{ or } O(\log n) \} \)

\(ACC \subseteq TC^0 \subseteq NC^1 \)

If a class similar to \(ACC \) were defined, allowing \(Mod_m \) gates for \(m \) that is allowed to depend on the input length \(n \), then in fact one obtains an alternative characterization of \(TC^0 \). This follows from the Chinese Remainder Theorem:
\textbf{Fact} if \(r \leq n^k \) and
\[
\begin{align*}
 r &\equiv 0 \pmod{2} \\
 r &\equiv 0 \pmod{3} \\
 r &\equiv 0 \pmod{5} \\
 \quad \cdots \\
 r &\equiv 0 \pmod{p_j}
\end{align*}
\]
such that
\[
\prod_{i=1}^{j} p_j \geq n^k
\]
if and only if
\[
 r \equiv \prod_{i=1}^{j} p_i
\]

This shows how one can use Mod$_m$ gates to compute if there are exactly \(r \) bits of input that are on. Using this idea, it is then simple to simulate majority gates in constant depth, using AND, OR, and MOD$_m$ gates (where \(m \) is allowed to vary).

There was also a discussion of “uniform” circuit complexity. (A circuit family \(\{C_n\} \) is uniform if \(C_n \) can be built “easily” from \(n \) in some sense. Note that of \(\{C_n\} \) is any “uniform” family of circuits of polynomial size, then the family defines a set in P. The results about ACC that were presented above allow one to prove exponential lower bounds for uniform ACC circuits.