Notes for Lecture 4
Malka Rosenthal

Proof of Statement C of Switching Lemma, con’t
If $\|\text{dom}(\pi_1)\| \geq s$, let S be the first s variables in $\text{dom}(\pi_1)$ and let $\sigma = \hat{\pi}_1|_S$. Otherwise,
Note: There exists some i with $\rho \pi_1(D_i) \neq 1$ since otherwise $f|_{\rho \pi_1} \equiv 1$. This is impossible as $f|_\rho \neq 1$ (as earlier in proof) and π_1 only sets fewer than s literals in C_j, a conjunct with at least $s + 1$ variables. Let
$$i_2 = \min\{i : \rho \pi_1(D_i) \neq 1\}$$
Let
$$S_2 = (D_{i_2} \setminus \text{dom}(\rho \pi_1)) \cap \text{dom}(\pi).$$
Let $\pi_2 = \pi|_{S_2}$.
Define $\tilde{\pi}_2$ as follows:
$$\tilde{\pi}_2(i) = \begin{cases} * & i \notin S_2 \\ 1 & \pi_i \in D_{i_2} \\ 0 & \pi_i \notin D_{i_2} \end{cases}$$
Thus:
- $\text{dom}(\pi_2) = \text{dom}(\tilde{\pi}_2)$.
- $\pi_2 \neq \tilde{\pi}_2$, as for example, $\rho \pi_2(D_{i_2}) = 1$ and $\rho \tilde{\pi}_2(D_{i_2}) \neq 1$.
- $\rho \pi_1(D_{i_2}) = *$. (It is $\neq 0$ as π_1 can be extended to π which makes D_{i_2} true.)
- $\forall l < i_2 \ \rho \pi_1(D_l) = 1$. (By def’n of i_2)
- For any setting π' of the literals in $\text{dom}(\pi) \setminus \text{dom}(\pi_1 \pi_2)$, we have
 $$\left\{ \begin{array}{l} \rho \pi_1 \tilde{\pi}_2 \pi'(D_{i_2}) \in \{0, *\} \\ \forall l < i_2 \ \rho \pi_1 \tilde{\pi}_2 \pi'(D_l) = 1 \end{array} \right.$$
For $1 \leq j \leq k - 1$, γ_j will describe how (in which places) π_j and $\tilde{\pi}_j$ differ. Let D_{ij} be a disjunction of literals on the variables $\{x_j, \ldots, x_{j+i}\}$. Let the i^{th} bit of γ_j,

$$\gamma_j (i) = \begin{cases} * & \pi_j (x_j) \notin \text{dom}(\pi_j) \text{ or } l > r \\ 0 & \pi_j (x_j) = \tilde{\pi}_j (x_j) \\ 1 & \pi_j (x_j) \neq \tilde{\pi}_j (x_j) \end{cases}$$

Let γ_k be as follows: Let D_{ik} be a disjunction of literals on the variables $\{x_i, \ldots, x_{k+i}\}$ and let the i^{th} bit of γ_k,

$$\gamma_k (i) = \begin{cases} * & \pi_k (x_k) \notin \text{dom}(\sigma) \text{ or } l > r' \\ 0 & \text{otherwise} \end{cases}$$

For $k \leq j \leq s$, let $\gamma_j = \{\ast\}^t$.

Let $\gamma = \gamma_1 \gamma_2 \ldots \gamma_s$ (concatenate the strings together). Note that $|\gamma| = st$.

Note: γ contains exactly s symbols which are not equal to * as

$$|\text{dom}(\pi_1 \ldots \pi_{k-1}\sigma)| = s = |\text{dom}(\tilde{\pi}_1 \ldots \tilde{\pi}_{k-1}\sigma)|.$$

Thus γ is of the form

$$\ast^n b_1 \ast^{n_1} \ldots b_s \ast^{n_s}$$

where $b_i \in \{0, 1\}$ for $0 \leq i \leq s$ and $0 \leq n_i \leq 2t$ for $0 \leq i \leq s - 1$. This is because each γ_j must contain at least one bit $\in \{0, 1\}$ until there have been s bits $\neq \{\ast\}$.

Therefore, to describe γ given s and t, we can use a string of the form $\pi y_{b_1} y_{b_2}$ with z giving instructions to interpret the next $s \log 2t = \lfloor y_{b_1} \rfloor$ bits as values of n_1, \ldots, n_s (as $n_i \leq 2t$ for $1 \leq i \leq s - 1$) and to interpret y_{b_i} with $| y_{b_i} | = s$ as the s b_i’s.

We have shown that

$$K(\gamma(s, t)) \leq s \log 2t + s + c_2$$

Claim: $K(\rho f, l, s) \leq \log \big(\binom{n}{l} \big) + n - l + s \log 8t + c$.

Proof: Given f, l, s, we can build ρ with a description of the form $\pi y_{\rho}, y_1$ where y_{ρ} is a string of length $\log \big(\binom{n}{l} \big) + n - l + s + c_1$ and y_1 is a string of length $s \log 2t + s + c_2$.

Building such a y_{ρ} is possible as $\rho \in R^{2t}$ and building such a y_1 is possible by (1) above.

π will have constant length and will contain the following instructions:
• Use f to find n and t.

• Use s and t to compute $|y| = s \log 2t + s + c_2$.

• Use $y_{\rho'}$ to compute ρ' and y_s to compute γ.

• Express f as $f = \bigwedge_i D_i$ and find $i_1 = \min \{ i : \rho'(D_i) \neq 1 \}$.

• Use D_{i_1} and γ_1 to find

$$\text{dom}(\pi_1) = \{ \text{variables in } D_{i_1} \text{, corresponding to non-stars in } \gamma_1 \}$$

Recall that γ_1 is just the first t variables in γ so γ_1 is given once γ has been found.

Note:

$$\pi_1 = \rho' \mid_{\text{dom}(\pi_1)} \text{ as } \rho' = \rho \tilde{x}_1 \tilde{x}_2 \ldots \tilde{x}_{k-1} \sigma$$

• Build π_1 as follows:

$$\pi_1(i) = \begin{cases}
* & i \notin \text{dom}(\pi_1) \\
\gamma_j \oplus \tilde{x}_1(i) & x_i = j^{th} \text{ variable in } D_{i_1}
\end{cases}$$

• Let $i_2 = \min \{ i : \rho \tilde{x}_1 \tilde{x}_2 \ldots \tilde{x}_{k-1} \sigma(D_i) \neq 1 \}$.

As above, find $\text{dom}(\pi_2)$ and build π_2. Continuing in this manner, build $\pi_3, \ldots, \pi_{k-1}, \sigma$. (Recall that s is given so we know when σ has been found.)

• Finally,

$$\rho' = \rho' \mid_{\{1, \ldots, n\} \setminus \text{dom}(\pi_1 \ldots \pi_{k-1}, \sigma)}$$

Thus, using $\mathfrak{N}_{\rho', y_s}$ we can find ρ and we have shown that

$$K(\rho|f, l, s) \leq \log \left(\begin{array}{c} n \\ l - s \end{array} \right) + n - l + s + c_1 + s \log 2t + s + c_2$$

$$= \log \left(\begin{array}{c} n \\ l - s \end{array} \right) + n - l + s \log 8t + c$$

which completes the proof.