Theorem \[\text{For } k = n^{\frac{1}{4}}, \text{ } k\text{-clique requires monotone circuits of size } n^{\Omega(\sqrt{l})} \]

Remark \ If this could be done for every monotone problem in NP, this would imply \(P \neq NP \).

A slice function \(f \) is one function such that for all \(n \), there exists \(m \) such that

\[
\begin{align*}
 f(x) &= 0 \text{ if } \sum x_i < m \\
 f(x) &= 1 \text{ if } \sum x_i > m
\end{align*}
\]

Note that all slice functions are monotone. There are slice functions that are NP-complete. One can prove that the monotone circuit complexity of a slice function \(f \) is not much greater than the (non-monotone) circuit complexity of \(f \). Thus we may expect that it is not always easy to prove lower bounds on monotone circuit complexity.

Basic idea: Every monotone circuit for \(k \)-clique \(C \) is "approximated" by a monotone depth 2 circuit \(C' \). The circuit has \(m \) "\&" gates with fan in \(\leq \left(\frac{l}{2} \right) \) on the first level, each detects a clique of size no more than \(l(= \sqrt{k}) \). All the outputs of the \(m \) "\&" gates connected to an "\lor" gate. (The circuit just check the presence, but not absence).

What we will show is
1. If C is a small monotone circuit, then for most k-cliques G, $\tilde{C}(G) \leq C(G)$ and for most complete $(k-1)$-partite graphs G, $\tilde{C}(G) \geq C(G)$

2. Every approximator either outputs 0 on most k-cliques or outputs 1 on most $(k-1)$-partite graphs

First we are going to prove the following lemma:

Sunflower Lemma Let F be a collection of sets, each of size $\leq l$. If $|F| > (p - 1)^l l!$, then there is a sunflower with p petals. (A sunflower with p petals is a collection of sets S_1, \ldots, S_p such that for all $i < j$ and $k < l$, $S_i \cap S_j = S_k \cap S_l$.)

Proof By induction on l:

Basis: $l = 1$, choose p disjoint singletons.

Induction: Let M be a maximal collection of disjoint sets in F, $M = \{A_1, A_2, \ldots, A_n\}$. Let $S = \bigcup_{i=1}^n A_i$. If $r \geq p$ we have done.

Otherwise $|S| \leq l(p-1)$. Since M is maximal, S intersects every element of F. There is some $i \in S$, such that i is in $\geq 1/(p-1)l$ of the elements of F.

Let $F' = \{B - \{i\} : i \in B \in F\}$. $|F'| \geq |F|/(p-1)l > \frac{(p-1)l}{(p-1)(l-1)!}$

Let $B_1 - \{i\}, B_2 - \{i\}, \ldots, B_p - \{i\}$ be a sunflower in F'. Then B_1, B_2, \ldots, B_p is our sunflower.

We will build \tilde{C} from C, Starting at the leaves, that is, for each gate g of C, consider the function computed at g, we will build an approximator for that function.

- If g is a leaf, we are done.

- If g is an \lor gate, $g = h_1 \lor h_2$, define $g = h_1 \cup h_2$ as follows:
1. If \(h_1 = \{S_1, S_2, \ldots, S_m\} \), \(h_2 = \{T_1, T_2, \ldots, T_m\} \) (\(S_i, T_j, 1 \leq i \leq m_1, 1 \leq j \leq m_2 \) are sets of vertices (each set of size at most \(l \)) and \(|h_1 \cup h_2| \leq m \)), then set \(g = h_1 \cup h_2 \). Otherwise \(h_1 \cup h_2 \) contains a sunflower of \(p \) petals. Replace those \(p \) sets with their center.

2. If there are still more than \(m \) sets, repeat it until there are no more sunflowers.

- If \(g = h_1 \land h_2 \), define \(h_1 \land h_2 \) as follows:

 Let \(h_1 = \{S_1, S_2, \ldots, S_m\} \), \(h_2 = \{T_1, T_2, \ldots, T_m\} \), \(h_1 \land h_2 = \{S_i \land T_j : 1 \leq i \leq m_1, 1 \leq j \leq m_2\} \)

1. Consider \(\{S_i \cup T_j : 1 \leq i \leq m_1, 1 \leq j \leq m_2\} \)
2. remove any such \(S_i \cup T_j \), such that \(|S_i \cup T_j| > l \),
3. replace sunflowers with their centers (plucking), until there are no more sunflowers (so there are \(\leq m \) sets remaining).

In what follows, we will use the following values for \(l, p, \) and \(m \): \(l = \sqrt{k}, p = 10\sqrt{k}\log n, m = (p - 1)^{l!!} \)

\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm}

| \textbf{Lemma 1} | Every \(\tilde{C} \) is either identically 1, or it outputs 1 on at least half of the \((k-1)\)-coloured graphs |

\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm}

| \textbf{Lemma 2} | For all but at most \(\text{Size}(C) \cdot m^2 \left(\frac{n - l - 1}{k - l - 1} \right) \leq \text{Size}(C) \cdot m^2 \left(\frac{k}{n} \right)^{l+1} \left(\frac{n}{k} \right) \) |

\hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm} \hspace{1cm}

\(k \)-cliques \(G, \text{C}(G) \leq \tilde{C}(G) \)
Lemma 3 For all but at most

\[\text{Size}(C) \cdot \frac{m^2}{2p} (k - 1)^n \]

(k - 1)-partite graphs \(G \), \(C(G) \geq \tilde{C}(G) \)

Theorem For \(k \leq n^{1/4} \), monotone circuits for \(k \)-clique need size

\[n^{\Omega(\sqrt{k})} \]

Before proving these lemmas, we will first see how they lead us to our theorem.

Proof By Lemma 1, we have 2 cases, if \(C \) is identically 1, then Lemma 2 says that

\[\text{Size}(C) m^2 \left(\frac{k}{n} \right)^{l+1} \left(\frac{n}{k} \right) \geq \left(\frac{n}{k} \right). \]

(That is, the set of cliques such that \(C(g) > \tilde{C} = 0 \) is the set of all cliques.)

So

\[\text{Size}(C) \geq \left(\frac{n}{k} \right)^{l+1} \geq \frac{(n^{3/4})^{\sqrt{k}}}{\left(10\sqrt{k} \log n - 1 \right)^{\sqrt{k}} \cdot \sqrt{k}} \geq \frac{n^{\frac{3}{4}\sqrt{k} - \frac{1}{2}\sqrt{k}}}{100} = n^{\Omega(\sqrt{k})} \]
If case 2 holds, then by lemma 3,

\[\text{Size}(C) \cdot \left(\frac{m^2}{2^p} \right) (k - 1)^n \geq \frac{1}{2} (k - 1)^n \]

\[\text{Size}(C) \geq \frac{1}{2} \cdot \frac{2^p}{m^2} \geq \frac{1}{2} \cdot \frac{2^{(10\sqrt{k} \log n)}}{(10\sqrt{k} \log n - 1)\sqrt{k} \cdot \sqrt{k}} \geq \frac{1}{2} \cdot \frac{n^{10\sqrt{k} - \frac{1}{2}\sqrt{k}}}{100} = n^{\Omega(\sqrt{k})} \]

Now we are going to prove the lemmas:

Proof of Lemma 1

\(\tilde{C} = \bigvee_{i=1}^{r} \text{(clique on set } A_i), |A_i| \leq l, 1 \leq i \leq r \)

If \(r = 0 \), then claim holds.

If \(r = 1 \), Let \(A_1 \) be given, then \(C_1 \) accepts \(G \) iff there is a clique on \(A_1 \) iff all vertices in \(A_1 \) have different colours.

Consider a randomly chosen \((k - 1)\)-coloured graph, Probability that \(G \) is not accepted

\[= \text{Prob}[\exists i, j \in A_1, i, j \text{ have the same colour}] \]

\[\leq \binom{l}{2} \frac{1}{k-1} \]

\[= \frac{\sqrt{k}(\sqrt{k} - 1)}{2} \cdot \frac{1}{k-1} \]

\[= \frac{k - \sqrt{k}}{k-1} \cdot \frac{1}{2} < \frac{1}{2} \]

If \(r > 1 \), the result also holds, because \(\tilde{C} \) accepts at least as many \(G \) as in the case above.

Proof of Lemma 2

If \(G \) is the \(k \)-clique, such that

\(C(G) = 1 \) but \(\tilde{C}(G) = 0 \)

then it must be the case that there is some gate \(g \) in \(C \) such that \(g = h_1 \lor h_2 \) and in \(\tilde{C} \) the approximator built for \(g \) rejects \(G \) but the approximator for
one of \(h_1, h_2 \) accepts \(G \), or \(g = h \land h_2 \) and both \(h_1 \) and \(h_2 \) accept \(G \) but \(g \) rejects.

We will show that any such \(g \) can affect no more than

\[
m^2 \left(\frac{k}{n} \right)^{l+1} \binom{n}{k}
\]

cliques.

Note that if our approximator on \(h_1 \) accepts \(G \), that means that there is some clique \(A \) included in the clique in \(G \), that is detected by our approximator for \(h_1 \). But our approximator for \(h_1 \lor h_2 \) looks for a clique on some subset of \(A \).

So in case 1, our approximator for \(g \geq h_1 \cup h_2 \). So the first problem gate is not of type 1.

Now consider \(g = h_1 \land h_2 \), Let \(A \) be the set of vertices containing the \(k \)-clique \(G \). We are assuming that there is some \(S_i \subseteq A \) and some \(T_j \subseteq A \), so that \(\tilde{h}_1 \) detects a clique on \(S_i \) and \(\tilde{h}_2 \) detects a clique on \(T_j \). But our approximator \(\tilde{g} \) rejects \(A \). Note that in \(G \), there is a clique on \(S_i \cup T_j \). It must be the case that \(|S_i \cup T_j| > l \), because otherwise \(\tilde{g} \) accepts \(G \). Note that there are at most \(m^2 \) such \((s_i, t_j) \) pairs associated with gate \(g \).

There are no more than \(\binom{n-l-1}{k-l-1} \) such \(k \)-cliques in \(G \) for fixed \(S_i \) and \(T_j \). Thus the number of such \(k \)-cliques is no more than

\[
m^2 \binom{n-l-1}{k-l-1} \leq m^2 \left(\frac{k}{n} \right)^{l+1} \binom{n}{k}
\]

\[1\]

Proof of Lemma 3 If \(G \) is a \((k-1)\)-coloured graph such that

\[C(G) = 0 \quad \text{but} \quad \bar{C}(G) = 1 \]

then it must be the case as above

1. \(g = h_1 \lor h_2 \) such that \(\bar{g} \) accepts \(G \) but \(\tilde{h}_1 \) and \(\tilde{h}_2 \) reject \(G \).

2. \(g = h_1 \land h_2 \) such that \(\bar{g} \) accepts \(G \) but one of \(\tilde{h}_1 \) or \(\tilde{h}_2 \) reject \(G \).
We will show that any such \(g \) can affect no more than

\[
\frac{m^2}{2^p} (k-1)^n
\]

of the \((k-1)\)-coloured graphs.

First consider \(g = h_1 \lor h_2 \). So \(\tilde{g} \) is built from \(\tilde{h}_1 \) and \(\tilde{h}_2 \) from plucking.

Let

\[
\tilde{h}_1 = \sqrt{\text{clique on } S_1, S_2, \ldots, S_{m_1}}
\]

\[
\tilde{h}_2 = \sqrt{\text{clique on } T_1, T_2, \ldots, T_{m_2}}
\]

\(\tilde{h}_1 \) and \(\tilde{h}_2 \) each reject \(G \) iff each \(S_i \) and \(T_j \) are not “properly coloured”.

This means that there is some sunflower in the list \(S_1, S_2, \ldots, S_{m_1} \) and \(T_1, T_2, \ldots, T_{m_2} \), such that \(G \) properly colours the center but \(G \) does not properly colour any of the petals.

Let \(A_1, A_2, \ldots, A_p \) be the sets in this sunflower.

\[
\text{Prob}[\text{none of } A_1, A_2, \ldots, A_p \text{ is properly coloured but the centre is}]
\]

\[
\leq \text{Prob}[A_1, A_2, \ldots, A_p \text{ is not properly coloured}\mid \text{the centre is properly coloured}]
\]

\[
= \prod_{i=1}^{n} \text{Prob}[A_i \text{ is not properly coloured}\mid \text{the centre is properly coloured}]
\]

\[
\leq \prod_{i=1}^{n} \text{Prob}[A_i \text{ is not properly coloured}] \leq \frac{1}{2^p}
\]

And at last, if we notice that we will do plucking for \(m^2 \) time, the result follows naturally.

[1]