1 March 2, 1995

Shiyu Zhou

Let n be a positive integer and $t(\cdot)$ an integer function. A straightline program P of type $(n, t(n))$ is a sequence $[x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n, g_1, \ldots, g_{t(n)}]$ such that each g_i is of the form $h_1 \circ h_2$ where h_1, h_2 are elements prior to g_i in the sequence and $\circ \in \{\wedge, \vee\}$. We may think of each of the elements in P as a Boolean function with domain $\{0,1\}^n$ that operates in the natural way: for $x \in \{0,1\}^n$, $x_i(x)$ (resp. $\bar{x}_i(x)$) evaluates to 1 only if the i-th bit of x is 1 (resp. 0), and $g_i(x)$, where $g_i = h_1 \circ h_2$, evaluates to 1 only if $h_1(x) \circ h_2(x) = 1$. Let $U_f = \{x \in \{0,1\}^n \mid f(x) = 0\}$. We will often identify each $h \in P$ with the set of elements $x \in U_f$ such that $h(x)$ evaluates to 1. That is to say, for any $x \in U_f$, $h(x) = 1$ if and only if $x \in h$. Consequently, we identify the Boolean operators \wedge and \vee with the set operators \cap and \cup respectively.

The function computed by such a straightline program is defined to be $g_{t(n)}$. The following fact is easily seen

Proposition 1.1 A Boolean function f on n input variables is computable by a circuit (with all gates of fan-in 2) of size $t(n)$ if and only if f has a straightline program of size $t(n)$.

Suppose straightline program P computes the Boolean function f. A usual convenient way to view such a straightline program P, as what we will do in the following, is to think of it as a matrix with columns indexed by the sequence P, rows indexed by the set U_f and with $h(x)$ being the value of the entry corresponding to row $x \in U_f$ and column $h \in P$. Thus each $h \in P$ can be thought of as the set of row indices corresponding to the 1's in column h in the matrix.

Remark: We may index the rows of the matrix with a subset of U_f if necessary, but we will use U_f in the following discussion.

Let f be a Boolean function on n input variables. We define $\Omega = \{\omega : 2^U_f \rightarrow \{0,1\}\}$. Let P be a straightline program of type (n, t) for some t that computes f and suppose $\circ \in \{\wedge, \vee\}$. We say that $\omega \in \Omega$ is consistent with P if for all $g_i = h_1 \circ h_2$, we have that $\omega(h_1 \circ h_2) = \omega(h_1) \circ \omega(h_2)$; we say that ω defines $v \in \{0,1\}^n$ if for $1 \leq i \leq n$, $\omega(x_i) = v_i$ and $\omega(\bar{x}_i) = \bar{v}_i$; and we say that ω is rejecting if $\omega(\emptyset) = 0$, i.e. $\omega(g_{t}) = 0$. Let $\Omega_f = \{\omega \in \Omega : \omega$ is rejecting and defines some $v \notin U_f\}$.

Lemma 1.1 If P rejects precisely U_f, then there is no $\omega \in \Omega$ that is consistent with P, rejecting and defines some $v \notin U_f$.

Proof: Suppose that $\omega \in \Omega$ defines a $v = v_1v_2 \ldots v_n \notin U_f$ and is consistent with P. We claim that for any $h \in P$, $\omega(h) = h(v)$. This will suffice the proof since then we would have $\omega(g_t) = g_t(v) = 1$ which implies that ω is not rejecting.
To see the claim, we first observe that by the assumption that \(\omega \) defines \(v \), \(\omega(x_i) = v_i = x_i(v) \) and \(\omega(\overline{x}_i) = \overline{v}_i = \overline{x}_i(v) \) for all \(i \). Inductively, if \(g_i = h_1 \circ h_2 \in P \), then
\[
\omega(g_i) = \omega(h_1 \circ h_2) \\
= \omega(h_1) \circ \omega(h_2) \\
= h_1(v) \circ h_2(v) \\
= g_i(v),
\]
where the second equality follows from the fact that \(\omega \) is consistent with \(P \) and the third equality is by induction. \(\square \)

Corollary 1.1 If \(P \) rejects precisely \(U_f \), then no \(\omega \in \Omega_f \) can be consistent with \(P \).

Suppose \(g, h \subseteq U_f \) and \(\circ \in \{\land, \lor\} \). A triple \((g, h, \circ)\) covers \(\omega \in \Omega_f \) if and only if \(\omega(g) \circ \omega(h) \neq \omega(g \circ h) \).

Define \(\rho_\Omega(f) \) to be the minimum number of triples needed to cover \(\Omega_f \) and \(s(f) \) to be the size of the smallest straightline program that computes \(f \). Then we have

Theorem 1.1 For any Boolean function \(f \), \(s(f) \geq \rho_\Omega(f) \).

Proof: Let \(P \) be a straightline program computing \(f \). Then by Corollary 1.1, no function in \(\Omega_f \) is consistent with \(P \). Thus \(P \) gives an obvious cover of \(\Omega_f \). \(\square \)

2 March 20, 1995

For a set \(U \), a function \(\omega : 2^U \rightarrow \{0, 1\} \) is said to be monotone if \(g \subseteq h \subseteq U \) implies that \(\omega(g) \leq \omega(h) \). For the following discussion, we fix \(\Omega \) to be the set of all monotone functions from \(2^{U_f} \) to \(\{0, 1\} \), which is called the \textsc{Filters}. Define \(\hat{\rho}_\Omega(f) \) to be the minimum number of triples of the form \((g, h, \land)\) needed to cover \(\Omega_f \), where \(g, h \subseteq U_f \). For notational convenience, we abbreviate a triple \((g, h, \land)\) as \((g, h)\).

Theorem 2.1 For any Boolean function \(f \), \(s(f) \geq \hat{\rho}_\Omega(f) \).

Proof: Let \(P \) be any straightline program of type \((n, t)\) that computes \(f \). It suffices to show that any \(\omega \in \Omega_f \) is covered by some \(\land \) gate in \(P \).

Let \(\omega \in \Omega_f \) and let \(v \notin U_f \) be defined by \(\omega \). Suppose otherwise (for the sake of contradiction) that \(\omega \) is not covered by any \(\land \) gate in \(P \), then we will show that for any \(h \in P \), \(\omega(h) \geq h(v) \). This would imply in particular that \(\omega(g_i) \geq g_i(v) = f(v) = 1 \) which is a contradiction since \(\omega \) is rejecting by definition.

In the case where \(h = x_i \) or \(\overline{x}_i \), we have \(\omega(h) = h(v) \) since \(\omega \) defines \(v \). If \(h \in P \) is an \(\land \) gate, say \(h = h_1 \land h_2 \), then since \(\omega \) is not covered by \(h \) by assumption, we have \(\omega(h) = \omega(h_1) \land \omega(h_2) \) which is inductively at least \(h_1(v) \land h_2(v) = h(v) \). Finally, suppose \(h \) is an \(\lor \) gate, say \(h = h_1 \lor h_2 \). If \(\omega \) is not covered by \(h \), then by the same inductive argument as above we are done. Suppose \(\omega \) is covered by \(h \), i.e. \(\omega(h) = \omega(h_1 \lor h_2) \neq \omega(h_1) \lor \omega(h_2) \).
Then since \(\omega \) is monotone, it must be the case that \(\omega(h_1) = \omega(h_2) = 0 \) and \(\omega(h) = 1 \), which implies \(\omega(h) \geq h(v) \).

\[\square \]

Next we show that \(\hat{\rho}_0(f) \) is in fact a relatively tight bound of the minimum size of a straightline program (and thus a circuit) that computes \(f \).

Theorem 2.2 For any Boolean function \(f \), \(s(f) \leq O((\hat{\rho}_0(f))^2) \).

Proof: Given an (unordered) collection \(C = \{(g_1, h_1), \ldots, (g_l, h_l)\} \) (we assume w.l.o.g. that \(l \geq n \)) of triples that covers \(\Omega_f \), we will build a circuit (and thus a straightline program) of size \(O(l^2) \) that computes \(f \).

First we observe the following fact.

Observation 2.1 \(f(z) = 0 \) if and only if \(\exists \omega \in \Omega \) such that \(\omega \) defines \(z \), is consistent with \(C \), and is rejecting.

Proof: We first show the only if direction. Let \(f(z) = 0 \). Define \(\omega_z \) to be such that \(\omega_z(g) = g(z) \) for all \(g \subseteq U_f \). Then \(\omega_z \) is monotone since \(g(z) = 1 \) iff \(z \in g \). It is easy to check that \(\omega_z \) defines \(z \) since \(z \in U_f \). Also for any \(g, h \in U_f \), \(\omega_z(g \wedge h) = g(z) \wedge h(z) = \omega_z(g) \wedge \omega_z(h) \). This implies that \(\omega_z \) is consistent with \(C \). Since \(\omega_z(\phi) = \phi(z) = 0 \) (\(z \notin \phi \)), \(\omega_z \) is rejecting.

To see the if direction, suppose otherwise that \(f(z) = 1 \). Then if \(\omega \) is monotone, rejecting and defines \(z \) which is not in \(U_f \), then by the definition of a cover of \(\Omega_f \), \(\omega \) cannot be consistent with \(C \).

Thus, our goal will be to build a circuit based on \(C \) such that, given as input \(z \), it checks whether there exists an \(\omega \) satisfying the properties in the above observation and outputs 1 if and only if such an \(\omega \) does not exist.

Let \(S = \{\phi, x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n, g_1, h_1, g_1 \wedge h_1, \ldots, g_l, h_l, g_l \wedge h_l\} \). Since \(C \) is given, for each \(S, T \in S \), we know the information whether \(S \subseteq T \) or not. The circuit we build executes the following routine:

On input \(z = z_1z_2\ldots z_n \)

For \(i = 1, 2, \ldots, n \) Do
 If \(z_i = 1 \)
 Then \(\omega(x_i) \leftarrow 1 \);
 Else \(\omega(\bar{x}_i) \leftarrow 1 \);

Loop
 If \(\exists S, T \in S \) such that \(T \subseteq S \), \(\omega(T) = 1 \) and \(\omega(S) \) is not set
 Then \(\omega(S) \leftarrow 1 \);
 If \(\exists S \in S \) and \(i \) such that \(\omega(g_i) = \omega(h_i) = 1 \), \(S = g_i \wedge h_i \), and \(\omega(S) \) is not set
 Then \(\omega(S) \leftarrow 1 \);

Until no progress

The circuit outputs 1 if and only if \(\omega(\phi) = 1 \).
Since C is given and thus S is known, it is then not difficult to see that a circuit of size $O(l^2)$ that computes the routine can be derived. By the above observation, to prove the theorem, now it suffices to show that for any $S \in S$, our circuit sets $\omega(S) = 1$ if and only if for every monotone ω' such that ω' defines z and is consistent with C, it is the case that $\omega'(S) = 1$.

To see this, we define ω_0 as follows: for any $g \subseteq U_f$,

$$\omega_0(g) = \begin{cases} 1 & \text{if } \exists h \in S \text{ such that } h \subseteq g \text{ and } \omega(h) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

It is then easy to check that the following facts hold:

Fact 1: For any $S \in S$, $\omega_0(S) = 1$ iff $\omega(S) = 1$.

Fact 2: ω_0 is monotone, consistent with C and defines z.

From these facts, by induction, it is easy to show that for every monotone ω', if ω' defines z and is consistent with C, then $\omega'(S) \geq \omega_0(S)$ for all $S \in S$. This completes the proof. ☐

Applying a similar argument, we can show the following

Theorem 2.3 For any Boolean function f, the minimum size of a nondeterministic circuit that computes f is $(\hat{\rho}_{\text{ULTRAFILTERS}}(f))^{O(1)}$.

where $\text{ULTRAFILTERS} = \{\omega \in \text{FILTERS} : \forall S \in U_f, \omega(S) \neq \omega(\bar{S})\}$.

It follows that to show $P \neq NP$, it suffices to show that $\hat{\rho}_{\text{ULTRAFILTERS}}(f) < \hat{\rho}_{\text{FILTERS}}(f)$ for some $f \in \{f_n : n \geq 1\} \in NP$.