LOWER BOUNDS FOR UNIFORM CONSTANT DEPTH CIRCUITS

BY VIVEK KASHINATH GORE

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
Graduate Program in Computer Science

Written under the direction of
Professor Eric Allender
and approved by

__

__

__

__

New Brunswick, New Jersey

May, 1993
ABSTRACT OF THE DISSERTATION

Lower Bounds for Uniform Constant Depth Circuits

by Vivek Kashinath Gore, Ph.D.

Dissertation Director: Professor Eric Allender

Boolean circuits were introduced in complexity theory to provide a model for parallel computation. A big advantage of studying Boolean circuits is that they can be viewed as simple combinatorial objects and thus allow us to use many algebraic and combinatorial techniques to derive upper and lower bounds on their computational power. The relationship between Boolean circuits and the traditional Turing machine model helps us to translate the bounds obtained for circuits into bounds for the Turing machine model which is otherwise hard to analyze. In this thesis we study the power of certain kinds of uniform constant depth circuits and provide upper and lower bounds.

When we talk about Turing machines, the most important resources are time and space. The most important resources in case of Boolean circuits are size and depth. Circuits that have constant depth and polynomial size have been studied intensely in the last decade or so. The class AC^0, consisting of languages accepted by constant depth, polynomial size circuits that have NOT gates, and unbounded fan-in AND and OR gates is very well understood and good lower bounds are known for it. On the other hand, the class ACC, that consists of languages accepted by constant depth, polynomial size circuits that have NOT gates, and unbounded fan-in AND, OR and MOD_m gates, for various moduli m, is not well understood at all. It is consistent with our knowledge that an ACC circuit family can compute the Satisfiability problem.
In this thesis, we prove that we need exponential size to compute the the Permanent function using uniform circuit families that have constant depth and consist of NOT gates, and unbounded fan-in AND, OR and MOD gates. We also show that there are languages in PP and C=P that cannot be recognized by uniform ACC type circuits of subsubexponential size.

We also study the question of finding a strong separation between NP and AC^0. We show that non-relativizing proof techniques result from any answer to the question “Does NP contain sets that are immune to AC^0?” It is also shown that P^{\text{PP}} contains sets that are immune to ACC and hence to AC^0.

Neil Jones introduced logspace reductions as a tool for studying the relative complexity of problems in P. He also introduced a restricted version of logspace reducibility, called logspace bounded rudimentary reductions to study small complexity classes like Dspace(log n). We show that these logspace bounded rudimentary reductions characterize uniform AC^0.
Acknowledgements

I would like to thank everybody who helped me during these five years of my studies at Rutgers.

I am very grateful to my advisor, Eric Allender, for his guidance. He has been a “dream advisor” of sorts; very patient, always willing to answer questions, always ready to listen to my ideas that were often nonsensical, and most importantly, very accessible.

I wish to thank Endre Szemerédi, Ann Yasuhara and Richard Beigel for serving on my committee.

Special thanks are due to Richard Beigel for some key ideas that helped in proving the results in Chapter 3. I am greatly indebted to him for his help in proving the results in Theorems 3.5 and 3.8.

I wish to thank all my teachers for their help. Ann Yasuhara taught me the foundations of logic and computability, and Eric Allender taught me the fundamentals of complexity theory. The other teachers whose courses were extremely rewarding include Ravi Boppana, Vašek Chvátal, Mike Fredman, Jeff Kahn, Mike Saks, Diane Souvaine and Endre Szemerédi, among others.

It is very hard for me to imagine how things would have been had it not been for my cousin Jayashree Kale, her husband Dr. Prabhakar Kale, and their children Himanshu and Shantanu, who provided a home away from home. Sincere thanks are also due to Barbara Ryder, her husband Jonathan, and their children Beth and Andrew for being the greatest of friends. Barbara helped me learn a lot by letting me be her teaching assistant for various courses. The conversations that I had with her have always been enlightening. I am greatly indebted to Dawn Cohen for all her help, especially during the initial adjustment period after my advent to the US. I have benefitted greatly from her unique perspective of life. Thanks are due to Mukesh Dalal for all his help
during that period as well. I would also like to thank Claire Todd for all her support throughout my graduate studies. Very special thanks are due to Valentine Rolfe for being the motherly figure that she has been.

I would like to thank my fellow graduate students for providing me a very conducive environment to pursue my studies. I have shared offices with Jaikumar Radhakrishnan, Jim Llewellyn, Rakesh Sinha, Babu Ramakrishnan and Doug Katzman. They have always been willing to share their ideas with me. I thank Shiva Chaudhuri, Haripriyan Hampapuram and Ileana Streinu for explaining their work to me and teaching me many new things. I have greatly enjoyed my conversations with Mark Kayll, Vasilis Capoyleas, Kumar Vadaparty and Sanjeev Saluja.

I always enjoyed my interaction with the undergraduate students, both as an instructor and a teaching assistant. I would like to thank them all for their patience and understanding, as well as for all their goodwill and praise.

Life at Rutgers would not have been the same without the company of my friends. I would like to thank Jaikumar Radhakrishnan, Dawn Cohen, Barbara DiEugenio, Kumar Vadaparty, Balakrishna Prasad, Sriram, Jana, Jayram, Manoj, Vipul, Sriram Kannan, Rao, Kakka and Shiyu Zhou, to name a few. Special thanks are due to Krishnan Kumaran, S. Vishwanathan and Pritesh Shah for providing great companionship. Arup Acharya helped me get my reality breaks by being a regular squash partner. I am very grateful to Sreekanth Bollam for being a great friend, and for introducing me to the joys of ballroom dancing and weightlifting.

I would like to thank the Computer Science Department, the Graduate School and DIMACS for providing financial support during my studies. I was also supported in part by NSF grant CCR-9204874.

Finally, I would like to express my deepest gratitude to the most important people in my life: my mother, my father and my brother. Without their constant support and inspiration, this would have been but just a dream. This document is dedicated to them.
Table of Contents

Abstract ... ii

Acknowledgements .. iv

1. Introduction ... 1
 1.1. The Circuit Model .. 2
 1.2. Constant Depth Circuits 3
 1.3. Uniform Circuits ... 5
 1.4. Complex Sets, Immunity and Strong Separation 10
 1.5. Relativization .. 13
 1.6. Rudimentary Reductions 14
 1.7. Outline ... 15

2. Preliminaries .. 16
 2.1. Turing Machines ... 16
 2.2. Alternating Turing Machines 18
 2.3. Boolean Circuits ... 19
 2.4. P-printable Sets, NE-predicates and Time-Bounded Kolmogorov Complexity .. 22
 2.5. Rudimentary Reductions 24
 2.6. The First Order Framework 26

3. Lower bounds for the Permanent, PP and C_{np} 28
 3.1. The main results ... 28
 3.2. Proof of Theorem 3.1 .. 33
 3.2.1. Nice Circuits ... 35
3.2.2. Transformations on Circuits .. 44
3.2.3. Circuits with Symmetric Gates 49

4. Immunity with respect to AC^0 60

5. NP and Immunity with respect to AC^0 66

6. Some relativization results ... 71

7. A new characterization of AC^0 78
 7.1. The Characterization Theorem 78
 7.2. Reducibilities .. 83

8. Conclusion ... 85
References ... 90
Vita ... 97
Chapter 1

Introduction

Complexity theory aims to classify problems based on the amount of resources needed to solve them. Given a particular problem, there are many ways to talk about its complexity. Firstly, one could show that given a certain amount of resources, the problem can be solved using no more than that amount. This provides what is called an upper bound on its complexity. One could also show that a certain amount of resources is not enough to solve the problem; that provides a lower bound on its complexity. Finally, if there are two or more resources involved, one could talk about the various trade-offs between them. Giving an upper bound requires finding efficient solutions and improving the efficiency of known solutions. Providing a lower bound requires a study of factors inherent to the problem that contribute to the difficulty of solving it.

In complexity theory, problems are usually modeled as language recognition problems. A language L is simply a subset of Σ^*, the set of all finite strings that can be generated from the underlying alphabet Σ. Since any alphabet can be coded using strings of 0's and 1's, it suffices to consider languages that are subsets of $\{0,1\}^*$. For a language L, the associated problem is to determine whether a given string x is in L or not. This may be thought of as computing the characteristic function of the language, $\chi_L : \{0,1\}^* \to \{0,1\}$, such that for every $x \in \{0,1\}^*$, $\chi_L(x) = 1$ iff $x \in L$. Languages are classified based on the complexity of computing their characteristic function.

In order to talk about the complexity of languages, we must first make precise the notion of a computing device. Historically, Turing machines have served the role of a model computing device. The two most important resources to be considered in this model are time and space. When computing a function χ_L with a Turing machine, we consider the time and space needed in order to do the computation. One problem here
is that the computation might take different amounts of time and space on different inputs. We circumvent this problem by expressing the time and space requirements as functions of the length of the input. The class of all functions (languages) that can be computed by machines whose running times are bounded by a polynomial in the input length is denoted by P. Similarly, the class of all languages that can be computed by machines whose space complexities are bounded by the logarithm of a polynomial in the input length is denoted by DLOG.

1.1 The Circuit Model

In spite of its simplicity, the Turing machine model does not admit easy combinatorial and algebraic analysis. Therefore, other models, such as the Boolean Circuit model have been considered. A Boolean circuit on n variables computes a function from $\{0,1\}^n$ to $\{0,1\}$. Since a circuit has a fixed number of inputs, the task of computing the characteristic function χ of a language using circuits must be thought of as computing an infinite sequence of functions $\{\chi_n\}$ where $\chi_n : \{0,1\}^n \rightarrow \{0,1\}$ is the restriction of χ to inputs of length n. If C_n computes χ_n for every n, then $\{C_n\}$ is a family of circuits that computes χ. The most important resources considered in this model are size and depth. In order to evaluate the efficiency of a circuit family $\{C_n\}$, we consider the size and depth of C_n as functions of n.

Though different in many ways, the Turing machine and the circuit model are related. For example, a language is in P if and only if it has uniform\(^1\) polynomial size circuits. Likewise, a language is in P/poly\(^2\) if and only if it has nonuniform polynomial size circuits.

In their most general form, circuits are very difficult to deal with and at present our knowledge of their functioning is fairly limited. In order to understand the way circuits function, researchers have often considered restricted versions of the model. It

\(^1\)Informally, this means that the circuit families are easy to construct. The notion of uniform circuits will be explained in detail in Section 1.3.

\(^2\)A language L is in P/poly if there is a polynomially bounded function $h : N \rightarrow \{0,1\}^*$ and a language $A \in P$ such that for every $x \in \{0,1\}^*$, $x \in L \iff (x,h(|x|)) \in A$.
is hoped that the insights thus gained will eventually enable us to deal with the model in full generality. Typically, the restrictions considered are constant depth circuits, monotone circuits (circuits without NOT gates) and formulas. In this thesis, we shall be concerned mainly with constant depth circuits.

1.2 Constant Depth Circuits

The classes of languages that are accepted by constant depth circuit families have been studied intensely in the last decade or so. One such class is AC^0, the class of languages accepted by constant depth circuits of polynomial size that consist of NOT gates and unbounded fan-in AND and OR gates. It is easy to see that addition can be done using a depth three AC^0 circuit family. AC^0 circuit families are also known for many regular and context free languages. However, the lower bounds for AC^0 suggest that it is a very tiny complexity class. Ajtai [Ajt83] and Furst, Saxe and Sipser [FSS84], in their quest to separate the levels of the polynomial hierarchy by oracles, proved the first lower bounds for AC^0. They showed that constant depth circuits that use NOT gates, and AND and OR gates of unbounded fan-in need superpolynomial size for computing the PARITY (MOD_2) function. Their techniques were later refined by Yao [Yao85], Håstad [Hås87] and Aspnes, Beigel, Furst and Rudich [ABFR91] who improved the lower bound to exponential. Since PARITY is reducible to other functions such as MAJORITY, Multiplication and Transitive Closure [FSS84], these functions are outside AC^0 as well. These lower bounds prompted people to look at a slightly more powerful model, namely constant depth, polynomial size circuits consisting of NOT gates, and unbounded fan-in AND and OR gates with the addition of unbounded fan-in PARITY gates. However, Razborov [Raz87] showed that these circuits could not compute the MAJORITY function. Smolensky [Smo87] extended Razborov’s method to show that constant depth, polynomial size circuits with NOT gates, and unbounded fan-in AND, OR and MOD_p gates cannot compute the MOD_q function if p and q are distinct primes. This also implies that no constant depth, polynomial size circuit family containing AND, OR, NOT and MOD gates for a single prime modulus can compute the MAJORITY function. This led to further enhancement of the model, the circuit
families could now have different MOD gates, for an arbitrary but fixed set of moduli. The class of languages computed by these circuit families is called ACC. ACC is an acronym for "AC0 with counters", where the various MOD gates are the counters. This class was first mentioned implicitly by Barrington [Bar86] (see also [Bar89]), who was studying the classes of languages recognized by group programs over different group structures. Barrington and Thérien [BT88] showed that ACC is equal to the class of languages recognized by polynomial length programs over solvable monoids.

Proving lower bounds for ACC has not been easy at all; it is consistent with our knowledge that an ACC circuit family can compute the SATISFIABILITY problem. However, Barrington has conjectured that ACC \subseteq NC1, where NC1 is the class of languages accepted by polynomial size, $O(\log n)$ depth circuits with NOT gates and bounded fan-in AND and OR gates.

Another class of constant depth circuits that has been studied is TC0, the class of languages accepted by constant depth, polynomial size circuits consisting of threshold gates. A threshold gate computes a threshold function; in general, the k^{th} threshold function T_k^n is a boolean function on n variables that takes value 1 precisely when there are at least k 1's in the input. Note that the MAJORITY function is the same as $T_{[n/2]}^n$ and the generalized OR function is T_1^n. Threshold circuits are probably quite powerful; it is not known if there is a language in NP that cannot be recognized by depth three, polynomial size threshold circuits. However, Håstad, Maass et al [HMP+87] have shown that for threshold circuits of polynomial size, depth three is more powerful than depth two. Håstad and Goldmann [HG90] have proved that computing the “generalized inner product function” (considered in [BNS89]) with depth three threshold circuits requires exponential size if the bottom level fan-in is restricted to be $< \frac{1}{2} \log n$. As far as the relationship between TC0 and NC1 is concerned, we have competing conjectures. Immerman and Landau [IL89] have conjectured that TC$^0 = NC^1$, while Yao [Yao89] talks about the possibility of TC$^0 \neq NC^1$.

Some very interesting upper bound results are also known for the constant depth circuit classes. It is well known that the polynomial size, depth three circuits for addition can be used to obtain polynomial size, $O(\log n)$ depth circuits for computing T_k^n
for every k. This implies that $\mathsf{TC}^0 \subseteq \mathsf{NC}^1$. In fact, monotone circuits of polynomial size and $O(\log n)$ depth for computing T^n_k are implied by the sorting network due to Ajtai, Komlós and Szemerédi [AKS83]. Using the intuition of Toda's result [Tod91] and some known connections between the polynomial hierarchy and constant depth circuits [FSS84], Allender [All89a] showed that every language in AC^0 can be recognized by depth three threshold circuits of size $2^{O(\log n)}$. This was improved by Yao [Yao90] who showed that every language in AC^0 can be computed by probabilistic depth two circuits of size $2^{O(\log n)}$ with a symmetric\(^3\) gate at the top and AND gates of $(\log n)^{O(1)}$ fan-in at the second level. Beigel and Tarui [BT91] improved Yao's result by showing deterministic (instead of probabilistic) circuits of the above kind for ACC. These results imply that all of ACC can be computed by depth three threshold circuits of size $2^{O(\log n)}$. Green, Köbler and Torán [GKT92] have improved upon Beigel and Tarui's [BT91] result by showing that the top gate in the depth two circuit can be a fixed symmetric gate, which they call a MidBit gate.

1.3 Uniform Circuits

So far we have talked about circuits in their most general form; this is usually referred to as the nonuniform version. Nonuniform circuits are quite powerful in the sense that the nonuniform circuit complexity classes contain problems that are not computable at all in the ordinary sense. For example, every unary language (that includes nonrecursive languages) is in nonuniform AC^0. Therefore we need to restrict the model in some way so as to keep it realistic. To compute with a circuit family, we must be able to construct the circuit for each input size. We may informally define a uniform circuit family as one in which the behavior on all inputs, of any size, is specified by a single, finite string. This finite string may be the description of a Turing machine, which on input 1^n produces the circuit C_n. This gives us a weak uniformity condition that can be strengthened by placing resource bounds on the Turing machine.

The notion of uniform circuit complexity was suggested by Borodin [Bor77].

\(^3\)A symmetric function is a Boolean function whose output depends only on the number of 1's in the input. A symmetric gate computes a symmetric function.
[Ruz81] argued that uniform circuit complexity is a reasonable model of parallel complexity. He also investigated various definitions of uniform circuit complexity and showed that it is fairly insensitive to the choice of definition. A circuit family \(\{C_n\} \) is logspace-uniform if the circuit \(C_n \) can be constructed by a Turing machine on input \(1^n \) using \(O(\log n) \) space. It is \(P \)-uniform if \(C_n \) can be constructed from input \(1^n \) in time polynomial in \(n \). For uniform circuits of polynomial size, these two notions are equivalent and the class of languages recognized by these circuit families is \(P \).

Since the depth of a circuit family is a measure of the parallel time complexity, people have looked at circuit families with restricted depth. For \(k \geq 1 \), the class \(\text{NC}^k \) consists of languages recognized by logspace-uniform circuit families of polynomial size and depth \(O((\log n)^k) \) where all the gates have bounded fan-in. If we allow unbounded fan-in we get the class \(\text{AC}^k \). For all \(k \geq 0 \), \(\text{AC}^k \subseteq \text{NC}^{k+1} \subseteq \text{AC}^{k+1} \). The class \(\text{NC} \) is the union of the classes \(\text{NC}^k \) over all \(k \geq 1 \). Many natural problems have been shown to be in \(\text{NC} \); in particular, it is known that nondeterministic logspace (NLOG) is in \(\text{NC}^2 \) [Sud75, Ruz80]. Pippenger [Pip79] and Ruzzo [Ruz81] have given alternate characterizations of \(\text{NC} \). Another related class that has been considered is the \(P \)-uniform version of \(\text{NC} \) called PUNC. Allender [All89b] studied this class and provided alternate characterizations in terms of alternating Turing machines and other parallel machines. He provides evidence that \(\text{NC} \) does not adequately model the notion of “feasible parallelism” and argues that PUNC is a better candidate.

Logspace-uniformity is a fairly robust notion of uniformity when we are dealing with classes like \(\text{NC} \). However, since \(\text{NC}^1 \subseteq \text{DLOG} \subseteq \text{NC}^2 \), using logspace-uniformity for \(\text{NC}^1 \) and its subclasses like \(\text{AC}^0 \) and \(\text{ACC} \) is somewhat unsatisfying. Using logspace-uniformity for these classes allows the circuit constructor to have more power than the circuits themselves possess. This has the annoying consequence of making the complexity class fairly sensitive to the notion of uniformity that is used to define it. Therefore, a variety of uniformity conditions suitable for studying \(\text{AC}^0 \), \(\text{ACC} \), \(\text{TC}^0 \) and \(\text{NC}^1 \) have been considered.

Ruzzo [Ruz81] came up with the notion of \(\text{NC}^1 \)-uniformity (which he calls \(U_{E\cdot} \)-uniformity; see also Cook [Coo85]). He showed that \(\text{NC}^1 \)-uniform \(\text{NC}^1 \) is equal to
alternating logarithmic time. This notion of uniformity is different from logspace-uniformity and P-uniformity in the sense that here the "constructor" is not powerful enough to actually output the circuit description, but it can answer certain kinds of questions about the circuit in alternating logarithmic time. This is a reasonable notion of uniformity for classes \(\text{NC}^1 \) and above, but to study subclasses of \(\text{NC}^1 \), still more restrictive notions are needed. It should be noted that a class like P-uniform \(\text{NC}^1 \) is still important because it represents problems for which a very fast circuit can be constructed sequentially in a reasonable amount of time. Division and some related problems are known to have P-uniform \(\text{NC}^1 \) circuits by the results of Beame, Cook and Hoover [BCH84]. It is still not known if Division has logspace-uniform \(\text{NC}^1 \) circuits.

Barrington, Immerman and Straubing [BIS90] investigated a variety of notions of uniformity for studying subclasses of \(\text{NC}^1 \). One of the important notions that they studied is based on deterministic logarithmic time and the alternating logarithmic time hierarchy of Sipser [Sip83]. This notion is also used by Buss [Bus87] in his proof that the Boolean formula value problem is in alternating logarithmic time. Ruzzo introduced a similar notion of uniformity in [Ruz81]. He defines the direct connection language of a circuit family and the notion of uniformity requires that this language be decidable by an alternating Turing machine running in logarithmic time. The condition in [BIS90] is more restrictive and it requires that the direct connection language be decidable by a deterministic machine running in logarithmic time. We shall hereafter refer to this notion as dlogtime-uniformity. They show that dlogtime-uniform \(\text{NC}^1 \) is in fact equal to \(\text{NC}^1 \)-uniform \(\text{NC}^3 \). They also give persuasive arguments (see also [BCGR92]) to show that dlogtime-uniformity is the right notion to study \(\text{AC}^0 \) and \(\text{ACC} \). In particular, dlogtime-uniform \(\text{AC}^0 \) is known to have many different characterizations demonstrating its robustness.

Theorem 1.1 [BIS90] The following classes of sets are equal:

- The class of sets accepted by dlogtime-uniform circuits with NOT gates, AND and OR gates of unbounded fan-in, constant depth and polynomial size.
• The class of sets accepted in $O(1)$ time on a CRAM4 with polynomially many processors.

• The class of sets accepted by alternating Turing machines in $O(\log n)$ time and $O(1)$ alternations (i.e., the logarithmic time hierarchy (also referred to as LH) defined by Sipser in [Sip83]).

• The class of sets definable in first-order logic with additional predicates $<$ (linear order) and BIT (where $BIT(i, j)$ means that bit i of the binary representation of j is 1). This class is sometimes denoted FO + < + BIT.

In Chapter 7, we provide another characterization of dlogtime-uniform AC0 in terms of the log-bounded rudimentary reductions defined by Jones [Jon75]. Additional characterizations of AC0 may be found in [Clo90].

The lower bound results for AC0 mentioned in the Section 1.2 apply to nonuniform AC0 and hence to uniform AC0 as well. Allender and Hertrampf [AH90] showed that the result in [All89a] also holds in the uniform setting. In Chapter 3 we show that the simulation of Beigel and Tarui [BT91] holds in the uniform setting as well. We define a notion of uniformity to deal with circuit families of subexponential size. A similar notion has been defined by Venkateswaran in [Ven92] where he gives a uniform circuit characterization of NP and other classes. In [Bar92], Barrington shows that the notion of uniformity introduced for constant depth circuits of polynomial size in [BIS90] can be extended to quasipolynomial $(2^{(\log n)^{O(1)}})$ size as well. This extended notion of uniformity coincides with the one we use. In the same paper, Barrington provides a different proof that shows that the simulation of Beigel and Tarui [BT91] holds for uniform circuits. He shows that the result of Green, Köbler and Torán [GKT92] holds in the uniform setting as well.

In this thesis we deal exclusively with uniform circuits. We use different notions of uniformity, but they are all derived from the dlogtime-uniformity discussed above. The

4A CRAM (Concurrent Random Access Machine) is essentially a concurrent read, concurrent write parallel random access machine (CRCW PRAM) that has an extra instruction called $Shift$ in its instruction set. For more details, see [Imm89].
notions will be made precise in Chapter 2. We are interested in uniform circuits for two reasons. Firstly, some of the results that we prove seem to work only for uniform circuits. In Chapter 3 we show that uniform ACC type circuits of subexponential size cannot compute the permanent (PERM) function. Note that when we say that a circuit family computes a function like PERM we mean that the circuit family recognizes the language \(\{ \langle M, j, b \rangle : \text{the } j^{\text{th}} \text{ bit of the permanent of } M \text{ is } b \} \). We also show that there are languages in PP and \(C_\subseteq \text{P} \) that cannot be computed by uniform ACC type circuits of subsubexponential size. Our lower bound results use the techniques developed by Beigel and Tarui [BT91], Yao [Yao90] and Toda [Tod91]. As a corollary, we also get the important result that uniform ACC is properly contained in PP (as well as \(C_\subseteq \text{P} \)).

This seems to be one of the very few instances\(^5\) where lower bounds are known for the uniform circuit complexity of certain languages or functions, but where nothing is known about the nonuniform circuit complexity. The uniformity condition is very critical in our results; it is still unknown if PP = logspace-uniform ACC. Although logspace-uniform ACC is trivially seen to be properly contained in PSPACE, it is not known if \(P \)-uniform ACC = PSPACE. In fact, it is even unknown if there is any set in \(\text{Ntime}(2^{o(1)}) \) that is not accepted by a nonuniform ACC circuit family.

The other reason that we consider uniform circuits is that some of the properties of circuit complexity classes that we study make sense only with respect to uniform circuits. In Chapter 4 we talk about sets that are immune to \(\text{AC}^0 \) and ACC. An infinite set \(L \) is **immune** to a complexity class \(C \) if neither \(L \) nor any of its infinite subsets are in \(C \). Every infinite set trivially has a sparse infinite subset in nonuniform \(\text{AC}^0 \). Therefore, in order to discuss immunity with respect to a circuit complexity class, we must consider uniform circuits.

\(^5\)In fact, the only other instance that we are aware of is that it is not known if \(\text{Dtime}(2^{O(1)}) \) contains sets that are not in \(\text{P/poly} \) (the class of languages accepted by nonuniform circuit families of polynomial size), whereas it does contain sets that are not in \(\text{P} \) (which is the class of languages accepted by uniform circuit families of polynomial size).
1.4 Complex Sets, Immunity and Strong Separation

What does it mean to show that a set is complex? As a first attempt, one might show that the set does not lie in some “easy” complexity class such as \(\text{Dtime}(n^3) \). However, if a set \(L \) is not in \(\text{Dtime}(n^3) \), it means merely that for each machine \(M \) accepting \(L \), \(M \) must run for more than \(n^3 \) steps on infinitely many inputs — although this set of inputs could be extremely sparse — and it might even be the case that \(M \) runs in linear time on an overwhelming majority of inputs. In some settings, such a set \(L \) would not be considered sufficiently “complex,” and thus two stronger notions of complexity have often been considered: randomness (or Church-randomness) and almost-everywhere complexity.

A set \(L \) is said to be Church-random with respect to a class \(C \) if for each set \(A \in C \) the probability that \(A \) and \(L \) differ on a random string of length \(n \) approaches \(\frac{1}{2} \). (That is, the sequence \(|\{x \in \Sigma^n : x \in A \Delta L\}|/2^n \) approaches \(\frac{1}{2} \).) Very tight Church-randomness hierarchies are known; for all functions \(t \) and \(T \) such that \(\text{Dtime}(t(n)) \) is known to be properly contained in \(\text{Dtime}(T(n)) \), it is known that there is a set in \(\text{Dtime}(T(n)) \) that is Church-random with respect to \(\text{Dtime}(t(n)) \) [Wil83]. Also, it is known that the PARITY language is Church-random with respect to \(\text{AC}^0 \) [Cai89, Bab87, Hås87].

However, even languages that are Church-random may have infinitely many “easy” special-case inputs. For example, any string of the form \(0^n \) is trivially not in the PARITY language, and any string of the form \(0^n1 \) is trivially in the language. A language is almost-everywhere complex if there are no infinite classes of “special-case” inputs of this form. More formally, a set \(L \) is said to be almost-everywhere complex with respect to \(\text{Dtime}(T(n)) \) if any machine recognizing \(L \) must run for more than \(T(|x|) \) steps on all large inputs \(x \). As with Church-randomness, there are very tight hierarchies for almost-everywhere complexity [GHS91]. We are interested in the study of almost-everywhere complexity because, unlike the case of Church-randomness, little is known about sets that are almost-everywhere complex with respect to circuit complexity classes like \(\text{AC}^0 \) and \(\text{ACC} \). Indeed, since the size and depth of a circuit is the same on all inputs of a given length, it is not at all clear what it should mean for a set to be
almost-everywhere complex with respect to a circuit complexity class. For guidance, we turn to the better-understood notions of time and space complexity.

Almost-everywhere complexity has been studied in a variety of settings dealing with time and space complexity [BS85, GHS91, GK90, ABHH90], and in all instances it has been shown to be intimately connected with immunity. Recall (from Section 1.3) that an infinite set \(L \) is immune to a class \(C \) if \(L \) has no infinite subset in \(C \). For example, in [BS85] it is shown that for any time-constructible function \(T \), a set \(L \) is almost-everywhere complex with respect to \(\text{Dtime}(T(n)) \) if and only if both \(L \) and its complement are immune to \(\text{Dtime}(T(n)) \). Thus, a study of sets that are immune to a complexity class is necessary in order to study the notion of almost-everywhere complex sets.

Because of these and other considerations, immunity has often been studied in complexity theory. (For example, see [Lis90] and the papers cited there.) In the literature, a class \(D \) is said to be strongly separated from a class \(C \) if there is a set in \(D \) that is immune to \(C \). In this thesis we study the immunity properties of circuit complexity classes such as \(\text{AC}^0 \) and \(\text{ACC} \). For the rest of this discussion, we use \(\text{AC}^0 \) (\(\text{ACC} \)) to denote \(\text{dlogtime-uniform AC}^0 \) (\(\text{ACC} \)). Recall that a circuit family is \(\text{dlogtime-uniform} \) if its direct connection language can be decided by a deterministic Turing machine that runs in logarithmic time. In Chapter 4 we show that \(\text{P}^\text{PP} \) is strongly separated from \(\text{ACC} \) and hence from \(\text{AC}^0 \). In Chapter 5 we investigate whether \(\text{NP} \) is strongly separated from \(\text{AC}^0 \). Surprisingly, we find that any answer to the above question leads to new techniques for answering some interesting questions regarding the relationship between deterministic and nondeterministic time classes.

Let \(E = \text{Dtime}(2^{O(n)}) \), \(\text{NE} = \text{Ntime}(2^{O(n)}) \) and let \(\text{RUD} \) denote the class of Rudimentary sets. \(\text{RUD} \) is the linear time analog of the polynomial hierarchy. It was defined by Smullyan [Smu61] and has been studied extensively (see, e.g., [Wra78, Lip78, Boo78, PD80, Vol83]). One result of [Wra78] shows that the rudimentary sets can also be characterized in terms of linear-time nondeterministic oracle Turing machines, in analogy to the usual definition of the polynomial hierarchy. It is not known if there is a set in \(E \) that is immune to \(\text{RUD} \). The following proposition shows that this question is related
to the question of strong separation between P and AC^0.

Proposition 1.2 If there is a set in E that is immune to the class of Rudimentary sets then there is a set in P that is immune to AC^0.

The proof of the above proposition uses the relationship between RUD and AC^0, explained in the following proposition (proved in Chapter 5 as Proposition 5.3):

Proposition 1.3 $L \in \text{RUD} \iff un(L) \in AC^0$, where $un(L) = \{0^n : n \in L \}$.

Proposition 1.2 implies that if NP is not strongly separated from AC^0, then $P \neq NP$ (for a proof, see Corollary 5.4).

Let E-solvable informally (formal definitions are given in Chapter 2) denote the notion “solvable in deterministic time $2^{O(n)}$.” The question “Is every NE-predicate E-solvable?” is the natural exponential time analog of the so called witness finding question regarding NP and P. It was studied initially by [AW88]. Even though the $P = NP$ question is usually formulated as a question about the complexity of recognizing languages, it is equivalent to the question of witness finding (e.g., finding a satisfying assignment, instead of merely reporting that a satisfying assignment exists). However, for exponential time, the corresponding questions are not known to be equivalent. In [IT89] it is shown that there is an oracle relative to which $E = NE$ but not all NE-predicates are E-solvable (solvable in exponential time). Thus at least in some relativized worlds, assuming that all NE-predicates are E-solvable is strictly stronger than merely assuming $E = NE$.

The question of whether or not all NE-predicates are E-solvable is related to questions about AC^0. In particular, we show the following:

Proposition 1.4 If $E = \text{RUD}$ and all NE-predicates are E-solvable, then no set in NP is immune to AC^0.

The proof of the above proposition makes use of some connections between the complexity of NE-predicates and a version of time-bounded Kolmogorov complexity that are explained in Chapter 5. Proposition 1.4 implies that if NP is strongly separated
from \(AC^0 \), then either \(E \neq RUD \) or there are NE-predicates that are not E-solvable. None of these conclusions is known to be true. Propositions 1.2 and 1.4 have been proved as Theorems 5.1 and 5.2 respectively.

1.5 Relativization

Oracle constructions have long been used to provide evidence that certain questions in complexity theory cannot be resolved using the usual techniques of simulation and diagonalization. One of the earliest and ground breaking results was proved by Baker, Gill and Solovay [BGS75] who showed the existence of oracles \(A \) and \(B \) such that \(P^A = NP^A \) and \(P^B \neq NP^B \). This shows that any technique that relativizes will not be able to resolve the P vs. NP question. Along similar lines, we are able to prove the existence of oracles relative to which the hypotheses of Proposition 1.2 and 1.4 hold. Thus the usual techniques will not be able to answer the question of whether or not NP is strongly separated from \(AC^0 \).

Though our relativization results deal with \(AC^0 \), we must emphasize that we do not deal with relativized notions of \(AC^0 \). Our results only use the usual notion of relativized deterministic and nondeterministic time. Indeed, it is not clear that it makes much sense to talk about relativized \(AC^0 \); for example, if \(L \) is any set that is complete for \(P \) under \(AC^0 \) reductions, then \(P^L = AC^{0L} \), although clearly \(P \neq AC^0 \).

Of course, it is now recognized that the mere existence of an oracle, relative to which some condition \(X \) fails to hold, does not preclude the existence of an easy proof that \(X \) does hold in the unrelativized case. We know that IP (the set of languages with efficient Interactive Proof Systems) contains \(P^{PP} \) ([FKLN90]) and is in fact equal to PSPACE ([Sha90]). Contrast this with a previous result of Fortnow and Sipser [FS88] that showed the existence of an oracle relative to which co-NP \(\not\subseteq \) IP. With that in mind, we conjecture that the hypothesis to Proposition 1.4 is false. If \(E = RUD \), it follows that alternating linear time is equal to \(\Sigma_k \text{Time}(n) \) for some \(k \), which puts very low limits on the power of deterministic exponential time. Thus it may seem contradictory to assume simultaneously that deterministic time \(2^{O(n)} \) is powerful enough to solve every NE-predicate. Note also that if \(E = RUD \), then the polynomial hierarchy
collapses. However, the non-relativizing proof techniques developed in [FKLN90, Sha90, BFL91] have not been shown to be relevant for questions concerning deterministic and nondeterministic time classes; new non-relativizing proof techniques are still needed to answer these questions. We think that our oracle results are interesting because they point to certain limitations of relativizing proof techniques when it comes to proving the existence of sets that are immune to AC⁰. Research that has focused on proving lower bounds for AC⁰ has been very successful and we hope that our oracle results will point to ways of improving the lower bound techniques so as to say something about the relationship between NP and AC⁰ with regard to strong separation. Any progress made here would result in new techniques for attacking the Dtime vs. Ntime question.

1.6 Rudimentary Reductions

Logspace reductions were defined and studied independently by Stockmeyer and Meyer [SM73] and Jones [Jon75] as a tool for studying the relative complexity of problems in P. Jones [Jon75] also introduced a restricted version of logspace-reducibility, called log-bounded rudimentary reducibility. His motivation for introducing this restriction came from (1) the desire to have a tool for talking about the structure of very small complexity classes such as Dspace(log n), and (2) an interest in generalizing the notion of “rudimentary relations,” which at that time was the object of a considerable amount of attention [Smu61, Wra78, Sal73, PD80, Wil79, PHW85]. In [Jon75], Jones goes on to show that a number of problems are complete for various complexity classes under log-bounded rudimentary reducibility. For a function S, he defines RUDₜₜ, the class of S(·)-bounded rudimentary predicates. Informally, consider a class of predicates that consists of primitive predicates that allow us to look at a particular bit of a string, express string concatenation, and express substitution of variables by constant strings. The closure of this class under logical connectives ∧, ∨, ¬, and universal and existential quantification bounded by the function S gives us the class RUDₜₜ. The function S should be thought of as a space bound. The log-bounded rudimentary reductions are defined using the class RUDₜₜ, which is the class of rudimentary predicates we get when the space bound S is logarithmic. We observe that the class RUDₜₜ of predicates can also be viewed as a
class of languages and in this formalism, we are able to show that $\text{RUD}_{\text{log}} = \text{AC}^0$. The
proof is presented in Chapter 7 and uses some of the alternate characterizations of AC^0
given in [BIS90]. This provides further evidence that the notion of dlogtime-uniformity
proposed by [BIS90] for studying small complexity classes such as AC^0 is indeed the
"right" notion.

1.7 Outline

The rest of the thesis is organized as follows. The notation and preliminary definitions
are presented in Chapter 2. In Chapter 3 we present the results from [AG92], namely
the lower bounds for PERM and PP. In Chapter 4 we show that P^{PP} contains sets
that are immune to uniform ACC (and hence immune to uniform AC^0 as well). This
follows from the results proved in Chapter 3. We also give an independent proof of
the fact that P^{PP} is strongly separated from uniform AC^0. In Chapter 5 we show that
the problem of finding a strong separation between NP and uniform AC^0 is linked to
some long-standing open questions in complexity theory that deal with the relationship
between deterministic and nondeterministic exponential time classes. In Chapter 6 we
show that proof techniques that relativize will not be able to prove anything about the
existence or nonexistence of a strong separation between NP and AC^0. The results
in Chapters 4, 5 and 6 have appeared in [AG91a] and [AG93]. The characterization
of uniform AC^0 in terms of the log-bounded rudimentary reductions is presented in
Chapter 7. This result has appeared in [AG91b]. Conclusion and open problems are
discussed in Chapter 8.
Chapter 2
Preliminaries

2.1 Turing Machines

The reader is assumed to be familiar with deterministic and nondeterministic Turing machines, the basic notions of time and space complexity and the various notions of reducibilities like polynomial time many-one (\leq^p_m), polynomial time Turing (\leq^p_T) and logspace many-one (\leq^L_m) etc. A good introduction to this material can be found in [HU79]. We also assume that the reader is familiar with the concept of Turing machine computation relative to an oracle. We use the following abbreviations:

\[
P = \text{Dtime}(n^{O(1)})
\]

\[
NP = \text{Ntime}(n^{O(1)})
\]

\[
E = \text{Dtime}(2^{O(n)})
\]

\[
NE = \text{Ntime}(2^{O(n)})
\]

\[
\text{DLOG} = \text{Dspace}(\log n)
\]

\[
\text{NLOG} = \text{Nspace}(\log n)
\]

\[
\text{PSPACE} = \text{Dspace}(n^{O(1)})
\]

We also assume familiarity with the hierarchy theorems for deterministic time [HS65] and nondeterministic time [FMS78]. We use the following reformulation of the almost-everywhere hierarchy theorem for deterministic time classes proved by Geske, Huynh and Seiferas [GHS91].

Theorem [GHS91] For $k \geq 2$, if $T(n)$ is the exact running time of a k-tape Turing machine, and if $t(n)$ is such that $t(n)\log t(n) = o(T(n))$, then there is a \{0, 1\}-valued function computable by a k-tape Turing machine in time $O(T(n))$, such that every multitape Turing machine that computes this function requires time exceeding $t(n)$ almost everywhere.
The nondeterministic Turing machine model plays a very important role in this thesis. When dealing with this model, we are not only concerned with the existence of accepting paths on inputs, we are also concerned with the number of accepting paths. With that in mind, we present the following definitions:

Definition 2.1 For a nondeterministic machine M, let $\#\text{acc}_M : \Sigma^* \to \mathbb{N}$ be the function defined by $\#\text{acc}_M(x) =$ number of accepting paths of M on input x. Then $\#P = \{\#\text{acc}_M : M$ is an NP machine$\}$.

Definition 2.2 Let $A = [A_{i,j}]$ be an $n \times n$ matrix. Then
\[
\text{PERM}(A) = \sum_{\sigma \in S_n} \prod_{i=1}^{n} A_{i,\sigma(i)}
\]
where S_n is the symmetric group on n.

It is well known from [Val79] that PERM is complete for $\#P$ under \leq_T^p (in fact, \leq_m^p) reducibility. The proof shows that given a propositional formula in conjunctive normal form, in polynomial time we can obtain a matrix such that if the value of the permanent of this matrix is known, then we can compute the number of satisfying assignments of the given formula from this value in polynomial time.

Definition 2.3 A language L is said to be in $\text{PrTime}(t(n))$ if there exists a nondeterministic machine M that runs in time $t(n)$ such that for all $x \in \Sigma^*$,

$x \in L \iff$ more than half of the computation paths of M on input x are accepting.

Definition 2.4 A language L is said to be in $\text{C}_\varepsilon \text{Time}(t(n))$ if there exists a nondeterministic machine M that runs in time $t(n)$ such that for all $x \in \Sigma^*$,

$x \in L \iff$ exactly half of the computation paths of M on input x are accepting.

Definition 2.5 A language L is said to be in $\text{MOD}_k \text{Time}(t(n))$ if there exists a nondeterministic machine M that runs in time $t(n)$ such that for all $x \in \Sigma^*$,

$x \in L \iff \#\text{acc}_M(x) \not\equiv 0 \pmod{k}$.

In particular, for polynomial running times we get the well known classes $\text{PP} = \text{PrTime}(n^{O(1)})$, $\text{C}_\varepsilon \text{P} = \text{C}_\varepsilon \text{Time}(n^{O(1)})$ and $\text{MOD}_k \text{P} = \text{MOD}_k \text{Time}(n^{O(1)})$. The class $\text{MOD}_2 \text{P}$ is usually referred to as $\text{PARITY P (\oplus P)}$ in literature.
The class P^{PP} is simply the class of languages that are \leq_T^{P} reducible to languages in PP. Toda [Tod91] proved the very important result that the polynomial hierarchy is contained in P^{PP}.

2.2 Alternating Turing Machines

Alternating Turing machines (ATM) are a generalization of nondeterministic Turing machines and the concept of alternation has proved to be very useful in complexity theory, particularly in explicating the difference between time and space complexity. We assume that the reader is familiar with the basic concepts like computation trees, accepting subtrees and time and space bounded ATM's. Results and precise definitions relating to alternation may be found in [CKS81] and [BDG89]. The polynomial hierarchy (PH) is the class of languages accepted by ATM's that run in polynomial time and make a constant number of alternations. An important complexity class that is defined using ATM's is the following:

Definition 2.6 The class of *rudimentary* sets is the class of languages accepted by alternating Turing machines making $O(1)$ alternations, and running for linear time. We will usually denote this class by $\bigcup_k \Sigma_k \text{Time}(n)$ (or by RUD sometimes).

Some of the results in this thesis use the model of alternating Turing machine used by Ruzzo [Ruz81] in which access to the input is provided via a special tape which we call the *input address tape* onto which an address i may be written in binary, following which in unit time the i^{th} input symbol is available. This convention is necessary to allow machines with sublinear running times to have access to all of the input. Consult [BIS90, BCGR92] for examples illustrating how these machines compute.

In order to prove some of the results in Chapter 3, we make use of a slightly enhanced version of the ATM. The ATM is also allowed to have MOD states, apart from the conventional (see [CKS81]) existential (\exists) and universal (\forall) states. The concept of a MOD state is defined as follows:

Definition 2.7 For a modulus m, a MOD$_m$ configuration (say σ) is always the root of a subtree of configurations in which all the other configurations (except the root)
are existential. This tree is called the \textit{existential subtree} associated with σ and is represented as T_σ. We say that σ is \textit{accepting} if and only if the number of leaves of T_σ that are accepting is congruent to 0 modulo m. We also use the term \textit{MOD-tree} at times to refer to an existential tree associated with a MOD configuration.

\textbf{Definition 2.8} There is said to be an \textit{alternation} between two configurations σ_1 and σ_2 of an ATM if and only if σ_2 follows from σ_1 via one step of the ATM and one of the following conditions hold:

- σ_1 is of type \exists and is not in the MOD-tree of any MOD configuration, and σ_2 is of type \forall or MOD.
- σ_1 is of type \exists and is in a MOD-tree, and σ_2 is of type \exists and is not in any MOD-tree, or σ_2 is of type \forall or MOD.
- σ_1 is of type \forall and σ_2 is of type \exists or MOD.

Let T denote the computation tree of an ATM M on a particular input. The root of the tree is said to have \textit{alternation depth} 1, and a node in the tree labeled by configuration σ_2 with parent labeled by configuration σ_1 is defined to have alternation depth one greater than the alternation depth of σ_1 if there is an alternation between σ_1 and σ_2, and the alternation depth of σ_2 is equal to that of σ_1 otherwise. The alternation depth of a tree is the maximum alternation depth of all nodes in the tree. The alternation depth of an ATM is the maximum alternation depth of all its alternation trees.

\subsection{2.3 Boolean Circuits}

A Boolean circuit on n variables $\{x_1, x_2, \ldots, x_n\}$ is a directed acyclic graph. The nodes of the circuit are called \textit{gates}. Nodes of indegree 0 are labeled either by a variable x_i, or by a constant (0 or 1). Those labeled by a variable are called \textit{input} gates and the ones labeled by a constant are called \textit{constant} gates. There is exactly one node with outdegree 0 called the \textit{output} gate. The indegree of a node is normally referred to as its fan-in. All nodes that have nonzero fan-in are labeled by different Boolean functions such as \textit{AND}, \textit{OR}, \textit{NOT} etc. The \textit{level} of a gate in a circuit is the length of the longest
path from an input to that gate (hence the input gates are at level 0). The size of a
circuit is the number of gates in it and the depth of a circuit is the length of the longest
path from an input gate to the output gate. If there are \(n \) variables in the circuit, then
the circuit computes a function from \(\{0, 1\}^n \) to \(\{0, 1\} \).

Definition 2.9 Let \(m \) be a positive integer. A \(\text{MOD}_m \) gate outputs 1 if the sum of its
(binary) inputs is 0 modulo \(m \); 0, otherwise. That is,

\[
\text{MOD}_m(x_1, \ldots, x_n) = \begin{cases}
1 & \text{if } \sum_i x_i \equiv 0 \pmod{m} \\
0 & \text{otherwise.}
\end{cases}
\]

Definition 2.10 A language \(L \) is in \(\text{AC}^0 \) if it is recognized by a family of constant
depth, polynomial size circuits consisting of NOT gates, and unbounded fan-in AND
and OR gates.

Definition 2.11 ([MT89, Bar89, BT88]) A language \(L \) is in \(\text{ACC} \) if there exists a
positive integer \(m \) such that \(L \) is recognized by a family of constant depth polynomial
size circuits containing NOT gates, and unbounded fan-in AND, OR and \(\text{MOD}_m \) gates.

ACC was first defined and studied in [MT89, Bar89, BT88] under the name \(\text{ACC}^0 \).
Yao [Yao90] defines ACC a little differently; he allows a fixed finite set of moduli \(S \)
instead of a single modulus \(m \). However, it is easy to see that a \(\text{MOD}_m \) gate can
simulate a \(\text{MOD}_k \) gate for any \(k \) that divides \(m \). Letting \(m \) to be the least common
multiple of the elements in \(S \) makes the two definitions equivalent.

We now present the notions of uniformity that we use in this thesis.

Definition 2.12 Let \(\{C_n\} \) be a family of circuits. Following [Ruz81], we define the
direct connection language \(L \) of \(\{C_n\} \) as:

\[
L = \{ \langle n, g_1, g_2 \rangle : g_1 = g_2 \text{ and } g_1 \text{ is a gate in } C_n \text{ or} \]
\[
g_1 \neq g_2 \text{ and } g_2 \text{ is an input to } g_1 \text{ in } C_n \}.
\]

Here \(g_1 \) and \(g_2 \) are names of gates and \(n \) is in binary notation.
Definition 2.13 A circuit family \(\{C_n\} \) is **dlogtime-uniform** if its direct connection language can be recognized in linear time by a Turing machine. The Turing machine that recognizes the direct connection language of \(\{C_n\} \) will be referred to as the **uniformity machine** for \(\{C_n\} \).

Most of the results in this thesis use the above notion of uniformity. However, for the results in Chapter 3, we use the following notion of uniformity which is a little less restrictive.

Definition 2.14 A circuit family \(\{C_n\} \) is **uniform** if its direct connection language can be recognized in polynomial time by a Turing machine. Note that the time is polynomial with respect to the length of the strings in the language \((|\langle n, g_1, g_2 \rangle|) \) and not polynomial in \(n \).

In order to prove the lower bounds in Chapter 3, we need to deal with circuit families that have subexponential sized circuits. We are interested in two classes of subexponential functions that we call \(\text{subexp} \) and \(\text{subsubexp} \). Let us call a function \(f \) **constructible** if \(f(n) = 2^{g(n)} \), where \(g(n) \) can be computed from \(n \) (in binary) in time polynomial in \(g(n) \). Let \(\text{subexp} \) denote the class of all monotonic functions that are bounded above by some constructible function \(f \) such that \(\forall \varepsilon > 0, f(n) = o(2^{n^\varepsilon}) \). Let \(\text{subsubexp} \) denote the class of all monotonic functions such that for any two functions \(f \) and \(g \) in this class, the composition of \(f \) and \(g \) is in \(\text{subexp} \).

A typical example of a function in \(\text{subexp} \) is \(2^{n^{1/\log n}} \), and typical examples of functions in \(\text{subsubexp} \) are \(n^{\log n} \) and \(2^{(\log n)^{\log \log n}} \). It is not hard to prove that if \(s \) is in \(\text{subexp} \), then so is \(s^{(\log s)^k} \), for any constant \(k \).

Definition 2.15 Let \(\text{ACC}(s(n)) \) denote the class of languages accepted by **uniform** circuit families of constant depth circuits with NOT gates, and unbounded fan-in AND, OR and \(\text{MOD}_m \) gates (for some integer \(m \geq 2 \)) of size \(s(n) \). Then

\[
\text{ACC}(\text{subexp}) = \bigcup_{s \in \text{subexp}} \text{ACC}(s(n))
\]

\[
\text{ACC}(\text{subsubexp}) = \bigcup_{s \in \text{subsubexp}} \text{ACC}(s(n))
\]
Note that the notion of uniformity defined in Definition 2.14 is only slightly different from the one in Definition 2.13. Our notion of uniformity can be informally referred to as polylogtime-uniformity. The reason we use this notion is that we are dealing with circuits of (sub)subexponential size and the proofs are much simpler with this uniformity condition. It should be noted that a set has uniform \(\text{ACC}((\text{sub})\text{subexp}) \) circuits with respect to our notion of uniformity if and only if it has dlogtime-uniform \(\text{ACC}((\text{sub})\text{subexp}) \) circuits. This can be established by “padding” a circuit with many dummy gates.

2.4 P-printable Sets, NE-predicates and Time-Bounded Kolmogorov Complexity

We now define the notions of P-printable sets, NE-predicates, and Time-bounded Kolmogorov complexity and show their relationships.

For a language \(L \), let \(L^{=n} = \{ x : |x| = n \land x \in L \} \).

Definition 2.16 A set \(L \) is called P-printable if the function \(1^n \rightarrow L^{=n} \) is computable in polynomial time.

P-printable sets were defined by Hartmanis and Yesha [HY84]; they have been studied in detail by Allender and Rubinstein [AR88]. An important lemma about P-printable sets that will be useful is the following:

Lemma 2.1 Every infinite set in P has an infinite P-printable subset only if every infinite set in NP has an infinite subset in P-uniform AC\(^0\).

Proof.

Theorem 7 in [AR88] says that every infinite set in P has an infinite P-printable subset iff every infinite set in NP has an infinite P-printable subset. Note that every P-printable set is in P-uniform AC\(^0\). Hence, the lemma follows.

Definition 2.17 An NE-predicate is a binary predicate \(R \) such that, for some NE machine \(M \), \(R(x, y) \iff y \) is an accepting computation of \(M \) on input \(x \).
Definition 2.18 An NE-predicate R is solvable in time $t(n)$ if there is a function f computable in time $t(n)$ such that, for all x, $(\exists y)R(x, y) \iff R(x, f(x))$. Stated another way, R is solvable in time $t(n)$ if there is a routine that, for all x, can find a witness for x if one exists. R is said to be E-solvable if R is solvable in $\text{Dtime}(2^{O(n)})$.

Definition 2.19 An NE-predicate R is said to be immune to time $t(n)$ if

1. the set $\{x : (\exists y)R(x, y)\}$ is infinite, and

2. for all f computable in time $t(n)$, the set $\{x : R(x, f(x))\}$ is finite.

Call an NE-predicate E-immune if it is immune to $\text{Dtime}(2^{O(n)})$.

NE-predicates and P-printability are related by the following lemma by Allender and Watanabe [AW88]:

Lemma 2.2 Every infinite set in P has an infinite P-printable subset \iff No NE-predicate is E-immune.

Proof.

(\Rightarrow) Suppose every infinite set in P has an infinite P-printable subset. Let R be an NE-predicate defined by the NE machine M that accepts an infinite language. Let $L = \{x\#y : R(x, y)\}$ and let k be such that $|x\#y| = 2^{4|x|}$. It is fairly obvious that $L \in$ P. Therefore L has an infinite P-printable subset L'. The P-printability of L' guarantees the existence of a polynomial time computable function f such that $f(1^n) = L'^{|n|}$. For a string x, let $g(x)$ be the lexicographically least string y such that $x\#y \in f(1^{2^{4|x|}})$, if such an element exists; otherwise let $g(x)$ be the empty string. Note that g is computable in exponential time. Since L' is infinite, $g(x)$ is nonempty for infinitely many x. Therefore, the set $\{x : R(x, g(x))\}$ is infinite. Hence, R is not E-immune.

(\Leftarrow) Let L be an infinite language in P. Consider the language $L' = \{n :$ there is a string of length n in $L\}$. $L' \in$ NE because an NE machine (say M) can guess a string w of length n on input n, and then deterministically verify whether $w \in L$. Suppose M defines the NE-predicate R. Since no NE-predicate is E-immune, there is a function f
computable in exponential time such that the set \(\{x : R(x, f(x))\} \) is infinite. It is easy to see that using \(f \) we can generate an infinite subset of \(L \) that is P-printable. \(\blacksquare \)

The following paragraphs introduce the notion of time-bounded Kolmogorov complexity that we use. The definitions below were introduced in [Lev84, All89c]; more formal definitions and background may be found there and in [All92].

Definition 2.20 \(Kt(x) = \min\{|y| + \log t : M_u(y) = x \text{ in at most } t \text{ steps}\} \) where \(M_u \) is a “universal” Turing machine. Let \(L \subseteq \{0, 1\}^* \). Then \(K_L(n) = \min\{Kt(x) : x \in L^n\} \). If \(L^n = \phi \) then \(K_L(n) \) is undefined.

It turns out that questions about the difficulty of NE-predicates can actually be expressed as questions about the \(K_L \) complexity of sets \(L \) in \(P \). This is made precise in the following proposition.

Proposition 2.3

- Every NE-predicate is E-solvable iff for every set \(L \) in \(P \), \(K_L(n) = O(\log n) \).
- No NE-predicate is E-immune iff for every set \(L \) in \(P \), \(K_L(n) \neq o(\log n) \).

Proof.

Follows from Theorem 6 in [All92] (see also [AW88, Theorem 4]). \(\blacksquare \)

The above proposition holds relative to an arbitrary oracle, and this fact is used in the proof of Proposition 6.3.

2.5 Rudimentary Reductions

In the following paragraphs, we present the definitions of Jones [Jon75] to define the class of space-bounded rudimentary predicates and reductions.

Definition 2.21 Let \(\Sigma \) be an alphabet. The ternary predicate \(\sigma(x, i, a) \) is true iff \(a \) is the \(i^{th} \) symbol of \(x \) where \(x \in \Sigma^* \).
Definition 2.22 For a function \(S : \mathbb{N} \to \mathbb{N} \) such that \(S(n) = \Omega(\log n) \), the class of \(S(\cdot) \)-bounded rudimentary predicates, \(\text{RUD}_S \), is the smallest class of predicates such that

1. \(\sigma(x, i, a) \) and \(\neg \sigma(x, i, a) \) are in \(\text{RUD}_S \). Note that \(1 \leq |i| \leq \log |x| \).

2. If \(c \) is a positive integer then both \(Q(x, u, v, w) \) and \(\overline{Q}(x, u, v, w) \) are in \(\text{RUD}_S \) where

\[
\begin{align*}
Q(x, u, v, w) & \iff uv = w \land |uvw| \leq c \cdot S(|x|) \\
\overline{Q}(x, u, v, w) & \iff uv \neq w \land |uvw| \leq c \cdot S(|x|)
\end{align*}
\]

3. If \(Q(x, y_1, \ldots, y_m) \) and \(R(x, y_1, \ldots, y_m) \) are in \(\text{RUD}_S \), then so are

\[
Q(x, y_1, \ldots, y_m) \land R(x, y_1, \ldots, y_m) \quad \text{and} \quad Q(x, y_1, \ldots, y_m) \lor R(x, y_1, \ldots, y_m).
\]

4. If \(Q(x, z_1, \ldots, z_m) \) is in \(\text{RUD}_S \) and each of \(\xi_1, \ldots, \xi_m \) is either a string in \(\Sigma^* \) or one of the variables \(y_1, \ldots, y_n \), then the predicate \(R \) defined by

\[
R(x, y_1, \ldots, y_n) \iff Q(x, \xi_1, \ldots, \xi_m)
\]

is in \(\text{RUD}_S \).

5. If \(c \) is a positive integer, and \(Q(x, y_1, \ldots, y_{m+1}) \) is in \(\text{RUD}_S \), then the predicates \(R \) and \(R' \) defined as follows are also in \(\text{RUD}_S \)

\[
R(x, y_1, \ldots, y_m) \iff (\exists z)[|z| \leq c \cdot S(|x|) \land Q(x, y_1, \ldots, y_m, z)] \\
R'(x, y_1, \ldots, y_m) \iff (\forall z)[|z| \leq c \cdot S(|x|) \Rightarrow Q(x, y_1, \ldots, y_m, z)]
\]

Definition 2.23 A function \(f : \Sigma^* \to \Sigma^* \) is \(S(\cdot) \)-bounded rudimentary iff the predicate \(R \) defined by

\[
R(x, i, a) \iff \sigma(f(x), i, a)
\]

is in \(\text{RUD}_S \). That is, \(f \) is \(S(\cdot) \)-bounded rudimentary iff the predicate "\(a \) is the \(i \)th symbol of \(f(x) \)" is in \(\text{RUD}_S \). The fact that \(|i| \leq c \cdot S(|x|) \) (remember that \(S(n) = \Omega(\log n) \)) for some \(c \) and all \(x \) implies that \(|f(x)| \leq 2^c S(|x|) \).

Note that, as defined above, \(\text{RUD}_S \) is a set of predicates; however we can just as easily view \(\text{RUD}_S \) as a set of languages. A language \(L \) will be said to be in \(\text{RUD}_S \) iff the characteristic function of \(L \) is \(S(\cdot) \)-bounded rudimentary. Alternatively, each predicate \(Q \in \text{RUD}_S \) over alphabet \(\Sigma \) defines a language \(L \) over alphabet \(\Sigma \cup \{,\} \) (where \(, \) is any
symbol not in Σ) defined by $L = \{x, y_1, \ldots, y_m : Q(x, y_1, \ldots, y_m)\}$. These alternative
definitions are easily seen to be equivalent. For more formal arguments along these lines,
see [Wra78]. It has been proved in [Wra78] that if the space bound S is linear then
RUD_S (viewed as a set of languages) is the same as RUD (the class of rudimentary sets;
also denoted as $\bigcup_k \Sigma_k \text{Time}(n)$). We prove a somewhat more general result in Corollary
7.2.

2.6 The First Order Framework

In order to present our results about log-bounded rudimentary reductions, we need to
use the first order logic framework that has been used to define classes of languages that
are subsets of $\{0, 1\}^*$. The use of this framework may be traced back to McNaughton
[MP71] (see also [Bar90]). Immerman and Fagin are primarily responsible for the
application of this tool to complexity theory. We provide a sketch of the relevant
information on the first order framework below. For more detailed definitions and
background information, see [Imm83, Imm87, Imm89].

In the first order framework, we have a first order language such that every sentence
ϕ in the language expresses a property of strings. Given a string x, either x satisfies ϕ
in which case we write $x \models \phi$ or it doesn't. Thus each sentence ϕ defines a language,
namely $\{x : x \models \phi\}$. The first order language contains variables that range over
positions in strings. Even though the variables represent numeric values, the language is
also designed to talk about binary representations of these numeric values. It is
possible to refer to individual bits of these binary representations. In short, we can
describe the framework as follows:

- The logical language has variables i, j, k, \ldots that range over positions in the string
 under consideration.

- There are constant symbols for 1 and n and there are sentences in the language
 that define 1 and n respectively to be the first and the last positions in the string.

- The binary predicates $= \text{ and } <$, have their usual meaning on numbers.
• There is a unary predicate $X(i)$ for accessing the input. The value of $X(i)$ is the i^{th} bit of the string under consideration.

• There is a binary predicate $BIT(i, j)$ on numbers that holds iff the i^{th} bit in the binary expansion of j is 1.

• Well-formed formulae are built in the usual way from the constant symbols: 1, n and the relation symbols: $=, \leq, X, BIT$ using logical connectives: \land, \lor, \neg; variables: i, j, k, \ldots and quantifiers: \forall, \exists. A formula with no free variables is called a sentence.

For example, the sentence $(\exists i)(\forall j)(\neg(i < j) \lor X(j)) \land (\neg(j < i) \lor \neg X(j))$ defines the language $1^\ast 0^\ast$. Let FO denote the set of all languages expressible in first order logic in this way.

Theorem 2.4 [BIS90] $AC^0 = LH = FO$.

Two minor complications arise from the statement of Theorem 2.4:

1. Alternating Turing machines can accept input over any alphabet Σ, whereas FO and AC^0 are classes of languages over the alphabet $\{0, 1\}$. Thus we simply assume a binary encoding of any other alphabet. (Alternatively, the FO and circuit frameworks can be modified to allow arbitrary alphabets.)

2. It is clear what it means for a function to be computed by an AC^0 circuit, but it is less clear how a function can be specified in the LH or FO settings. To resolve this difficulty, we use a standard technique that has been used since at least [Jon75]. For a function f with polynomial growth rate\(^1\), let $A_f(c, i, z) \overset{\text{def}}{=} \text{the } i^{th} \text{ symbol of } f(z) \text{ is } c$. Then we say that f is in LH (or FO) if A_f is in LH (or FO). It has been noticed by many authors (e.g., [BIS90]) that f is computed by AC^0 circuits iff $A_f \in AC^0$.\(^2\)

\(^1\)That is, there is some polynomial p such that for all x, $|f(x)| \leq p(|x|)$.

\(^2\)Again, for equivalence to hold, the output of the circuit must be interpreted in such a way as to allow an “endmarker,” or else all functions f in AC^0 must have $|f(x)| = |f(y)|$ if $|x| = |y|$, which is clearly not the case for some functions in LH and FO.
Chapter 3

Lower bounds for the Permanent, PP and C=P

In this chapter, we provide lower bounds for the classes of languages accepted by uniform circuit families of ACC type circuits of (sub)subexponential size. We show that PERM cannot be computed by an ACC(subexp) circuit family. We prove that there are languages in PP and C=\neqP that cannot be recognized by ACC(subsubexp) circuit families. We are also able to show that ACC is properly contained in both PP and C=\neqP. Our main tool in proving these results is the following result:

Main Tool There is a set Y in PP such that $\text{ACC}(\text{subexp}) \subseteq \text{Dtime}(n^2)^Y$.

To prove the main tool, we will first use the results of Toda [Tod91], Yao [Yao90] and Beigel and Tarui [BT91] to convert a circuit family in ACC(subexp) into an equivalent circuit family of depth two circuits with a symmetric gate at level two, AND gates of small fan-in at level one and the input gates at level zero. However, since we need the resulting circuit family to be uniform as well, we need to show that the above conversion process can be done uniformly. We then show that the language recognized by the new circuit family can be quickly recognized by a deterministic Turing machine that has access to a particular oracle set in PP. Results about PERM then follow from Valiant's [Val79] results about the class $#P$.

3.1 The main results

For the proof of the main tool, we will first show the following.
Theorem 3.1 Suppose L is accepted by an ACC(subexp) circuit family $\{C_n\}$ of $s(n)$ sized circuits. Then L is accepted by a uniform, depth two circuit family\(^1\) whose circuits have the following properties:

- Level one consists of a subexponential number of AND gates each having fan-in $(\log s(n))^{O(1)}$. Furthermore, given the name of one of these AND gates, the exact fan-in of this AND gate can be computed deterministically in time $(\log s(n))^{O(1)}$.

- There is a symmetric gate at level two. Furthermore, given the number m of AND gates that evaluate to one, it can be determined deterministically in time $(\log s(n))^{O(1)}$ if the symmetric gate will evaluate to one.

The above theorem is the most important part of the argument and most of the chapter hereafter is devoted to its proof. The proof uses techniques developed by Beigel and Tarui [BT91], Yao [Yao90] and Toda [Tod91]. The reader who is willing to accept the fact that the construction of [BT91] can be carried out uniformly can simply skip Section 3.2 (where Theorem 3.1 is proved). The rest of this section assumes that Theorem 3.1 is true, and uses it to prove our main results. We start with the proof of the main tool.

Theorem 3.2 There is a set Y in PP such that ACC(subexp) $\subseteq \text{Dtime}(n^2)^Y$.

Proof.

Let $\{C_n\}$ be a circuit family in ACC(subexp) that accepts L. Using the result in Theorem 3.1, we can get a uniform family of circuits $\{D_n\}$ such that for every n, D_n is a deterministic depth two circuit having the properties mentioned in the statement of Theorem 3.1.

Let M_L be a nondeterministic Turing machine that, on input x, guesses the name of one of the AND gates of D_n ($n = |x|$) and the names of all the inputs of D_n that are connected to this gate. It verifies that the guesses are correct (using the uniformity machine for $\{D_n\}$). It then accepts if and only if the AND gate evaluates to 1 when x

\(^1\)This circuit family is not an ACC(subexp) circuit family because the circuits have arbitrary symmetric gates at their roots. When we say that it is uniform, we are using a slightly different notion of uniformity which is explained in Definition 3.13.
is the input to D_n. Since $\{D_n\}$ is uniform and the AND gates have $o(n)$ fan-in, M_L can do this computation in linear time. Note that $\#\text{acc}_{M_L}(x)$ is the number of AND gates of D_n that evaluate to 1 on input x.

Let M_1, M_2, \ldots be an enumeration of nondeterministic machines running in linear time. Define the set Y to be $\{\langle i, x, l \rangle : x \in \{0, 1\}^* \text{ and } \#\text{acc}_{M_i}(x) > l\}$. Note that Y is in PP^2. With oracle Y, a deterministic machine (say M) can compute $\#\text{acc}_{M_i}(x)$ in time n^2 using the binary search technique. Then, since this is the number of AND gates of D_n that evaluate to 1 on input x, it can then in linear time determine if D_n accepts x, using the properties guaranteed by Theorem 3.1. Thus membership of x in L can be determined in time n^2 relative to oracle Y. (Note that the running time can actually be brought down to $o(n)$ by modifying the oracle Turing machine model, but we choose not to do so for the sake of clarity.)

Theorem 3.2 trivially gives us an important corollary (which also follows from a more general lower bound proved later in the chapter):

Corollary 3.3 $\text{ACC} \subsetneq \text{PP}$.

Proof.

Theorem 3.2 implies that $\text{ACC} \subseteq \text{Dtime}(n^2)^Y$ for some $Y \in \text{PP}$. Since $\text{ACC} \subseteq \text{PP}$, suppose for the sake of contradiction that $\text{ACC} = \text{PP}$. Then $\text{ACC} = \text{P} = \text{PP}$. Therefore, $\text{Dtime}(n^2)^Y \subseteq \text{P}^Y \subseteq \text{P} = \text{ACC} \subseteq \text{Dtime}(n^2)^Y$. But this contradicts the time hierarchy theorem of [HS65].

Corollary 3.4 The following statements are true:

1. $\text{ACC}(\text{subexp}) \subseteq \text{Dtime}(n^2)^{\text{PERM}[1]}$ where $\text{PERM}[1]$ refers to the case when only one call is made to PERM.

2. There is a set Z in C=P such that $\text{ACC}(\text{subexp}) \subseteq \text{Ntime}(n^2)^Z$.

2Let M be a nondeterministic machine that is given input $\langle i, x, l \rangle$. Suppose $t(|x|)$ is the total number of paths of M_i on input x. The computation of M will have $2t(|x|)$ paths; the first $t(|x|)$ of those consist of $t(|x|) - l$ trivially accepting and l trivially rejecting paths, and the other $t(|x|)$ paths will simulate the computation of M_i on x. It is easy to see that $\langle i, x, l \rangle \in Y$ if $\#\text{acc}_{M_i}(x) > l$ if more than half of the paths of M are accepting.
Proof.

1. Let M_L and M be the machines from the proof of Theorem 3.2. Note that if M has access to PERM, it can compute $\#\text{acc}_{M_L}(x)$ in time n^2 with just one call to PERM because PERM gives the exact number of accepting paths.

2. As before, let M_1, M_2, \ldots be an enumeration of nondeterministic Turing machines running in linear time. Let Z be the set $\{(i, x, l) : x \in \{0, 1\}^* \text{ and } \#\text{acc}_{M_i}(x) = l\}$. It is not hard to see that Z is in $C_{\geq} P$ (much like $Y \in PP$ in Theorem 3.2). Let M_L be as above. A nondeterministic machine can compute $\#\text{acc}_{M_L}(x)$ in time n^2 using Z as an oracle. It guesses a value l for $\#\text{acc}_{M_L}(x)$ and asks the appropriate query (i, x, l) to Z.

\[\boxed{\text{Theorem 3.5 } \text{ACC} \subsetneq \text{C}_{\geq} \text{P}.}\]

Proof.

Corollary 3.4 implies that ACC \(\subseteq\) NTIME(n^2)Z for a set $Z \in \text{C}_{\geq} \text{P}$. Since ACC \(\subseteq\) C_{\geq} P, for the sake of contradiction assume that ACC = C_{\geq} P. Since co-NP \(\subseteq\) C_{\geq} P and ACC is closed under complement, hence ACC = P = NP = C_{\geq} P. Therefore, NTIME(n^3)Z \(\subseteq\) NPZ \(\subseteq\) NPACC = NPP = NP = ACC \(\subseteq\) NTIME(n^2)Z, which contradicts the hierarchy theorem of [FMS78] for nondeterministic time classes.

\[\boxed{\text{Theorem 3.6 The permanent function (PERM) does not have ACC(subexp) circuits.}}\]

Proof.

Corollary 3.4 implies that ACC(subexp) \(\subseteq\) DTIME(n^2)$^{\text{PERM}[1]}$. By the hierarchy theorem of [HS65], we know that DTIME(n^3)$^{\text{PERM}[1]} \subsetneq$ DTIME(n^3)$^{\text{PERM}[1]}$. Suppose PERM has ACC(subexp) circuits. Let $L \in$ DTIME(n^3)$^{\text{PERM}[1]}$ and let M be the oracle machine that accepts L making at most one call to PERM. Let $L' = \{\langle x, z \rangle : M$ accepts x if z is used as the answer to the query made by M to PERM on input x \}. Clearly, $L' \in$ P. Similarly, let $L'' = \{\langle x, i \rangle :$ the i^{th} bit of the query by M on input x is 1\}. Clearly,
$L'' \in P$ as well. A careful reading of Valiant's proof [Val79] reveals that the membership question for any set in P can be reduced to PERM via uniform AC^0 circuits. Therefore, by the hypothesis, P has $ACC(subexp)$ circuits. Now we can describe an $ACC(subexp)$ circuit family for L. On any input, the query made to PERM is constructed using the circuits for L'', the circuits for PERM are then used to get the answer to the query and finally we use the circuits for L' to determine whether $x \in L$. Since L', L'' and PERM all have $ACC(subexp)$ circuit families, the resulting family for L is also in $ACC(subexp)$. Therefore, using the result in Theorem 3.2, $L \in \text{Dtime}(n^2)^{\text{PERM}[1]}$ which contradicts the hierarchy theorem of [HS65] since we started with an arbitrary L in $\text{Dtime}(n^3)^{\text{PERM}[1]}$.

\textbf{Theorem 3.7} $\text{PP} \not\subseteq ACC(subsubexp)$.

\textbf{Proof.}

We claim that if $\text{PP} \subseteq ACC(subsubexp)$, then $\text{PrTime}(subsubexp) \subseteq ACC(subexp)$. To see this, note that if $L \in \text{PrTime}(t(n))$ for some $t \in subsubexp$, then $L' \in \text{PP}$, where $L' = \{x10^t|x|: x \in L\}$. Since by assumption $L' \in ACC(subsubexp)$, one can build subexponential size circuits for L because the composition of two functions in $subsubexp$ is in $subexp$. This implies that $\text{PrTime}(subsubexp) \subseteq ACC(subexp)$.

Note that using the result in Theorem 3.2 and the hierarchy theorem of [HS65], we know that there are sets in P^{PP} that are not in $ACC(subexp)$. However, if PP is contained in $ACC(subsubexp)$, then

$$p^{PP} \subseteq p^{ACC(subsubexp)} \subseteq p^{Dtime(subsubexp)} \subseteq Dtime(subsubexp) \subseteq PrTime(subsubexp) \subseteq ACC(subexp)$$

The last step follows from the claim above. Hence, $P^{PP} \subseteq ACC(subexp)$, which is a contradiction, and the theorem follows.

\textbf{Theorem 3.8} $C_P \not\subseteq ACC(subsubexp)$.
Proof.

The proof is similar to the proof of Theorem 3.7. We first claim that if $C_{=}P \subseteq \text{ACC}(\text{subexp}),$ then $C_{=}\text{Time}(\text{subexp}) \subseteq \text{ACC}(\text{subexp}).$ To see this, note that if $L \in C_{=}\text{Time}(t(n))$ for some $t \in \text{subexp},$ then $L' \in C_{=}P,$ where $L' = \{x10^{|x|} : x \in L\}.$ Since by assumption $L' \in \text{ACC}(\text{subexp}),$ one can build subexponential size circuits for $L.$ Therefore, $C_{=}\text{Time}(\text{subexp}) \subseteq \text{ACC}(\text{subexp}).$ Since $\text{ACC}(\text{subexp})$ is closed under complement, we also have that $\text{co-C}_{=}\text{Time}(\text{subexp}) \subseteq \text{ACC}(\text{subexp}).$

Using the result in Corollary 3.4 and the hierarchy theorem of [FMS78] for nondeterministic time, we know that there are sets in $\text{NP}^{C_{=}P}$ that are not in $\text{ACC}(\text{subexp}).$ If $C_{=}P \subseteq \text{ACC}(\text{subexp}),$ then

$$
\text{NP}^{C_{=}P} \subseteq \text{NP}^{\text{ACC}(\text{subexp})} \\
\subseteq \text{NP}^{\text{Dtime}(\text{subexp})} \\
\subseteq \text{Ntime}(\text{subexp}) \\
\subseteq \text{co-C}_{=}\text{Time}(\text{subexp}) \\
\subseteq \text{ACC}(\text{subexp})
$$

which is a contradiction.

3.2 Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1. The definitions, lemmas and theorems presented in this section all lead up to the proof. Since the proof of Theorem 3.1 is fairly involved, we first start with a very high level outline.

Outline: Since our goal in this section is to prove that the construction of [BT91] can be done uniformly, it is necessary to prove some preliminary results about uniform constant depth circuits. To that end, we define the notions of “clean” and “nice” circuits, which are circuits that have certain properties that we find essential in presenting our uniformity results. The proof of Theorem 3.1 consists of a number of transformations of a circuit. Without loss of generality, we start out with a “nice” circuit family. After each transformation, we will have a circuit that may not obviously satisfy the “niceness”
condition, but at least satisfies the weaker notion of being “clean”. We show that this clean circuit can then be transformed into a nice circuit of the same depth, and the process repeats. Our results concerning the “nice” circuit families are proved using a variation of the alternating Turing machine model.

The main steps in the transformation are:

- All the AND and OR gates in the circuits are replaced by constant depth probabilistic subcircuits. This step removes all the OR gates from the circuits and the only remaining AND gates have small fan-in. The circuits are probabilistic but the number of probabilistic bits used in each case is small and is in fact a simple function of the size of the circuit.

- All the MOD gates in the circuit with composite moduli are replaced with equivalent subcircuits so that the resultant circuits consist only of MOD gates with prime moduli.

- The circuits are now made deterministic by taking separate copies of those for each setting of the probabilistic bits and connecting all outputs to a MAJORITY gate.

- A general technique is used, showing how nice circuits with small fan-in AND gates can be replaced by equivalent circuits with the same depth, whose outputs are MOD gates.

- An induction is begun, where each step reduces the depth of the circuit. At the beginning of the inductive step, the circuit consists of a symmetric gate on the output level, where the inputs to the symmetric gate are “nice” ACC type circuits with MOD_p gates feeding into the symmetric gate. Then, using techniques developed by Toda [Tod91] and Yao [Yao90], we create an equivalent circuit with a new symmetric gate that “absorbs” the level of MOD_p gates; thus the new circuit has smaller depth.
3.2.1 Nice Circuits

Definition 3.1 A circuit family \(\{C_n\} \) is *well-named* if for every \(n \), the name of the output gate of \(C_n \) can be computed from \(n \) (in binary) in polynomial time (i.e., in \((\log n)^{O(1)}\) time).

Definition 3.2 A circuit family \(\{C_n\} \) is said to have the *strong connection* property if for all \(n \), for every connection \(g \to h \) in \(C_n \), where \(i \) is the number such that \(g \) is the \(i^{th} \) input to \(h \) (assuming lexicographic ordering), it is the case that \(h \) can be computed in polynomial time from \(\langle n, g, i \rangle \), and additionally, given \(\langle n, h, g \rangle \), the number \(i \) can be computed in polynomial time. Under the weaker assumption that this condition holds whenever \(h \) is an AND gate, \(\{C_n\} \) is said to have the *strong connection property for ANDs*.

Definition 3.3 A circuit family \(\{C_n\} \) is said to have *small fan-in AND gates* if for every \(n \), the fan-in of each AND gate in \(C_n \) is polylogarithmic in the size of \(C_n \).

Definition 3.4 Let \(C \) be a circuit and let \(P \) be a path in \(C \) from the output gate to an input gate (say \(t \)). Let \(G_1, G_2, \ldots, G_k \) be the sequence of the types of gates occurring on \(P \) so that \(G_1 \) is the type of the output gate of \(C \) and \(G_k \) is the type of the gate that \(t \) is connected to. Then the sequence \(\langle G_1, G_2, \ldots, G_k \rangle \) is defined as the *signature* of the path \(P \).

Definition 3.5 The *compression* of a signature \(s \) is the sequence \(s' \) that results from applying the following operation as many times as possible to \(s \): replace “AND, AND” by “AND” and replace “OR, OR” by “OR”. That is, the compression of \(s \) contains no two adjacent ANDs or ORs.

Definition 3.6 A circuit family \(\{C_n\} \) is *clean* if

- It is well-named.
- It has the strong connection property for ANDs.
- Every path from an output gate to an input gate in any circuit \(C_n \) has the same signature. (Note that only constant depth circuit families can be clean.)
Definition 3.7 A circuit family \(\{C_n\} \) of size \(s(n) \) is nice if it has the following properties:

- \(\{C_n\} \) is clean.
- For every \(n \), the fan-in of every gate \(g \) in \(C_n \) can be computed from \(g \) in time \((\log s(n))^{O(1)}\).
- For every \(n \), the depth of a gate \(g \) in \(C_n \) can be computed from \(g \) in time \((\log s(n))^{O(1)}\).
- Each circuit \(C_n \) is in tree form (excluding the inputs and negated inputs, which may fan out to many gates at level 1).
- \(\{C_n\} \) has the strong connection property.
- For all input lengths \(n \), all the MOD gates in \(C_n \) have the same fan-in.

The main result to be proved in this subsection is to show that any uniform ACC type circuit family can be transformed into an equivalent nice family. The actual result is stated later as Lemma 3.13 and its proof follows from a sequence of lemmas that are presented below. We use a version of the ATM model that allows existential, universal and MOD states as explained in Chapter 2 (see Definitions 2.7 and 2.8). Each configuration of an ATM has either zero, one, or two successor configurations (i.e., the fan-out of any node in the computation tree is at most two). We follow the convention that the ATM is always provided the length of the input (in binary) on the work tape as part of its initial configuration on a particular input. This convention has been introduced to simplify the proof. (It is worthwhile to note that the input length can be computed deterministically in logarithmic time (see [BCGR92]) but this requires multiple accesses to the input along a given computation path.) We consider ATMs that access their input only at the leaves. (That is, the only configurations that depend on the input are halting configurations. These are of two types: those that accept if and only if bit \(i \) of the input is 1, and those that accept if and only if the complement of bit \(i \) is 1 (for some \(i \) that is recorded on the address tape). The results in [Sip83] show that this convention can be introduced without loss of generality.)
It is necessary for us to define a notion of "clean" ATMs corresponding to our notion of "clean" circuit families. This is accomplished using the following definitions:

Definition 3.8 Let σ and τ be two different configurations of an ATM. If τ is reached from σ via a path that contains an alternation only in the step at which τ is reached, then τ is called a primary descendent of σ.

Definition 3.9 For a computation path of an ATM on an input, let $C_1, C_2, \ldots C_k$ be the sequence of configurations such that C_1 is the initial configuration, and C_{i+1} is a primary descendent of C_i. The profile of the path is the sequence $t_1, t_2, \ldots t_k$ such that if configuration C_i is existential (universal, MOD_m), then $t_i = \text{OR (AND, MOD}_m)$.

Definition 3.10 An ATM is clean if every path in every alternation tree of the ATM on every input has the same profile. (Note that only ATMs making $O(1)$ alternations can be clean.)

Definition 3.11 An ATM running in time $t(n)$ has well-behaved universal configurations if each universal configuration has $t(n)^{O(1)}$ primary descendents, and given a universal configuration σ and a number i, the $i\text{th}$ primary descendent of σ can be computed in time $t(n)^{O(1)}$.

Lemma 3.9 Let $L \subseteq \{0,1\}^*$, let s be a function in subexp, and let L be accepted by a uniform family $\{C_n\}$ of depth d circuits ($d = O(1)$) of type ACC($s(n)$). Then L is accepted by an ATM M that has existential (\exists), universal (\forall) and MOD states (for the same set of moduli), that runs in time $(\log s(n))^{O(1)}$ and has alternation depth $a = O(1)$. Moreover,

- If $\{C_n\}$ is clean, then the profile of M is the compression of the signature of $\{C_n\}$.
- If $\{C_n\}$ is clean and has small fan-in AND gates, then M has well-behaved universal configurations.

Proof.

Suppose L is accepted by a uniform circuit family $\{C_n\}$. Let U be the uniformity machine for $\{C_n\}$. M behaves as follows:
On input x, (with $n = |x|$ on the work tape)

(∃) guess the name of the output gate (say g) of C_n of length $\log s(n)^{O(1)}$.

Use U to verify that g is a gate in C_n. (i.e., check that U accepts $\langle n, g, g \rangle$.)

(∀) gates h of length $\log s(n)^{O(1)}$ check that U rejects $\langle n, h, g \rangle$

(so that g is indeed the output gate)

Call Eval(g).

Eval(g)

If g is an OR gate then

(∃) guess h (an input to g) of length $\log s(n)^{O(1)}$.

If U rejects $\langle n, g, h \rangle$ then reject
else call Eval(h).

If g is an AND gate then

(∀) guess h (an input to g) of length $\log s(n)^{O(1)}$.

If U rejects $\langle n, g, h \rangle$ then accept
else call Eval(h).

If g is a MOD$_m$ gate then

Switch to a MOD$_m$ configuration.

(∃) guess h (an input to g) of length $\log s(n)^{O(1)}$.

If U rejects $\langle n, g, h \rangle$ then reject
else call Eval(h).

If g is a constant gate then

Accept iff g is the constant 1 gate.

If g is an input gate then

Accept iff the corresponding input is 1.

end (Eval).

It is fairly obvious that M accepts x iff $C_{|x|}$ evaluates to 1 on input x. Note that M consults its input only at the leaves. It is clear that M makes a constant number
of alternations and runs in time $(\log s(n))^O(1)$. Indeed, the most time-consuming part of the simulation involves running the uniformity machine U. The constructibility conditions on s are also essential here.

If $\{C_n\}$ is clean, then it is well-named, and thus the name of the output gate g can be computed deterministically. Also, since all circuits in $\{C_n\}$ have the same signature, each output gate is of the same type. If the type of the output gate is MOD_m, for instance, we can avoid the extra two levels of alternation caused by the processing outside the routine Eval, by starting out in a MOD_m configuration, deterministically computing g (i.e., with existential nodes of fan-out 1), existentially guessing h, rejecting if U rejects (n, g, h), and otherwise proceeding to $\text{Eval}(h)$. The case when the output gate is an AND or OR gate is handled similarly. Thus if $\{C_n\}$ is clean, the profile of M can easily be seen to be the compression of the signature of $\{C_n\}$.

If $\{C_n\}$ has the strong connection property for ANDs and all AND gates have fan-in $(\log s(n))^c$, then instead of universally guessing an input h to an AND gate g, universally guess a number $i \leq (\log s(n))^c$ and deterministically compute the name of the gate h. If M is simulating r consecutive levels of AND gates of C_n, it is not hard to see that each universal configuration of M will have at most $(\log s(n))^rc$ primary descendents, and M thus has well-behaved universal configurations.

The other claims of the Lemma are easily seen to hold. ■

Lemma 3.9 does not guarantee the existence of a clean ATM accepting a language when the given circuit family is not already clean. This is remedied by the following lemma.

Lemma 3.10 If L is accepted by an ATM M that makes a constant number of alternations between $\text{MOD}_{m_1}, \text{MOD}_{m_2}, \ldots, \text{MOD}_{m_k}, \exists$ and \forall states and runs in time $t(n)$ then L is accepted by a clean ATM N running in $O(t(n))$ time with a constant number of alternations between $\text{MOD}_{m_1}, \text{MOD}_{m_2}, \ldots, \text{MOD}_{m_k}, \exists$ and \forall states.

Proof.

Suppose M makes at most λ alternations on any input. Then N has the sequence $\text{MOD}_{m_1}, \text{MOD}_{m_2}, \ldots, \text{MOD}_{m_k}, \exists, \forall$ (repeated λ times) hardwired into its finite control.
N simply simulates M but follows the profile in its finite control. If N is trying to simulate a move that does not involve an alternation or that involves moving into a state that has the same type as the next type in its profile, it simply proceeds with the simulation and behaves exactly as M does. In the case of a type mismatch, N behaves as follows:

- If the next state in the sequence is universal (existential), then it executes a one-ary universal (existential) branch and continues the simulation. (Note that amounts to adding a “dummy” node in the alternating tree.)

- If the next state in the sequence is a MOD$_m$ state for some m, then it executes a m-way MOD$_m$ branch. It trivially accepts along $m-1$ of these branches (following the profile) and continues the simulation on the remaining one.

It is fairly obvious that N is clean and for every x, N accepts x iff M accepts x. ■

Our main reason for introducing the ATM model is the following lemma, which enables us to construct “nice” circuits.

Lemma 3.11 Let $2^{t(n)}$ be constructible, and suppose L is accepted by a clean ATM M running in time $t(n)$. Then L is accepted by a clean ATM N with the same profile (and hence with the same alternation depth) that runs in time $t(n)^{O(1)}$ and also has the following properties:

1. Given a configuration σ on an input of length n, the number of primary descendants of σ is computable from σ in time $t(n)^{O(1)}$.

2. Given a configuration σ on an input of length n, the alternation depth of σ is computable from σ in time $t(n)^{O(1)}$.

3. Given a configuration σ and number $i \leq$ the number of primary descendents of σ, the i^{th} primary descendant of σ (under the usual lexicographic ordering) can be computed in time time $t(n)^{O(1)}$ from the encoding of σ.

4. All the MOD configurations in the computation tree have the same number of primary descendents.
5. If M has well-behaved universal configurations, then N also has this property.

Proof.

The proof is very similar to the proof of Lemma 3.9. We will need to settle on some convention of encoding paths in an alternation tree, with the property that for every path of length $i \leq t(n)$ in an alternation tree, there is exactly one string of length $2 \cdot t(n)$ that denotes that path. This can easily be accomplished by encoding sequences in $\{\text{left, right, stop}\}^*$ in the obvious way; note that there will be many strings that do not correspond to any path in the tree. Similarly, pick some encoding of configurations of M so that any configuration σ of M on inputs of length n has a unique encoding using $c \cdot t(n)$ bits (for some constant c). Again, many strings of length $c \cdot t(n)$ will not correspond to any configuration of M.

N will begin its computation on x by first computing (deterministically) $t(n)$. (Note that this can be done regardless of whether the initial configuration of N is existential, universal, or MOD$_m$.) If M has well-behaved universal configurations, then let $I(n) = b \log t(n)$ for some constant b; otherwise let $I(n) = t(n)$. (Note that the decision of which value to use for $I(n)$ can be encoded in the finite control of N.) Then N will set σ to be equal to the initial configuration of M, and run the routine Eval(σ).

Eval(σ)

If σ is an existential or MOD$_m$ non-halting configuration then

existentially guess strings w of length $2 \cdot t(n)$ and τ of length $c \cdot t(n)$.

If w encodes a path from σ to configuration τ, where
the last step in the path involves an alternation (so τ is
a primary descendent of σ)

then enter a configuration of the same type as τ and call Eval(τ)

else call Trivial(reject)

If σ is a universal non-halting configuration then there are two cases:

(1) The machine M has well-behaved universal configurations.

Universally guess $i \leq b \log t(n)$. Let τ be the i^{th}
primary descendent of σ. Call $\text{Eval}(\tau)$. (If there
is no such τ, then call $\text{Trivial}(\text{accept})$.)

(2) Otherwise.

Universally guess strings w of length $2 \cdot t(n)$ and τ of length $c \cdot t(n)$.

If w encodes a path from σ to configuration τ,
where the last step in the path involves an alternation (so
τ is a primary descendent of σ)
then enter a configuration of the same type as τ
and call $\text{Eval}(\tau)$
else call $\text{Trivial}(\text{accept})$

If σ is a halting configuration, then

Accept iff σ is accepting. (Note that this may involve accessing
the input, if σ depends on input bit i for some i.)

end (Eval).

The routine $\text{Trivial}(d)$ (for $d \in \{\text{accept, reject}\}$) used in the routine Eval is a simple
routine that depends on the number of alternations executed thus far by N in its
simulation of M. If the next step in the profile calls for computation of type $\exists (\forall)$,
then N executes a $2^{(c+2)t(n)}$-way existential (universal) branch, all of which in turn call
$\text{Trivial}(d)$. If the next step in the profile calls for computation of type MOD$_m$, and $d =
\text{accept}$ (respectively, $d = \text{reject}$), then N enters a MOD$_m$ state, executes a $2^{(c+2)t(n)}$-way
existential branch all of which call $\text{Trivial}(\text{reject})$ (respectively, the first of which calls
$\text{Trivial}(\text{accept})$) and the rest of which call $\text{Trivial}(\text{reject})$).

Machine N uses its worktape to record the path in the alternation tree leading to
the current configuration. Thus no configuration of N will label two distinct nodes in
the alternation tree.

Let us now verify the various properties claimed in the statement of the lemma.

Given σ a configuration of N, one can trace through the path in the alternation
tree leading to σ (since this information is recorded in σ). This allows one to compute
the alternation depth of σ, as well as to find the configuration τ reached after the last
alternation on this path, and compute the number j of moves with fan-out 2 that have
occurred along this path between τ and σ. If σ is an \exists or MOD configuration, the
number of primary descendants of σ is $2^{(c+2)t(n)-j}$. If σ is a \forall configuration, then this
number is $2^{(c+2)t(n)-j}$. In the particular case that σ is a MOD configuration, note that
$j = 0$; thus all the MOD configurations have the same number of primary descendants.
Furthermore, if σ' is the i^{th} primary descendent of σ, then the number i is encoded in
$(c + 2)t(n) - j$ consecutive positions in the bit string encoding the path leading to σ',
thus enabling us to compute σ' given $\langle n, \sigma, i \rangle$. The other claims of the lemma are easy
to verify.

Lemma 3.12 Let L be accepted by an ATM M satisfying the conditions of Lemma
3.11, running in time $t(n)$. Then there is a nice ACC($2^{O(t(n))}$) circuit family \{${C_n}$\}
accepting L, such that the signature of \{${C_n}$\} is the same as the profile of M. Furthermore, if M has well-behaved universal configurations, then \{${C_n}$\} has small fan-in AND
gates.

Proof.
The proof of this lemma is by a standard simulation of the sort introduced by [Ruz81].
The output gate of C_n will be labeled by the initial configuration of N on an input of
length n (i.e., with n recorded on the worktape, as per the conventions of our ATM
model). The inputs to any gate labeled with configuration σ will be all of the primary
descendants of σ. Universal configurations are represented by AND gates, existential
configurations by OR gates, and MOD$_m$ configurations by MOD$_m$ gates. Halting con-
figurations are either constant 1 or 0 gates (if they do not depend on the input) or are
input gates connected to (negated) input i (if they access input bit i).

It is easily verified that \{${C_n}$\} satisfies the requirements of the lemma.

Lemma 3.13 Suppose \{${C_n}$\} is an ACC(subexp) circuit family. Then there exists an
equivalent nice family \{${D_n}$\} of subexponential size. Furthermore,

- If \{${C_n}$\} is clean, then the signature of \{${D_n}$\} is the compression of the signature
 of \{${C_n}$\}.

• If \(\{C_n\} \) is clean and has small fan-in AND gates, then \(\{D_n\} \) has small fan-in AND gates.

Proof.
This follows immediately from Lemmas 3.9, 3.10, 3.11 and 3.12.

3.2.2 Transformations on Circuits

In this section we present the results that enable us to make transformations on uniform circuit families. A transformation on a circuit usually involves replacing every instance of a particular kind of gate by an equivalent subcircuit.

Definition 3.12 Suppose \(G \) is a particular type of gate. Let \(\{G_r\} \) denote a family of gates such that the gate \(G_r \) is of type \(G \) and takes \(r \) inputs. Let \(\{E_r\} \) be a family of subcircuits so that for every \(r \), \(E_r \) takes \(r \) inputs and has a single output. We will assume an ordering on the inputs of \(G_r \) and \(E_r \) and let \(x_1, x_2, \ldots, x_r \) denote the inputs to \(G_r \) and \(y_1, y_2, \ldots, y_r \) denote the inputs to \(E_r \). We say that \(E_r \) replaces \(G_r \) in a circuit \(C \) if we remove \(G_r \) from \(C \) and put \(E_r \) in its place in such a way that the output gate of \(E_r \) is connected to exactly the gates that \(G_r \) is connected to in \(C \), and the inputs to \(G_r \) now become inputs to \(E_r \) so that for all \(i, 1 \leq i \leq r, x_i = y_i \). In general, when we talk about replacing a gate type \(G \) in a circuit, we will mean that all occurrences of \(G \) in the circuit are replaced simultaneously.

Lemma 3.14 Suppose \(\{C_n\} \) and \(\{E_r\} \) are nice circuit families. Let \(G \) denote a particular type of gate used in the circuits of \(\{C_n\} \). For every \(n \), let \(\{D_n\} \) denote the circuit family obtained by replacing all occurrences of \(G \) (of the form \(G_r \) for various \(r \)) by a subcircuit \(E_r \). Then the circuit family \(\{D_n\} \) is clean.

Proof.
It is clear that \(\{D_n\} \) is well-named and that every path from output to input has the same signature. Thus we need only show that \(\{D_n\} \) is uniform and has the strong connection property.
Consider the transformation from C_n to D_n for a particular value of n. Let g (with
fan-in r) be an instance of G in C_n and let E_r be the subcircuit that replaces g. Suppose
E_r consists of the gates h_0, h_1, \ldots, h_s where h_0 is the output gate of E_r. The names
of these gates in the new circuit D_n will be $g\# h_i$, for $0 \leq i \leq s$. Let L_0 be the direct
connection language for $\{C_n\}$, L_1 for $\{E_r\}$ and L for $\{D_n\}$. Similarly, let f_0, f_1, and f
be the functions that, given $\langle n, g, h \rangle$, compute the number i such that h is the i^{th} input
to g in C_n, E_r, and D_n, respectively, and let f'_0, f'_1, and f' be the related functions
that compute h given $\langle n, g, i \rangle$. To accept L, and to compute f, one has to consider the
following cases:

1. Strings of the form $\langle n, g, h \rangle$ where neither g nor h are of type G. In this case
$\langle n, g, h \rangle \in L \iff \langle n, g, h \rangle \in L_0$. Also, $f(n, g, h) = f_0(n, g, h)$.

2. Strings of the form $\langle n, g\# h, g\# h \rangle$. This is done as follows:
 - Check that $\langle n, g, g \rangle \in L_0$ and that g has type G.
 - Compute the fan-in r of g from the description of g.
 - Check that $\langle r, h, h \rangle \in L_1$.

3. Strings of the form $\langle n, g\# h, g\# h' \rangle$ with $h \neq h'$. This is done as follows:
 - Check that $\langle n, g, g \rangle \in L_0$ and that g has type G.
 - Compute the fan-in r of g from the description of g.
 - Check that $\langle r, h, h' \rangle \in L_1$.
 - Note that $f(n, g\# h, g\# h') = f_1(n, g\# h, g\# h')$.

4. Strings of the form $\langle n, g', g\# h_0 \rangle$ where G is not the type of g'. This is done as
follows:
 - Check that $\langle n, g', g' \rangle$ and $\langle n, g, g \rangle \in L_0$, and that g has type G.
 - Compute the fan-in r of g from the description of g.
 - Check that $\langle r, h_0, h_0 \rangle \in L_1$ (h_0 is the output gate of E_r).
 - Check that $\langle n, g', g \rangle \in L_0$.

• Note that \(f(n, g', g\#h_0) = f_0(n, g', g) \).

5. Strings of the form \(\langle n, g\#h, g' \rangle \), where \(G \) is not the type of \(g' \). This is done as follows:

• Check that \(\langle n, g, g \rangle \) and \(\langle n, g', g' \rangle \) are in \(L_0 \), where \(g \) has type \(G \).
• Check that \(\langle n, g, g' \rangle \in L_0 \).
• Compute the fan-in \(r \) of \(g \) from its description.
• Check that \(\langle r, h, h \rangle \in L_1 \).
• Compute the number \(j \) such that \(g' \) is the \(j^{th} \) input to \(g \) (using the strong connection property).
• Let \(x_1, x_2, \ldots, x_r \) denote the inputs to \(E_r \). Check that \(\langle r, h, x_j \rangle \in L_1 \).
• Note that \(f(n, g\#h, g') = j \).

6. Strings of the form \(\langle n, g'\#h, g\#h_0 \rangle \) where both \(g \) and \(g' \) are of type \(G \).

• Check that \(\langle n, g, g \rangle \) and \(\langle n, g', g' \rangle \) are in \(L_0 \).
• Compute the fan-in \(r \) of \(g \) and check that \(h_0 \) is the output gate of \(E_r \).
• Compute the fan-in \(r' \) of \(g' \) and check that \(\langle r', h, h \rangle \in L_1 \).
• As in the previous case, check that \(g \) is the \(j^{th} \) input to \(g' \) and that \(h \) is connected to input \(j \) of \(E_{r'} \).

It is not hard to see that all the above cases can be checked within the required time bounds and hence the new circuit family \(\{D_n\} \) is uniform as well.

A similar analysis shows that \(f' \) can also be computed in time polynomial in the length of its input, and thus \(\{D_n\} \) has the strong connection property.

\[\text{Lemma 3.15} \quad \text{Suppose} \ L \ \text{is accepted by an ACC(subexp) family} \ \{C_n\}. \ \text{Then} \ L \ \text{is accepted by a nice probabilistic ACC(subexp) circuit family} \ \{D_n\}^2 \ \text{such that} \]

\[^2\text{Note that the circuits in} \ \{D_n\} \ \text{are probabilistic and hence also have probabilistic inputs, but when we say} \ D_n \ \text{we mean the circuit that has} \ n \ \text{nonprobabilistic inputs. We follow this convention because the proof shows how to convert} \ C_n \ \text{into} \ D_n \ \text{for every} \ n. \]
• \(\{D_n\} \) has no MOD\(_m\) gates for composite modulus \(m \).

• \(\{D_n\} \) has small fan-in AND gates.

• For every \(n \), the number of probabilistic inputs in \(D_n \) is polylogarithmic in the size of \(D_n \).

Proof.

By Lemma 3.13, we may assume that \(\{C_n\} \) is nice.

Let \(n \) be fixed. The transformation \(C_n \rightarrow D_n \) is carried out by performing the following sequence of steps:

• By a construction in the proof of Lemma 13 in [AH90], one can replace the AND and OR gates in the circuit by nice depth 6 probabilistic circuits with MOD\(_2\) gates and small fan-in AND gates. (This construction is based on an idea of Valiant and Vazirani in [VV86]; similar constructions may be found in work by Toda [Tod91] and Kannan, Venkateswaran, Vinay and Yao [KVYY92].) The size of the new circuit is only polynomially more than that of the old one. If the AND or OR gate being replaced has \(r \) inputs, then the probabilistic circuit that replaces it uses \(O((\log r)^3) \) random bits. The probabilistic circuits have the property that the probability of error for the whole circuit is less than \(\frac{1}{4} \) after all the AND and OR gates have been replaced by these probabilistic circuits, even when the same \(O((\log s(n))^3) \) probabilistic bits are fed into the probabilistic inputs of each of these subcircuits. (Even though Allender and Hertrampf discuss space uniformity, it is clear from their proof that the probabilistic circuits are uniform even in our sense of uniformity.) We can now apply Lemma 3.14 to prove that the new circuit family (now probabilistic) is clean, and thus by Lemma 3.13 there is an equivalent nice circuit family \(\{C'_n\} \). Note that \(\{C'_n\} \) has small fan-in AND gates and has no OR gates.

• Suppose the circuit \(C'_n \) contains a MOD\(_m\) gate (call it \(G \)) where \(m \) is composite. Let

\[
m = \prod_{i=1}^{t} a_i^{c_i}
\]
where \(a_i < a_{i+1} \) for all \(i \) such that \(1 \leq i \leq t - 1 \) and for all \(i \), \(1 \leq i \leq t \), \(a_i \) is prime and \(e_i > 0 \). We use the elementary fact that \(x \equiv 0 \pmod{m} \iff x \equiv 0 \pmod{a_i^{e_i}} \) for all \(i \), \(1 \leq i \leq t \) to change \(G \) into an AND of \(\text{MOD}_{a_i^{e_i}} \)'s.

Suppose \(G \) has \(r \) inputs. For each \(m \), the subcircuit family \(\{E_r\} \) that replaces the \(\text{MOD}_m \) gates is easily seen to be nice. The subcircuit \(E_r \) has depth two, with an AND gate at the top level and \(\text{MOD}_{a_i^{e_i}} \) gates at the bottom level for all \(i \), \(1 \leq i \leq t \). The top level AND gate has fan-in \(t \) and is connected to each of the \(\text{MOD} \) gates at the second level. All the \(\text{MOD} \) gates at the second level have fan-in \(r \) and are all connected to each of the inputs of the gate \(G \). We can now use the result of Lemma 3.14 to conclude that the new circuit family is clean. Moreover, the family contains \(\text{MOD} \) gates with only prime power moduli. The subcircuit \(E_r \), other than its input gates, contains only a constant number of gates that depends on \(m \). Since the original circuit family \(\{C_n\} \) only has \(\text{MOD} \) gates for a fixed set of moduli, the size of the circuit after this step goes up by at most a constant factor. We again use Lemma 3.13 to get a nice family of probabilistic circuits \(\{C^2_n\} \) that has no composite \(\text{MOD} \) gates, no OR gates, and small fan-in AND gates.

- This step eliminates all the \(\text{MOD} \) gates that have moduli of the form \(p^e \) where \(p \) is prime and \(e > 1 \) from \(C^2_n \) and replaces them with subcircuits consisting of AND and \(\text{MOD}_p \) gates. Suppose \(C^2_n \) contains a \(\text{MOD}_{p^e} \) gate \(G \) for some prime \(p \) and \(e > 1 \). This step uses the following result (for references, see e.g. [BT91]):

\(x \) is congruent to 0 (mod \(p^e \)) if and only if each of \(x, \binom{x}{p}, \binom{x}{p^2}, \ldots, \binom{x}{p^{e-1}} \) are congruent to 0 (mod \(p \)). If \(x = \sum_{i=1}^{r} x_i \), then for \(1 \leq j \leq e - 1 \):

\[
\binom{x}{p^j} = \frac{(x_1+x_2+\cdots+x_r)}{p^j} = \sum_{S \subseteq \{1,2,\ldots,r\}, |S|=p^j} \prod_{k \in S} x_k
\]

The subcircuit that replaces \(G \) is a three level subcircuit that is described as follows:

- The top level consists of an AND gate that has fan-in \(e \).
- The middle level consists of $e \text{ MOD}_p$ gates and each of those is connected to the top level AND gate. For all $j, 0 \leq j \leq e - 1$, the $j^{th} \text{ MOD}_p$ gate outputs 1 if and only if $\binom{r}{p_j} \equiv 0 \pmod{p}$. If G has fan-in r, then the $j^{th} \text{ MOD}_p$ gate at this level has fan-in $\binom{r}{p_j}$, one corresponding to each subset of the inputs of size p^j.

- The bottom level consists of $\sum_{j=1}^{e-1} \binom{r}{p_j}$ AND gates divided into $e - 1$ groups. For all $j, 1 \leq j \leq e - 1$, the j^{th} group consists of $\binom{r}{p_j}$ AND gates, one corresponding to each subset of the inputs of size p^j. The inputs to a particular gate in the j^{th} group are the p^j inputs in the subset to which it corresponds and it fans out to the $j^{th} \text{ MOD}_p$ gate at the middle level. Note that all the AND gates introduced here have constant fan-in.

It is not hard to see that the subcircuit family described above is nice for every prime power p^e. (The only point that is not completely obvious is checking that the strong connection property holds, but this is straightforward to verify.) Using Lemma 3.14 we can now replace every MOD gate with a prime power modulus with a subcircuit that consists only of MOD gates with prime moduli and we now get a clean circuit family that only has AND gates and MOD gates with prime moduli. The size of the subcircuit that replaces a MOD_{p^e} gate is $O(\sum_{j=1}^{e-1} \binom{r}{p_j})$ which is a polynomial in the size of the circuit C^2_n, and thus the new circuit family also has subexponential size. The proof is completed by appeal to Lemma 3.13.

3.2.3 Circuits with Symmetric Gates

In order to prove Theorem 3.1 we need to show how to convert an $\text{ ACC}(\text{ subexp})$ circuit family into a uniform deterministic depth two circuit family that has a symmetric gate at the root and AND gates of small fan-in at the bottom level. So far we have only dealt with ACC type circuits. To proceed, we need to deal with circuits that have arbitrary symmetric gates (but only at the root). However, since most of the results proved so far only deal with uniform ACC type circuits, we need to expand the notion of uniformity
a little so that the results can also be used with circuits that have arbitrary symmetric
gates at the root. The idea here is to treat the symmetric gate in a special way. We
think of the \(n \)th circuit as one with a symmetric gate at the root, that takes as inputs
the outputs of \(f(n) \) different ACC type circuits, where \(f(n) \) is an easily computable
function of \(n \). We require that each of these ACC type circuits be uniform according to
the notion of uniformity that we have used so far. In other words, for every \(n \), we now
define a uniform sequence of ACC type circuits. The sequence consists of \(f(n) \) circuits
that are indexed by a variable \(t \). In addition, we require that the symmetric function
at the top gate be easily computable. The circuit family consists of a sequence and a
symmetric function for every \(n \). The new notion of uniformity is formally explained in
the following definition:

Definition 3.13 Let \(f : \mathbb{N} \to \mathbb{N} \) be a function. Then \(\{C_{n,t} : n \in \mathbb{N}, 1 \leq t \leq f(n)\} \)
is a uniform family of ACC sequences if there is a constant \(d \) and a finite set \(S \) such
that for all \(n \) and for all \(t \), \(C_{n,t} \) is a circuit of depth \(d \) taking inputs from the set
\(\{x_1, x_2, \ldots, x_n\} \) and having AND, OR, and MOD\(_m\) gates (for \(m \in S \)) and the direct
connection language defined as

\[
\{(n, t, g_1, g_2) : g_1 = g_2 \text{ and } g_1 \text{ is a gate in } C_{n,t} \text{ or } g_1 \neq g_2 \text{ and } g_2 \text{ is an input to } g_1 \text{ in } C_{n,t}\}
\]

can be recognized in polynomial time. A uniform family of ACC sequences \(\{C_{n,t} : n \in \mathbb{N}, 1 \leq t \leq f(n)\} \)
together with a function \(\text{SYM} : \mathbb{N} \times \mathbb{N} \to \{0, 1\} \), defines a uniform
SYMACC circuit family \(\{D_n\} \) such that for every \(n \),

- \(D_n \) is a circuit with a symmetric gate at the output level that computes \(\text{SYM}(n, i) \)
 where \(i \) is the number of its inputs that evaluate to 1.

- The symmetric gate has fan-in \(f(n) \) and the output gates of \(C_{n,t}, 1 \leq t \leq f(n) \),
 are connected to it.

- Given \(n \) and \(i \), \(f(n) \) and \(\text{SYM}(n, i) \) can be computed in time polylogarithmic in
 the size of \(D_n \).
Note that the results proved so far also hold with this new notion of uniformity. In particular, letting $f(n) = 1$ for all n and letting SYM be the identity function reduces this to the old notion of uniformity. Also, we will use the fact that Lemma 3.13 also holds in this new setting. That is, given a uniform clean family of ACC sequences, there is an equivalent nice family of ACC sequences with the same profile and of approximately the same size. (In proving the analog of Lemma 3.13 in this new setting, the index t of circuit $C_{n,t}$ would be provided to the ATM as an additional parameter on the worktape, along with n.)

Lemma 3.16 Let L be accepted by an ACC($subexp$) circuit family $\{C_n\}$. Then there is a constructible subexponential function s and there is a constant c such that L is accepted by a deterministic circuit family $\{D_n\}$ where for every n, D_n has a MAJORITY gate at the root, connected to the output gates of $C_{n,t}$, $1 \leq t \leq 2^{(\log s(n))^c}$ where $\{C_{n,t} : n \in \mathbb{N}, 1 \leq t \leq 2^{(\log s(n))^c}\}$ is a uniform family of ACC sequences with small fan-in AND gates, no OR gates, and no MOD_m gates for composite m.

Proof.

By Lemma 3.15, if L is accepted by an ACC($subexp$) circuit family, then L is accepted by a nice ACC($subexp$) family of probabilistic circuits with small fan-in AND gates, no OR gates, and no MOD_m gates for composite m, using at most $(\log s(n))^c$ probabilistic bits (for some constant c), where $s(n)$ bounds the size of C_n.

Now construct the sequence of circuits $\{C_{n,t}\}$ where t is a bit string of length $(\log s(n))^c$. The gates in $\{C_{n,t}\}$ will have names of the form (t, g) where g is a gate in C_n, and the connections among all gates are the same, except that if gate g in C_n is connected to probabilistic bit number j, then gate (t, g) will be connected to the j^{th} bit of t. (i.e., the new circuit sequence consists of identical copies of C_n, with particular choices of probabilistic bits hardwired in.)

Let D_n consist of a MAJORITY gate with inputs from the various $C_{n,t}$. It is clear that the new circuit accepts the same language as $\{C_n\}$. The size of D_n is $O(s(n)2^{(\log s(n))^c})$ which is subexponential. It is immediate that the other required properties also hold.
The following lemma shows how one can in effect "push" an AND gate below a level of MOD gates (much as multiplication distributes over addition).

Lemma 3.17 Let \(\{C_{n,t}\} \) be a nice family of ACC sequences of subexponential size, having small fan-in AND gates, no OR gates, and no \(\text{MOD}_m \) gates where \(m \) is composite, where the output gate of each circuit is an AND gate, and the inputs to that AND gate are \(\text{MOD}_p \) gates. Then there is an equivalent nice sequence \(\{D_{n,t}\} \) with the same depth, also of subexponential size with small fan-in AND gates, no OR gates, and no \(\text{MOD}_m \) gates where \(m \) is composite, where the output gate of each circuit is a \(\text{MOD}_p \) gate, and the inputs to that \(\text{MOD}_p \) gate are AND gates.

Proof.

Our proof again follows the outline given in [BT91], where we must be careful to see that the transformation can be done uniformly.

Suppose \(G \) is an AND gate (the output gate of some \(C_{n,t} \) that has \(r \) \(\text{MOD}_p \) gates \(G_1, G_2, \ldots, G_r \) as inputs). Note that \(r \) is polylogarithmic in \(s(n) \), where \(s(n) \) bounds the size of \(C_{n,t} \). Let the fan-in of \(G_i \) be \(n_i \) for all \(i, 1 \leq i \leq r \) and let \(\{x_{ij}\}, 1 \leq j \leq n_i \) denote the set of inputs to \(G_i \). Finally, let \(x_i = \sum_{1 \leq j \leq n_i} x_{ij} \). Consider the AND of \(G_1, G_2, \ldots, G_r \). By Fermat's Little Theorem, for \(1 \leq i \leq r \),

\[
1 - x_i^{p-1} = \begin{cases}
0 \pmod{p} & \text{if } x_i \not\equiv 0 \pmod{p} \\
1 \pmod{p} & \text{otherwise}
\end{cases}
\]

Therefore,

\[
\bigwedge_{i=1}^{r} [x_i \equiv 0 \pmod{p}] \iff 1 - \prod_{i=1}^{r} (1 - x_i^{p-1}) \equiv 0 \pmod{p}
\]

Note that \(1 - \prod_{i=1}^{r} (1 - x_i^{p-1}) \) is a polynomial of degree \(r(p-1) \) in the variables \(x_{ij}, 1 \leq i \leq r, 1 \leq j \leq n_i \). Let \([r] \) denote the set \(\{1, 2, \ldots, r\} \).

\[
1 - \prod_{i=1}^{r} (1 - x_i^{p-1}) = 1 - \left(\prod_{i=1}^{r} (1 - \left(\sum_{j=1}^{n_i} x_{ij} \right)^{p-1}) \right)
\]

\[
= \sum_{k=1}^{r} \sum_{I \subseteq [r], |I|=k} (-1)^{k-1} \prod_{i \in I} \left(\sum_{j=1}^{n_i} x_{ij} \right)^{p-1}
\]
\[
= \sum_{k=1}^{r} (-1)^{k-1} \sum_{I \subseteq [r], |I| = k} \prod_{i \in I} (\sum_{j=1}^{n_i} x_{ij})^{p-1}
\]

\[
= \sum_{k=1}^{r} (-1)^{k-1} \sum_{I \subseteq [r], |I| = k} \prod_{i \in I} \sum_{J = \{j_{i1}, j_{i2}, \ldots, j_{ip-1}\} \in [n_i]^{p-1}} \prod_{l=1}^{p-1} x_{ij_{il}l}
\]

\[
= \sum_{k=1}^{r} (-1)^{k-1} \sum_{I \subseteq [r], |I| = k} \prod_{i \in I} \sum_{j_{i1}, j_{i2}, \ldots, j_{l_k} \in I} \prod_{l=1}^{p-1} x_{ij_{i1}l} \quad (*)
\]

This expression can be realized by a \(\text{MOD}_p \) gate (call it \(g \)) with AND gates of fan-in at most \(r(p-1) \) as inputs. Since \(r = (\log s(n))^{O(1)} \), the fan-in of these AND gates is also polylogarithmic in \(s(n) \). The only thing we need to take care of are the negative coefficients in the above expression. That is done by multiplying\(^4\) the negative coefficients by \((1-p)\). The expression is changed slightly and the term \((-1)^{k-1}\) is replaced by \(c_k \) where \(c_k = 1 \) if \(k \) is even and \(c_k = p-1 \) if \(k \) is odd. Now we interpret scalar multiplication as repeated addition and the multiplication of variables is realized by AND gates.

The expression \((*)\) that we have derived above is in the most general form. For our situation, we can simplify things by noticing that all the \(\text{MOD}_p \) gates \(G_1, G_2, \ldots, G_r \) have the same fan-in since the sequence \(\{C_{n,t}\} \) is nice. If we let this fan-in be denoted by \(n_0 \), then it is not hard to see that the number of AND gates that are input to the new \(\text{MOD}_p \) gate \(g \) is \(\sum_{k=1}^{r} c_k \binom{r}{k} (n_0^{p-1})^k \). Note that since \(r \) is polylogarithmic in \(s(n) \), this expression (i.e., the fan-in of the new MOD gate) can be computed in time \((\log s(n))^{O(1)}\) from \(\langle G, G_1, \ldots, G_r \rangle \).

To show that this step can be done uniformly, we must show how the new gates created in this step should be named so that the direct connection language of the new circuit family can be recognized within the required time bound. The name of the new \(\text{MOD}_p \) gate is \(g = \langle G \# \langle G_1, G_2, \ldots, G_r \rangle, \text{MOD}_p \rangle \). Looking at the expression \((*)\), it is clear that a typical AND gate has \(k(p-1) \) inputs where \(1 \leq k \leq r \). The \(k(p-1) \) inputs can be divided up into \(k \) groups of size \((p-1) \) each. Every group represents a distinct gate in the set \(\{G_1, G_2, \ldots, G_r\} \). The \((p-1) \) inputs in a particular group (representing say \(G_i \)) are simply some of the input gates to \(G_i \) (with repetitions allowed) in \(C_{n,t} \). Depending on the value of \(c_k \), such an AND gate either appears once or \((p-1) \) times.

\(^4\)Note that this does not change the value of the expression mod \(p \).
The name of such an AND gate is \(\langle G\# \langle H_1\# L_1 \rangle, \langle H_2\# L_2 \rangle, \ldots, \langle H_k\# L_k \rangle \rangle \# m, \text{AND} \) where \(H_1, H_2, \ldots, H_k \) are distinct gates from the set \(\{G_1, G_2, \ldots, G_r\} \) and each \(L_i \), \(1 \leq i \leq k \) is a list of \((p - 1)\) of the gates that are input to \(H_i \) in the original circuit. Note that \(L_i \) is allowed to have repetitions. The number \(m \) is either 0 (indicating only one copy of the gate; this will be the case if \(k \) is even) or between 1 and \((p - 1)\) and is used for indexing the \((p - 1)\) different copies.

We now show how to recognize the direct connection language for the new circuit family that we get after applying this transformation. Let \(L_0 \) be the direct connection language before the step and \(L \) the one after the step. Note that the strings in \(L \) conform to the naming scheme discussed above. The following cases must be considered:

1. Let \(g \) be a new\(^5\) gate. To check if \(\langle n, t, g, g \rangle \in L \), we have the following two subcases:

 (a) \(g \) is a \(\text{MOD}_p \) gate of the form \(\langle G\# \langle G_1, G_2, \ldots, G_r \rangle, \text{MOD}_p \rangle \). We do the following:
 - check that \(G \) is the output gate of \(C_{n,t} \). (This can be done because the circuits are well-named.)
 - check that \(\langle n, t, G, G_i \rangle \in L_0 \) for all \(i, 1 \leq i \leq r \), where \(r \) is the fan-in of \(G \). (Recall that \(r \) can be computed from \(G \), by one of the niceness properties.)

 (b) \(g \) is an AND gate; \(g = \langle G\# \langle H_1\# L_1 \rangle, \langle H_2\# L_2 \rangle, \ldots, \langle H_k\# L_k \rangle \rangle \# m, \text{AND} \).

 We do the following:
 - check that \(G \) is the output gate of \(C_{n,t} \).
 - verify that \(H_1, H_2, \ldots, H_k \) are all distinct.
 - check that for all \(i, 1 \leq i \leq k \), \(\langle n, t, G, H_i \rangle \in L_0 \).
 - check that \(m \) has the right value based on the parity of \(k \).
 - For all \(i, 1 \leq i \leq k \), verify that \(L_i \) is indeed a list of \((p - 1)\) gates that are all input to \(H_i \).

\(^5\)The word “new” will hereafter be used to refer to gates that were created in the current step.
2. Let \(g_1 \) be an old gate and \(g_2 \) a new gate. Then \(\langle n, t, g_1, g_2 \rangle \notin L \).

3. Let \(g_1 \) be a new gate and \(g_2 \) an old gate. The only way for \(\langle n, t, g_1, g_2 \rangle \in L \) to hold is that \(g_1 \) is a new AND gate created in this step.

Hence \(g_1 \) has the form \(\langle G \# \langle H_1 \# L_1 \rangle, \langle H_2 \# L_2 \rangle, \ldots, \langle H_k \# L_k \rangle \rangle \# m, \text{AND} \). We do the following to check if \(\langle n, t, g_1, g_2 \rangle \in L \):

- check that \(\langle n, t, g_1, g_1 \rangle \in L \).
- check that \(\langle n, t, g_2, g_2 \rangle \in L_0 \).
- verify that \(\exists i, 1 \leq i \leq k \), such that \(g_2 \) belongs to the list of gates \(L_i \).

4. Let \(g_1 \) and \(g_2 \) both be new gates. For \(g_2 \) to be an input to \(g_1 \), \(g_1 \) must be a new \(\text{MOD}_p \) gate and \(g_2 \) a new AND gate. Let \(g_1 = \langle G \# \langle G_1, G_2, \ldots, G_r \rangle, \text{MOD}_p \rangle \) and \(g_2 = \langle G \# \langle H_1 \# L_1 \rangle, \langle H_2 \# L_2 \rangle, \ldots, \langle H_k \# L_k \rangle \rangle \# m, \text{AND} \) where \(\{ H_1, \ldots, H_k \} \subseteq \{ G_1, \ldots, G_r \} \). This is obviously easy to check.

The only remaining property that needs to be checked is the strong connection property for ANDs. However this is immediate using the naming system that we use, since the name of each new AND gate explicitly lists the names of each of its inputs.

Let us now consider the size of the new circuit after a single level of AND gates has been pushed below a level of MOD gates. The increase in size comes mainly because of all the new AND gates that get created. For a circuit of size \(s \), the number of new AND gates created to change an AND of \(r \) \(\text{MOD}_p \) gates is \(\leq \sum_{k=1}^{r} c_k \binom{r}{k} s^{(p-1)k} \leq (p-1)^2 r s^{(p-1)r} \). Therefore, the overall size of the new circuit is at most \(O(2^r s^{(p-1)r+1}) \).

Since \(s \) is subexponential and \(r \) is polylogarithmic in \(s \), the size of the new circuits is still subexponential.

Note that this step does not preserve the tree structure of the circuit so we use Lemma 3.13 to produce an equivalent nice circuit sequence.

\[\square \]

Lemma 3.18 Let \(L \) be accepted by a uniform nice SYMACC circuit family \(\{ C_n \} \) of subexponential size, with small fan-in AND gates, no OR gates, and no \(\text{MOD}_m \) gates
for composite \(m \), such that each path from the output gate to an input passes through
\(k \geq 1 \) MOD gates. Then there is an equivalent SYMACC circuit family \(\{ D_n \} \) satisfying
the same conditions, such that each path from the output gate to an input gate passes
through \(k - 1 \) MOD gates.

Proof.

Our proof follows the outline in [BT91], using techniques developed in [Yao90, Tod91].

Let \(L \) and \(\{ C_n \} \) be as in the statement of the lemma, where the output gate of \(C_n \)
computes the function \(A(n, \eta) \), where \(\eta \) is the number of elements of \(\{ C_{n,i} : 1 \leq i \leq f(n) \} \) that evaluate to 1. By Lemma 3.17, we may assume without loss of generality
that the output of each circuit \(C_{n,i} \) is a MOD\(p \) gate. Since \(\{ C_n \} \) is nice, for each \(n \) there
is some \(n_0 \) so that each MOD\(p \) gate in \(C_{n,t} \) has fan-in \(n_0 \) (where \(n_0 \) can be computed
in \((\log s(n))^{O(1)} \) time from \(n \)). For each \(i \leq f(n) \), let the inputs to the \(i \)th of these
MOD\(p \) gates be denoted by \(x_{i,j} \), \(1 \leq j \leq n_0 \). Then the value of \(\{ C_n \} \) can be expressed
as \(A(n, \sum_{1 \leq i \leq f(n)} \text{MOD}_p(x_{i,1}, x_{i,2}, \ldots, x_{i,n_0})) \).

Let \(k(n) = 1 + \lfloor \log_p f(n) \rfloor \) so that \(p^{k(n)} > f(n) \). Note that \(k(n) \) is computable in
time \((\log s(n))^{O(1)} \). For the rest of this discussion, fix \(n \), and let \(k \) denote \(k(n) \).

It is shown in [BT91] that the polynomial \(P_k \) defined by
\[
P_k(y) = (-1)^{k+1}(y - 1)^k \left(\sum_{j=0}^{k-1} (k+j-1)y^j \right) + 1
\]
satisfies the property that for every \(m \geq 1 \) and \(y \geq 0 \),
\[
y \equiv 0 \pmod{m} \Rightarrow P_k(y) \equiv 0 \pmod{m^k}
\]
and
\[
y \equiv 1 \pmod{m} \Rightarrow P_k(y) \equiv 1 \pmod{m^k}
\]

Let \(Q_k(y) = 1 - P_k(y^{p^{k-1}}) \). Then
\[
Q_k(y) \equiv \begin{cases}
1 \pmod{p^k} & \text{if } y \equiv 0 \pmod{p} \\
0 \pmod{p^k} & \text{otherwise.}
\end{cases}
\]

If \(y = \sum_{i=1}^r y_i \) then
\[
Q_k \left(\sum_{i=1}^r y_i \right) \equiv \text{MOD}_p(y_1, y_2, \ldots, y_r) \pmod{p^k}
\]
Thus, recalling that the value of C_n is $A(n, \sum_{1 \leq i \leq f(n)} \text{MOD}_p(x_{i,1}, x_{i,2}, \ldots, x_{i,n_0}))$, we see that this can also be expressed as

$$A(n, \sum_{1 \leq i \leq f(n)} (Q_k(\sum_{1 \leq j \leq n_0} x_{i,j}) \mod p^k)).$$

Since $f(n) < p^k$ and Q_k is always 0 or 1 (mod p^k), we can bring the outer sum inside the modulus to obtain the equivalent expression

$$A(n, (\sum_{1 \leq i \leq f(n)} Q_k(\sum_{1 \leq j \leq n_0} x_{i,j})) \mod p^k)).$$

Let $B(n, i)$ be defined to be $A(n, (i \mod p^k))$. Thus the value of $\{C_n\}$ is equal to

$$B(n, \sum_{1 \leq i \leq f(n)} Q_k(\sum_{1 \leq j \leq n_0} x_{i,j})).$$

Note that B is computable in time polylogarithmic in $s(n)$.

Note that $(\sum_{1 \leq i \leq f(n)} Q_k(\sum_{1 \leq j \leq n_0} x_{i,j}))$ is a low degree polynomial in the variables $\{x_{i,j}\}$. As in the proof of Lemma 3.17, our strategy will be to implement scalar multiplication with AND gates, and multiply the negative coefficients by $(1 - p^k)$ to make them positive, to obtain a realization of this polynomial in terms of circuits.

We first have to compute the coefficients of the polynomial $(\sum_{1 \leq i \leq f(n)} Q_k(\sum_{1 \leq j \leq n_0} x_{i,j}))$. Since this is just a sum of $f(n)$ similar polynomials, we can consider each of them separately.

Recall that $Q_k(y) = 1 - P_k(y^{p-1})$. Let $z = y^{p-1}$. After a little simplification we get $1 - P_k(z) = (1 - z)^k(\sum_{j=0}^{k-1} (k+j-1 \choose j) z^j)$. This is a polynomial of degree $2k - 1$. For $i \geq 0$, let $b_i = 1$ if i is even, and $b_i = p^{-1} - 1$ if i is odd. The coefficients of z^m, say c_m, are given by

$$c_m = \begin{cases}
1 & \text{if } m = 0. \\
0 & \text{if } 1 \leq m \leq k - 1. \\
\sum_{0 \leq i \leq k, 0 \leq j \leq k-1, i + j = m} b_i(k+j-1 \choose j) & \text{if } k \leq m \leq 2k - 1.
\end{cases}$$

These coefficients c_m can be computed in $(\log s(n))^{O(1)}$ time, because we only need to compute $O(k)$ binomial coefficients each involving numbers that are $O(k \log k)$ bits.

6This does not change the value of the expression mod p^k.
long. It can be verified that $O(k^4 \log k)$ time suffices which is polylogarithmic in the size of the circuit since k is logarithmic in the size.

Now observe that the value of circuit $\{C_n\}$ is given by

$$B(n, \sum_{i=1}^{f(n)} Q_k(\sum_{j=1}^{n_0} x_{i,j})) = B(n, \sum_{i=1}^{f(n)} 1 - P_k((\sum_{j=1}^{n_0} x_{i,j})^{p-1}))$$

$$= B(n, \sum_{i=1}^{f(n)} \sum_{m=0}^{2k-1} c_m(\sum_{j=1}^{n_0} x_{i,j})^{(p-1)m})$$

$$= B(n, \sum_{i=1}^{f(n)} \sum_{m=0}^{2k-1} c_m \bigwedge_{l=1}^{(p-1)m} x_{i,j_l})$$

In place of each circuit $C_{n,t}$ in the original sequence of circuits, there will be several new circuits, each of the form $D_{n,\langle i, m, c, j_1, \ldots, j_{(p-1)m} \rangle}$ where $0 \leq m \leq 2k - 1$, $1 \leq c \leq c_m$, and each j_l is in $[n_0]$. (Of course, by our conventions, there will also be circuits $D_{n,t}$ where t is not of this form; each such circuit $D_{n,t}$ will be a trivial rejecting circuit that will therefore have no effect on the output of the symmetric gate.)

The output gate of each circuit $D_{n,\langle i, m, c, j_1, \ldots, j_{(p-1)m} \rangle}$ will be an AND gate with the name $g = \langle n, i, m, c, j_1, \ldots, j_{(p-1)m}, \text{AND} \rangle$. The inputs to g will be the $(p - 1)m$ gates that are the j_lth inputs to the MOD_p gate G_i in the original circuit $C_{n,i}$. Note that since $C_{n,i}$ has the strong connection property, one can show that $D_{n,\langle i, m, c, j_1, \ldots, j_{(p-1)m} \rangle}$ does, too.

Note that the number of bits needed to write any such index $\langle i, m, c, j_1, \ldots, j_{(p-1)m} \rangle$ is bounded by $(\log s(n))^b$ for some constant b, and thus if we define $f'(n)$ to be equal to $2((\log s(n))^b$, it follows that the symmetric gate computing B in circuit D_n has fan-in $f'(n)$, where $f'(n)$ is computable in time polylogarithmic in $s(n)$.

Since the new circuit consists of a subexponential number of circuits, each of which is of subexponential size, the new circuit is also of subexponential size.

The depth of the new circuit family is the same as $\{C_n\}$ but the top layer of MOD_p gates has been "absorbed" into the symmetric gate computing B and been replaced by a layer of AND gates of small fan-in. Now, by an appeal to Lemma 3.13, the circuit can be converted into nice form, which completes the proof.
Proof.

(of Theorem 3.1) By Lemma 3.16, every language in ACC(subexp) is accepted by a deterministic SYMACC circuit family of subexponential size, with small fan-in AND gates, no OR gates, and no MOD_m gates for composite m. Successive applications of Lemma 3.17 and Lemma 3.18 remove all MOD gates from the circuit, while maintaining the property that all AND gates have small fan-in. This suffices to prove the theorem.

■
Chapter 4

Immunity with respect to \mathbf{AC}^0

In this chapter we investigate the notion of immunity with respect to \mathbf{AC}^0. Recall that an infinite set L is immune to a complexity class C if neither L nor any of its infinite subsets are in C. Our primary interest in initiating this study was to find sets that are almost-everywhere complex to \mathbf{AC}^0. Since almost-everywhere complexity is well-known to be connected to immunity [BS85, GHS91, GK90, ABHH90], it is necessary to study sets that are immune to \mathbf{AC}^0. In this chapter we focus on finding sets that are immune to \mathbf{AC}^0.

It is easy to find sets with small space complexity that are immune to \mathbf{AC}^0. Merely note that \mathbf{AC}^0 is contained in $\mathbf{Dspace}(\log n)$, and then use the almost-everywhere hierarchy theorem of [GHS91] to obtain the following result:

Proposition 4.1 Let S be a space-constructible function such that $\log n = o(S(n))$. Then there is a set in $\mathbf{Dspace}(S(n))$ that is immune to \mathbf{AC}^0.

An essentially identical proof yields the following:

Proposition 4.2 Let T be a time-constructible function such that $n^k = o(T(n))$ for all k. Then there is a set in $\mathbf{Dtime}(T(n))$ that is immune to \mathbf{AC}^0.

Neither of the preceding two propositions makes any use of any properties of \mathbf{AC}^0 at all, other than the trivial observation that \mathbf{AC}^0 is contained in $\mathbf{Dspace}(\log n)$. On the other hand, the results that we present do rely on the special characteristics of constant depth circuits. In fact, the immunity result that follows hold also for the class $\mathbf{ACC}(\text{subexp})$.

Theorem 4.3 There is a set in $\mathbf{P}^\mathbf{P}$ that is immune to $\mathbf{ACC}(\text{subexp})$ (and hence is also immune to \mathbf{ACC} and \mathbf{AC}^0).
Proof.

The proof is direct consequence of Theorem 3.2. Using Theorem 3.2, we have that there is a set \(Y \in \text{PP} \) such that \(\text{ACC}(\text{subexp}) \subseteq \text{Dtime}(n^2)^Y \). Now observe merely that the almost-everywhere hierarchy theorem of [GHS91] relativizes, so that there is a set in \(\text{Dtime}(n^2)^Y \) that is immune to \(\text{Dtime}(n^2)^Y \), and thus is also immune to \(\text{ACC}(\text{subexp}) \).

Even though Theorem 4.3 provides us the strongest immunity result that we can prove, we present a different proof to show that \(\text{P}^{\text{PP}} \) is strongly separated from \(\text{AC}^0 \) that is of independent interest. The proof is interesting because it follows very simply from Toda’s proof [Tod91] that \(\text{PH} \subseteq \text{P}^{\text{PP}} \).

Theorem 4.4 There is a set in \(\text{P}^{\text{PP}} \) that is immune to \(\text{AC}^0 \).

For the proof, we first need to introduce some notation. Let \(X \) be a finite set of strings and \(R \) a predicate over strings. We denote by \(\text{Prob}(\{ w \in X : R(w) \}) \) the probability that \(R(w) \) is true for a randomly chosen \(w \) from \(X \) under uniform distribution. We now define a few operators that act on complexity classes and produce new ones. These operators are very similar to the ones defined by Toda [Tod91]. We then state and prove some lemmas about the complexity classes that we get using the operators.

Definition 4.1 Let \(t : \mathbb{N} \rightarrow \mathbb{N} \), and let \(C \) be a class of sets. Then

- \(\oplus_t C \) is the class of languages \(L \) for which there is some language \(A \in C \) such that \(x \in L^= \iff |\{ y \in \{0,1\}^{t(n)} : \langle x, y \rangle \in A \}| \) is odd.

- \(\text{BP}_t C \) is the class of languages \(L \) for which there is some language \(A \in C \) such that \(x \in L^= \setminus \{ y \in \{0,1\}^{t(n)} : \langle x, y \rangle \in A \} \geq 3/4 \) and \(x \notin L^= \setminus \{ y \in \{0,1\}^{t(n)} : \langle x, y \rangle \in A \} \leq 1/4 \).

- \(\text{Pr}_t C \) is the class of languages \(L \) for which there is some language \(A \in C \) such that \(x \in L^= \iff |\{ y \in \{0,1\}^{t(n)} : \langle x, y \rangle \in A \}| \geq 1/2 \).
For convenience, we shall suppress the subscripts whenever possible. For instance, \(\Pr \cdot \oplus \cdot \text{Dtime}(n^k) \) denotes \(\Pr_{n^k} \cdot \oplus_{n^k} \cdot \text{Dtime}(n^k) \). Note that for any function \(t \) and any complexity class \(C \), \(\text{BP}_t \cdot C \subseteq \Pr_t \cdot C \).

The operators \text{BP} and \text{Pr} produce probabilistic analogs of a given complexity class \(C \) much in the way \text{BPP} and \text{PP} are probabilistic analogs of \text{P}. Applying the \(\oplus \) operator on \(C \) produces a class that is related to \(C \) just like \(\oplus \text{P} \) is related to \(\text{P} \). In particular, \(L \in \oplus_t \cdot C \) means that for every string \(x \in L \) there is an odd number of witnesses of length \(t(|x|) \), and for any given string of length \(t(|x|) \) the procedure that verifies that the string is indeed a witness is in \(C \).

To prove Theorem 4.4, we first show that \(\text{AC}^0 \subseteq \text{BP} \cdot \oplus \cdot \text{Dtime}(\log n)^O(1) \). We then show that \(\Pr \cdot \oplus \cdot \text{Dtime}(\log n)^O(1) \) is contained in a small subclass of \(\text{P}^{\text{PP}} \), such that \(\text{P}^{\text{PP}} \) contains sets that are immune to this subclass.

Lemma 4.5 \(\text{AC}^0 \subseteq \text{BP} \cdot \oplus \cdot \text{Dtime}(\log n)^O(1) \).

Proof.

It is shown in [AH90] that every language in uniform \(\text{AC}^0 \) is accepted by a uniform family of depth two probabilistic circuits of size \(2^{(\log n)^O(1)} \), consisting of a single \text{PARITY} gate on level two, and \text{AND} gates of fan-in \((\log n)^O(1) \) on level one, where the circuits use only \((\log n)^O(1) \) probabilistic bits. Although [AH90] claims only \(\text{Dspace}(\log n)^O(1) \) uniformity for these circuits, an examination of the proof of [AH90] shows that the circuits are uniform according to the notion of uniformity in Definition 2.13 as well.

To prove the lemma, we only need to show that every set accepted by a uniform family of depth two probabilistic circuits of the type described above is in \(\text{BP} \cdot \oplus \cdot \text{Dtime}(\log n)^O(1) \).

Let \(L \) be accepted by such a family of circuits \(\{C_n\} \), and let \(A \) be the set \(\{ \langle y, v, x \rangle : v \) is the name of an \text{AND} gate in \(C_{|x|} \), and \(v \) takes on the value 1 when \(x \) is input to the circuit with probabilistic bits \(y \} \). Since \(x \in L \) iff for a majority of \(y \) there are an odd number of \(v \) such that \(\langle y, v, x \rangle \in L \), and \(A \in \text{Dtime}(\log n)^O(1) \) because \(\{C_n\} \) is uniform, it follows that \(L \in \text{BP} \cdot \oplus \cdot \text{Dtime}(\log n)^O(1) \).
Lemma 4.6 Let X be any set in $\oplus \cdot \text{Dtime}(n^k)$ and let q be any polynomial. Then, there exists an NP machine M satisfying the following conditions. For each input y of length n,

1. $\#\text{acc}_M(y) \equiv -1 \pmod{2^q(n)}$ if $y \in X$,

2. $\#\text{acc}_M(y) \equiv 0 \pmod{2^q(n)}$ if $y \not\in X$, and

3. M runs in time $(q(n))^2 \cdot n^k$.

Proof.
The proof follows directly from the proof of Lemma 4.2 in [Tod89].

Lemma 4.7 There exists $Y \in \text{PP}$ such that $\text{Pr} \cdot \oplus \cdot \text{Dtime}(n^k) \subseteq \text{Dtime}(n^{2k^2+4k})^Y$ for every $k \geq 1$.

Proof.
(of Theorem 4.4) Lemmas 4.5 and 4.7 imply that AC^0 is contained in $\text{Dtime}(n^o)^Y$ for some $Y \in \text{PP}$ (letting $k = 1$). By the almost-everywhere hierarchy theorem of [GHS91] there is a set in $\text{Dtime}(n^n)^Y$ that is immune to $\text{Dtime}(n^o)^Y$ and hence to AC^0.

Proof.
(of Lemma 4.7) Let $L \in \text{Pr} \cdot \oplus \cdot \text{Dtime}(n^k)$. Then there exists a set $X \in \oplus \cdot \text{Dtime}(n^k)$ such that

For each x,

\[
\text{Prob}(\{w \in \{0,1\}^{\leq l^k} : x \# w \in X \iff x \in L\}) > \frac{1}{2}
\]

(i.e., $x \in L \iff |\{w \in \{0,1\}^{\leq l^k} : x \# w \in X\}| > 2^{l^k} - 1$).

Let q be a polynomial satisfying $q(n + 1 + n^k) > n^k$ for each $n \geq 0$. Note that the polynomial $q(m) = m$ has the above mentioned property and so we use $q(m) = m$ hereafter. By Lemma 4.6, there exists an NP machine M satisfying the following conditions. For each input y of length n,

1. $\#\text{acc}_M(y) \equiv -1 \pmod{2^n}$ if $y \in X$,

2. $\#\text{acc}_M(y) \equiv 0 \pmod{2^n}$ if $y \not\in X$, and
3. M runs in time n^{k+2}.

Without loss of generality assume that each computation path of M on an input of length n is of length exactly n^{k+2}.

Let $t(n) = n^{k+2}$. Let M_1, M_2, \ldots be an enumeration of nondeterministic Turing machines, each running in time $t(n)$. Let $\#$ be a special pairing symbol. For each i, define the function $h_i : \{0, 1\}^* \to \mathbb{N}$ as follows:

$$h_i(x) = |\{wv \in \{0, 1\}^* : |w| = |z|^k, |v| = t(|x#w|)$$

and v is an accepting computation of M_i on input $x#w$.

Define the set Y to be $\{(i, x, l) : x \in \{0, 1\}^* \text{ and } h_i(x) \leq l\}$. Toda [Tod91] has observed that Y is in PP (for essentially the same reason that the set Y in the proof of Theorem 3.2 is in PP).

As before, for any L in $\mathsf{Pr} \cdot \oplus \cdot \mathsf{Dtime}(n^k)$, there exists a set $X \in \oplus \cdot \mathsf{Dtime}(n^k)$ and a machine M_i such that

1. $\#\text{acc}_{M_i}(y) \equiv -1 \pmod{2^n}$ if $y \in X$,
2. $\#\text{acc}_{M_i}(y) \equiv 0 \pmod{2^n}$ if $y \notin X$, and
3. M_i runs in time $t(n)$.

Now define the function g such that for each x, $g(x) = |\{w \in \{0, 1\}^{|x|^k} : x#w \in X\}|.$

Let x be any string of length n. By definition, $x \in L \iff g(x) > 2^{n^k-1}$. Toda has proved in [Tod91] that $h_i(x) \equiv -g(x) \pmod{2^{n+1+n^k}}$.

It is easy to see that

- $g(x) \leq 2^{n^k}$ and
- $h_i(x) \leq 2^{n^k} \cdot 2^{t(n+1+n^k)} = 2^{n^k} \cdot 2^{O(n^k+2k)} = 2^{O(n^{k+2k})}$ (since $k \geq 1$).

Consider an oracle machine N that has access to the oracle Y and behaves as follows:

On input x ($|x| = n$),
• N computes the value of $h_i(x)$ using binary search on the set Y. N needs to ask at most $O(n^{k^2+2k})$ questions of about the same size. This step requires time $O(n^{2k^2+4k})$.

• N computes the value of $g(x)$ using the fact\(^1\) that $h_i(x) \equiv -g(x) \pmod{2^{n+1+n^k}}$. This step can be done in time $(O(n^{k^2+2k}) + O(n^k))^2$ which is $O(n^{2k^2+4k})$.

• After computing $g(x)$, N decides whether $g(x) > 2^{n^k-1}$. This step requires time $O(n^k)$.

Therefore, N runs in time $O(n^{2k^2+4k})$, and thus $L \in \text{Dtime}(n^{2k^2+4k})^Y$.

\(^1\)Note that the computation $a \pmod{b}$ where $|a| = m$ and $|b| = n$ can easily be done in time $O(m + n)^2$.
Chapter 5

NP and Immunity with respect to \(AC^0 \)

In the previous chapter we proved that \(P^{PP} \) contains sets that are immune to \(AC^0 \) (Theorem 4.4). This result is not so surprising because \(AC^0 \) is a tiny complexity class, unable to even compute the parity of an input string, whereas \(P^{PP} \) is a very powerful complexity class, containing the entire polynomial hierarchy. However, the result is fairly interesting and establishes a big gap between \(AC^0 \) and \(P^{PP} \), as is widely believed. The downside of this result is that since \(AC^0 \subset NC^1 \), it would seem reasonable to hope to be able to present sets in \(NC^1 \), or at least in \(P \) (classes believed to be far less powerful than \(P^{PP} \)), that are immune to \(AC^0 \).

However, the results of this chapter show that even for the fairly “large” complexity class \(NP \), the question of whether there are sets in that class that are immune to \(AC^0 \) cannot be answered without resolving some long-standing issues in complexity theory. In fact, it is still unknown if \(PP \) or even \(PP^H \) has sets that are immune to \(AC^0 \). As far as finding sets in \(NP \) that are immune to \(AC^0 \) is concerned, we are able to prove the following:

Theorem 5.1 If there is a set in \(E \) that is immune to \(\bigcup_k \Sigma_k \text{Time}(n) \) then there is a set in \(P \) that is immune to \(AC^0 \).

Theorem 5.2 If \(E = \bigcup_k \Sigma_k \text{Time}(n) \) and all \(NE \)-predicates are \(E \)-solvable, then no set in \(NP \) is immune to \(AC^0 \).

Recall that \(\bigcup_k \Sigma_k \text{Time}(n) \) denotes the rudimentary sets (Definition 2.6). To prove Theorem 5.1 we need Proposition 5.3 that draws some elementary connections between \(AC^0 \) and \(RUD \). We would like to remind the reader that all the languages considered in this thesis are subsets of \(\{0,1\}^* \). We assume a standard mapping from \(\{0,1\}^* \) onto the
positive integers; namely the string z will denote the integer whose binary representation is $1z$. We will use strings and the integers they denote interchangeably. This leads us to the following definition:

Definition 5.1 For a language L, the *unary version* of L, denoted $un(L)$ is defined as $un(L) = \{0^n : n \in L\}$.

Proposition 5.3 $L \in \bigcup_k \Sigma_k\text{Time}(n) \iff un(L) \in \text{AC}^0$.

Proof.

This result is proved using elementary translational (i.e., “padding”) techniques. The proof is somewhat easier if one observes (as is done in [Sip83]) that, if L is accepted by an alternating Turing machine M in time $O(\log n)$ with $O(1)$ alternations, then L is accepted by a similar machine that, along any computation path, uses its address tape to access the input only once.

(\Rightarrow) Let $L \in \bigcup_k \Sigma_k\text{Time}(n)$. Therefore, there exists an alternating Turing machine M and some k such that M accepts L in linear time and makes k alternations. Consider the machine M' that behaves as follows:

On input 0^n,

Compute n (in binary)

Check that M accepts n (by simulating M on n)

end

It is obvious that M' accepts $un(L)$ in time $O(\log n)$ and makes at most k alternations. Therefore, $un(L) \in \bigcup_k \Sigma_k\text{Time}(\log n)$. Since $\text{AC}^0 = \bigcup_k \Sigma_k\text{Time}(\log n)$ by the result of [BIS90], $un(L) \in \text{AC}^0$.

(\Leftarrow) Suppose there exists an alternating Turing machine M that accepts $un(L)$ in $O(\log n)$ time and makes a constant number of alternations. Consider the machine M' that behaves as follows:

On input n, M' starts simulating M. If, at some point during this simulation, M queries the input via its input address tape, M' compares the number m stored on the address tape of M with the number n, and continues the simulation of M either from
the state saying "the \(m\)th input symbol is 0" (if \(m \leq n\)), or from the state saying "the input has length shorter than \(m\)" (if \(m > n\)); thus \(M'\) on input \(n\) effectively simulates \(M\) on input 0". Also, since we are assuming without loss of generality that \(M\) uses its random access only once along any computation path, the running time of \(M\) is \(O(\log n)\), which is \(O(|n|)\). Thus \(M'\) accepts \(L\) in linear time and makes a constant number of alternations.

\[\square\]

Proof.

(of Theorem 5.1) If \(L\) is in \(E\) and is immune to \(\bigcup_k \Sigma_k \text{Time}(n)\), then \(un(L)\) is in \(P\) and is immune to \(AC^0\).

\[\square\]

Corollary 5.4 If \(NP\) is not strongly separated from \(AC^0\)(i.e., no set in \(NP\) is immune to \(AC^0\)) then \(P \neq NP\).

Though the above statement sounds counterintuitive, we can infer that if \(NP\) is not large enough to have sets immune with respect to \(AC^0\), then this somehow puts a severe restriction on the power of \(P\).

Proof.

(of Corollary 5.4) It is a well known result that \(P = NP \Rightarrow P = PH\). Therefore, \(P = NP \Rightarrow \bigcup_k \Sigma_k \text{Time}(n) \subseteq P\). The hierarchy theorem in \([HS65]\) implies that \(E\) has a set that is immune to \(P\), therefore \(E\) has a set that is immune to \(\bigcup_k \Sigma_k \text{Time}(n)\). By Theorem 5.1 this implies that \(P\) has a set that is immune to \(AC^0\) which means that \(NP\) is strongly separated from \(AC^0\).

\[\square\]

To prove Theorem 5.2 we need the following lemmas:

Lemma 5.5 If all \(NE\)-predicates are \(E\)-solvable, then no set in \(NP\) is immune to \(P\)-uniform \(AC^0\).

Proof.

By Lemma 2.2, if all \(NE\)-predicates are \(E\)-solvable then every infinite set in \(P\) has an infinite \(P\)-printable subset. By Lemma 2.1, this implies that every infinite set in \(NP\) has an infinite set in \(P\)-uniform \(AC^0\).

\[\square\]
Lemma 5.5 does not say anything about dlogtime-uniform AC⁰, speaking instead only of P-uniform AC⁰. The next lemma shows under what conditions these classes coincide.

Lemma 5.6 \(E = \bigcup_k \Sigma_k \text{Time}(n) \iff \text{P-uniform AC}^0 = \text{dlogtime-uniform AC}^0. \)

Proof.

(\(\Leftarrow\)) Suppose \(\text{P-uniform AC}^0 = \text{dlogtime-uniform AC}^0\). It suffices to show that \(E \subseteq \bigcup_k \Sigma_k \text{Time}(n)\). Let \(L \in E\). Note that \(un(L)\) is a tally set in P. Any tally set in P is trivially in \(\text{P-uniform AC}^0\). Using the hypothesis, \(un(L) \in \text{dlogtime-uniform AC}^0\). Hence, by Proposition 5.3, \(L \in \bigcup_k \Sigma_k \text{Time}(n)\).

(\(\Rightarrow\)) To prove this direction, we first need the simple fact that for all \(k\), the language

\[
L_k = \{ \langle x, C \rangle : C \text{ is a depth } k \text{ circuit of AND and OR gates that evaluates to 1 on input } x \}
\]

is in \(\text{AC}^0\). To see this, note that \(\langle x, C \rangle \in L_2\) iff

(\(\exists i\)) bit position \(i\) in \(C\) is the start of the name of the output gate \(g\) and

\(g\) is an AND gate and

(\(\forall j\))

\[
[(j \text{ is the start of the name of an AND gate } h \text{ connected to } g, \text{ then } (\forall k) (\text{if (the negation of) bit } k \text{ of } x \text{ is an input to } h, \text{ then bit } k \text{ is 1 (0))})]
\]

and (if \(j\) is the start of the name of an OR gate \(h\) connected to \(g\), then

(\(\exists k\)) ((the negation of) bit \(k\) of \(x\) is an input to \(h\)

and bit \(k\) is set to 1 (0)))]

or \(g\) is an OR gate and

(\(\exists j\))

\[
[(j \text{ is the start of the name of an AND gate } h \text{ connected to } g, \text{ and } (\forall k) (\text{if (the negation of) input bit } k \text{ is an input to } h, \text{ then bit } k \text{ is set to 1 (0))})]
\]

or \(j\) is the start of the name of an OR gate \(h\) connected to \(g\), and
(∃k) ((the negation of) bit k of z is an input to h

and bit k is set to 1 (0))).]

Using the characterization of AC^0 in terms of first-order logic as presented by
[BIS90], it is clear that L_2 is in AC^0. It is easy to see how to generalize this to show
that each L_k is in AC^0.

To proceed, assume that E = ∪_k Σ_k Time(n), and let L be a language in P-uniform
AC^0. Thus there is a family of depth k circuits \{C_n\} recognizing L, such that the set A
= \{0^{(n,i)} : bit i of the description of C_n is 1\} is in P. Let B = \{r : 0^r \in A\}. It is easy to
see that B is in E. Under the assumption E = ∪_k Σ_k Time(n), \(B \in ∪_k Σ_k Time(n),\) and
since A = \text{un}(B), from Proposition 5.3 it follows that A is in dlogtime-uniform AC^0.

An alternating log-time Turing machine for L can now be described. On input z,
simulate the AC^0 algorithm for L_k on input \langle x, C_n \rangle. That is, when the algorithm for
L_k uses its address tape to look at input position m, look at the m^{th} bit of z if m \leq |z|,
and otherwise test if 0^{(n,m-n)} \in A.

Proof.

(of Theorem 5.2) Immediate from Lemmas 5.5 and 5.6.

As we have stated before, we conjecture that the hypothesis to Theorem 5.2 is false.
Assuming that E = ∪_k Σ_k Time(n) puts very low limits on the power of E and also
implies that PH collapses. At the same time, assuming that E is powerful enough to
solve every NE-predicate seems contradictory. However, in the next chapter we show
that this hypothesis cannot be shown to be false by any proof technique that relativizes.
Chapter 6

Some relativization results

In the previous chapter we showed that the issue of strong separation between NP and AC0 is linked to some long-standing open questions in complexity theory. If it can be shown that NP is not strongly separated from AC0 then that gives us a non-relativizing proof technique to show that P \neq NP (Theorem 5.1). On the other hand, if NP has sets that are immune to AC0 then either E is different from RUD or there are NE-predicates that are E-solvable (Theorem 5.2). However, in this chapter we provide evidence that the standard techniques of simulation and diagonalization will not be able to answer whether or not NP is strongly separated from AC0. We demonstrate the existence of oracles relative to which the hypotheses of Theorems 5.1 and 5.2 hold.

We should emphasize that the results in this chapter do not indicate that the problem of strongly separating NP from AC0 is hard. We hope that the new proof techniques developed in [FKLN90], [Sha90] and [BFL91] can be used to answer this question. We think that our oracle results can point to some of the problems that would have to be overcome in answering this question in the unrelativized setting.

Proposition 6.1 There is an oracle relative to which E has a set that is immune to $\bigcup_k \Sigma_k \text{Time}(n)$.

Proof.
If A is any oracle relative to which P = NP, then relative to A, $\bigcup_k \Sigma_k \text{Time}(n) \subseteq P = \text{PH}$. Since the almost-everywhere hierarchy theorem of [GHS91] relativizes, there is a set in E that is immune to P relative to any oracle. Therefore, relative to A, E has a set that is immune to $\bigcup_k \Sigma_k \text{Time}(n)$. \blacksquare
Theorem 6.2 There is an oracle relative to which \(E = \Sigma_2 \text{Time}(n) \) and every NE-predicate is \(E \)-solvable.

We would like to remind the reader that we have only one reason for being interested in this unusual combination of conditions on the complexity of exponential time: it implies that no set in \(\text{NP} \) is immune to \(\text{AC}^0 \). Hence, finding sets in \(\text{P} \) or in \(\text{NP} \) that are immune to \(\text{AC}^0 \) will necessarily involve the development of non-relativizing proof techniques for attacking questions concerning deterministic and nondeterministic time classes. To prove the above theorem, we need the following:

Definition 6.1 Let \(\langle i, x \rangle \) denote a standard one-one pairing function mapping \(\mathbb{N} \times \Sigma^* \) into \(\mathbb{N} \) (e.g., let \(\langle i, x \rangle \) denote the number whose binary representation is the ASCII code of the string \("i, x" \), where \(i \) is written in binary). Let \(M_1, M_2, \ldots \) be an enumeration of nondeterministic exponential-time oracle Turing machines; note that without loss of generality we may assume that for every NE-predicate there is a machine \(M_i \) realizing the predicate, such that on every input \(x \), the computations of \(M_i \) on input \(x \) have length exactly \(\langle i, x \rangle \). For any set \(A \), define \(S(A) \) to be the set:

\[
\{ y : |y| = \langle i, x \rangle \text{ and } y \text{ encodes an accepting path of the NE machine } M_i^A \text{ on input } x \}.
\]

We have already seen that questions about the difficulty of NE-predicates can actually be expressed as questions about the time-bounded Kolmogorov complexity of sets in \(\text{P} \) (Proposition 2.3). In our oracle construction, we replace the condition “every NE-predicate is \(E \)-solvable” by an equivalent condition about the time-bounded Kolmogorov complexity of certain sets in \(\text{P} \). Recall that the time-bounded Kolmogorov complexity of a string \(x \) is defined as \(K_t(x) = \min \{|y| + \log t : M_n(y) = x \text{ in at most } t \text{ steps} \} \) where \(M_n \) is a “universal” Turing machine. Also recall that for a set \(L \subseteq \{0,1\}^* \), \(K_L(n) = \min \{ K_t(x) : x \in L^{=n} \} \) if \(L^{=n} \) is nonempty; undefined otherwise. The following proposition is an extension of Proposition 2.3.

Proposition 6.3 For any oracle \(A \), the following are equivalent:

(a) Every \(\text{NE}^A \)-predicate is \(\text{E}^A \)-solvable.

(b) For every set \(L \) in \(\text{P}^A \), \(K_{\text{E}^A}^L(n) = O(\log n) \).
(c) \(K_{S(A)}^A(n) = O(\log n) \).

Proof.

By Proposition 2.3, \((a) \iff (b)\) and the result holds relative to any oracle. Since \(S(A)\) is clearly in \(P^A\), it follows that \((b) \implies (c)\). In order to show that \((c) \implies (a)\), suppose \(K_{S(A)}^A(n) \leq c \log n\) for some constant \(c\). To solve the \(NE^A\)-predicate defined by the \(NE^A\) machine \(M_i^A\), we can use the following algorithm:

On input \(x\), let \(m = \langle i, x \rangle\). Since \(K_{S(A)}^A(m) \leq c \log m\), the universal Turing machine \(M\) will produce a string of \(S(A)\) of length \(m\) (if one exists) on some input of length \(\leq c \log m\) with oracle \(A\). Try running \(M^A\) on all possible inputs of length \(\leq c \log m\) to see if a string \(y\) of length \(m\) is ever produced. If so, check if \(y\) encodes an accepting path of \(M_i^A\) on \(x\). It is rather easy to see that the above computation requires \(2^{O(|x|)}\) time.

Proof.

(of Theorem 6.2) For the proof it suffices to build an oracle \(A\) such that \(K_{S(A)}^A(n) = O(\log n)\) and \(E^A = \Sigma_2 \text{Time}^A(n)\).

Recall that for every \(A\), \(S(A) = \{ y : |y| = \langle i, x \rangle\}\) and \(y\) encodes an accepting computation of the \(NE^A\) machine \(M_i^A\) on input \(x\). It is fairly obvious that there is a deterministic oracle machine \(M^A_S\) running in time \(n^2\) such that \(M^A_S\) accepts \(S(A)\).

For every \(A\), let \(L(A) = \{ i \# x 10^k : \text{the } i^{th} \text{ } E^A \text{ } \text{machine } M_i^A \text{ accepts } x \text{ in } \leq 2^k \text{ steps}\}\). It is easy to see that there is a deterministic oracle machine \(M^A_L\) running in time \(2^{2^n}\) such that \(M^A_L\) accepts \(L(A)\). It is also obvious that \(L(A)\) is complete for \(E^A\) under linear time reductions.

Thus to prove the theorem, it suffices to build an oracle \(A\) such that \(K_{S(A)}^A(n) = O(\log n)\) and \(L(A) \in \Sigma_2 \text{Time}^A(n)\). To obtain such an \(A\), two kinds of encoding need to be performed. The encoding done to ensure \(E^A = \Sigma_2 \text{Time}^A(n)\) will henceforth be called \(L\)-encoding and the encoding done to ensure \(K_{S(A)}^A(n) = O(\log n)\) will be referred to as \(S\)-encoding.

The oracle will be constructed in stages. Within each stage we have a substage in which we do \(L\)-encoding followed by a substage in which we do \(S\)-encoding. These
encodings reserve certain strings for A and \overline{A}. Note that once a string has been reserved for A or \overline{A}, its fate does not change later. Let A_i and \overline{A}_i denote the sets of strings reserved for the oracle and its complement respectively after the completion of stage i. Define $A = \bigcup_i A_i$. We will also use A'_i and A''_i to denote the oracle at certain points while stage i is in progress.

In a particular L-encoding substage, we ensure that

$$(\forall x) (x \in L(A) \iff (\exists y)(\forall z) 1xyz \in A) \text{ where } |y| = |z| = 5|z|.$$

This is done for all x of a particular length under consideration in that substage. The above condition ensures that $L(A) \in \Sigma_2 \text{Time}^A(n)$. To test for membership of a string x in $L(A)$, a $\Sigma_2 \text{Time}^A(n)$ machine existentially guesses y, universally guesses z (both of length $5|z|$) and then asks whether the string $1xyz$ belongs to A.

In the S-encoding substage, we try to ensure that $K_{S(A)}^A(m) = O(\log m)$ for the length m currently under consideration by encoding a string $w \in S(A)$ by the strings $0^{m^2+1}, 0^{m^2+2}, 0^{m^2+3}, \ldots, 0^{m^2+m}$. The way this encoding works is that $(\forall j) 1 \leq j \leq m$, the answer to the question “$0^{m^2+j} \in A$?” specifies the j^{th} bit of w. Note that any string w of length m encoded in this way can be reconstructed very quickly from the description “m” (of length logarithmic in $|w|$) and thus $Kt^A(w) = O(\log |w|)$.

Let $A_0 = \emptyset$, and assume that no strings have been reserved so far. The construction is done as follows:

During stage i,

- do the L-encoding for length i;
- do the S-encoding for lengths m where $2^i \leq m < 2^{i+1}$

end of construction.

We will now describe a typical stage (say i^{th}) of the construction process in detail. This is done in two parts:

L-encoding substage

During this substage all strings of length i are processed. Let A'_i denote the oracle that has been constructed up to a certain point in the current L-encoding substage, and let x be the next string under consideration. Run $M_{L}^{A'_i}$ on input x, and reserve all of the strings that were queried on that computation for A_i or \overline{A}_i, according to whether or
not they are in A'_i. If $M^{A'_i}_L$ accepts, find some y of length $5|x|$ such that no string of
the form $1xyz$ where $|z| = 5|x|$ is reserved for \overline{A}_i, and put all of the $2^{5|x|}$ strings of the
form $1xyz$ into A_i. On the other hand, if $M^{A'_i}_L$ rejects, then for each y of length $5|x|$
find some z with $|z| = |y|$ and reserve $1xyz$ for \overline{A}_i.

S-encoding substage

During this substage all strings of length m where $2^i \leq m < 2^{i+1}$ are processed. Let
A'_i denote the oracle that has been constructed thus far in the current stage (i.e., after
the completion of the L-encoding substage and part of the S-encoding substage that
has been completed so far). Let m denote the length of the strings being considered.
There are two possibilities:

1. $M^{A'_i}_S$ accepts a string w of length m.
2. $M^{A'_i}_S$ does not accept any string of length m.

In the first case, we simply go ahead and encode one such w as described above.
In the second case, try to determine if there is a possible extension1 of A'_i, say A''_i (this extension might require us to reserve certain strings for \overline{A}_i as well), so that $M^{A''_i}_S$ accepts some string w of length m. There are two possibilities again:

- $M^{A''_i}_S$ does not accept any string of length m for any possible extension A''_i; in this
case, no encoding is required.
- $M^{A''_i}_S$ does accept a string w of length m for some extension A''_i; in this case, extend
A'_i to A''_i (i.e., add the strings in $A''_i - A'_i$ to A'_i and possibly reserve certain strings
for \overline{A}_i) and proceed with the encoding of w. (Note that A''_i need differ from A'_i
on at most m^2 strings, since only those strings queried by M_S on input w need
be reserved.)

Proof of correctness of the construction

Consider stage i of the construction:

1Note that any extension that is considered is not allowed to change the status of any string that
has already been reserved for A_i or \overline{A}_i.
• In the L-encoding substage we want that

for all x of length i, $x \in L(A) \iff (\exists y)(\forall z) 1xyz \in A$ where $|y| = |z| = 5i$

Consider the encoding for a typical x of length i. We need to show that there are enough unreserved strings beginning with 1x to enable us to do the required encoding.

The number of strings that have already been considered for L-encoding is $< (2 + 2^2 + \cdots + 2^i) < 2^{i+1}$. For each of these strings, it is possible that M_A^L might have queried the oracle. But since M_A^L runs in time 2^{2n}, the maximum number of strings that could have been reserved due to queries made while processing those strings is $< (2^{i+1} - 1) \cdot 2^2 < 2^{3i+1}$.

The L-encoding substage also reserves strings for the oracle that are of the form 1uvw. But since we are only interested in counting strings of the form 1xyz for the string x currently under consideration, these strings can be ignored.

Note that the S-encoding has been done for lengths $\leq 2^i - 1$. The machine M_S^A could possibly have queried strings for all lengths $\leq 2^i - 1$. Since M_S^A runs in time n^2, the maximum number of strings that could have been reserved due to queries made while doing that S-encoding is $< \sum_{m=1}^{2^i-1} m^2 < 2^{3i}$. In each S-encoding substage, the strings that are specially reserved to encode strings always start with 0 so they can be ignored too. Therefore, the total number of strings with 1 in the first position that could have been queried or reserved so far is $< 2^{3i+1} + 2^{3i} < 2^{5i}$, $\forall i \geq 1$. Since less than 2^{5i} strings have been reserved we can find a string y of length $5i$ such that for all z of length $5i$, none of 1xyz has been reserved. Similarly, for each string y of length $5i$ there is some z of length $5i$ such that 1xyz is not reserved. Thus it is possible to find the unreserved strings that are required in order to carry out the L-encoding.

• Now consider the S-encoding substage. During stage i we do the S-encoding for each length m such that $2^i \leq m < 2^{i+1}$. Encoding is necessary only if there is some w of such a length m such that M_S accepts w with the oracle constructed so far.

Since $|w| = m$, it should be encoded by strings 0^{m^2+j} where $1 \leq j \leq m$. But we must make sure that none of these strings has been reserved as yet.

Since $i \leq \log m$, the L-encoding has only been done for lengths $\leq \log m$. Therefore
the longest string with a 0 in the first position that could have been queried during any
of the L-encoding substages has length $\leq 2^{2\log m} = m^2$. The strings of the form $1xyz$
that are reserved during the L-encoding substages start with a 1 in their first positions
so they do not interfere with the encoding in the current substage. S-encoding has
been done for lengths $\leq m - 1$, so the longest strings queried or reserved have length
$\leq (m - 1)^2 + (m - 1) < m^2$ whenever $m \geq 1$.

During the current substage, to make $M^{A_i}_S$ accept an input of length m (by possibly
extending the oracle), the longest string that could have been queried and reserved has
length $\leq m^2$ (because the machine $M^{A_i}_S$ runs in time n^2). Therefore, any string queried
so far has length $\leq m^2$. Hence we can encode w with $0^{m^2 + j} 1 \leq j \leq m$.

This completes the proof of correctness of the construction and we have an oracle
$A = \cup_i A_i$ such that $E^A = \Sigma^2 \text{Time}^A(n)$ and $K^{A}_{S|A}(n) = O(\log n)$. \[]
Chapter 7
A new characterization of AC^0

In [Jon75], Jones introduced logspace reductions to study the relative complexity of problems in P (see [SM73] for independent work on logspace reductions). In the same paper, he also introduced a restricted version of logspace reductions called log-bounded rudimentary reductions and went on to demonstrate a lot of complete problems for various complexity classes under these reductions. Logspace reducibility has proved to be a very useful notion in complexity theory in the intervening years, whereas log-bounded rudimentary reducibility has been mentioned explicitly only seldom in subsequent work—although, as we demonstrate, it has been considered implicitly many times, under different names. In this chapter we show that the log-bounded rudimentary reductions provide yet another characterization of dlogtime-uniform AC^0.

7.1 The Characterization Theorem

Recall the definition of the class of predicates RUD_S where S is a space bound (Definition 2.22). In Chapter 2 we mentioned that RUD_S can also be viewed as a class of languages. In this chapter we show that $\text{RUD}_{\log} = \text{AC}^0$. For the proof we use the first order framework discussed in Chapter 2. We use the well-known fact that the composition of two functions in AC^0 is also in AC^0 and we work with alternating Turing machines running in sublinear time. Let $\Sigma_k \text{time}(\log n)$ denote the class of languages accepted by alternating Turing machines running in $O(\log n)$ time, beginning in an existential configuration, and making at most $k - 1$ alternations between existential and universal configurations on any computation path. Let LH (the logtime hierarchy of [Sip83]) denote $\bigcup_k \Sigma_k \text{time}(\log n)$.

\footnote{A circuit can easily compute a function by having multiple output gates.}
Theorem 7.1 $\text{AC}^0 = \text{RUD}_{\log}$.

Proof.

(\supseteq) This containment is mentioned in Proposition 5 of [Vol83] (where the converse containment is left as an open question). We present a complete proof here.

The proof proceeds by induction on the definition of RUD_{\log}, showing that each language in RUD_{\log} is in LH. The input to an ATM is assumed to have both ends marked by the special symbol $\$.$

Consider the inductive definition of RUD_{\log}:

1. $\sigma(x, i, a)$ and $-\sigma(x, i, a)$ are in RUD_{\log}.

Consider an ATM M that behaves as follows:

On input $\$x, i, a\$$,

- M existentially guesses the positions of all the commas (there is only a constant number of them).
- M universally verifies that that the guessed positions contain the appropriate markers and the other positions contain 0's or 1's.
- Using the marker positions, M calculates $|z|$ and $|i|$.
- M existentially guesses the bits of i and writes them on a worktape, and then universally checks that for each $j \leq i$, the guessed value for position $|z| + 1 + j$ is correct.
- M again uses marker positions to read a.
- M checks that the i^{th} bit of x is a.

2. If c is a positive integer then both $Q(x, u, v, w)$ and $\overline{Q}(x, u, v, w)$ are in RUD_{\log} where

$$Q(x, u, v, w) \iff uv = w \land |uvw| \leq c \cdot \log |x|$$
$$\overline{Q}(x, u, v, w) \iff uv \neq w \land |uvw| \leq c \cdot \log |x|$$
Consider an ATM M that behaves as follows:

On input x, u, v, w,

- M first guesses and verifies the positions of all the markers as in the previous case.
- M uses the marker positions to find $|x|$ and since $|x|$ in binary has length \(\log |x| \), M can easily compute $c \cdot \log |x|$.
- Using the marker positions, determine whether $|uvw| \leq c \cdot \log |x|$.
- If the above condition holds, then read each of u, v and w from the input, as in the previous case.
- Verify whether $uv = w$ (or $uv \neq w$ for Q).

3. If $Q(x, y_1, \ldots, y_m)$ and $R(x, y_1, \ldots, y_m)$ are in RUD log, then so are

$$Q(x, y_1, \ldots, y_m) \land R(x, y_1, \ldots, y_m)$$ and $$Q(x, y_1, \ldots, y_m) \lor R(x, y_1, \ldots, y_m).$$

This case is trivial, using universal and existential branching, respectively.

4. If $Q(x, z_1, \ldots, z_m)$ is in RUD log and each of ξ_1, \ldots, ξ_m is either a string in Σ^* or one of the variables y_1, \ldots, y_r, then the predicate R defined by

$$R(x, y_1, \ldots, y_r) \iff Q(x, \xi_1, \ldots, \xi_m)$$ is in RUD log.

Inductively, Q can be accepted by an alternating TM M in $\bigcup_k \Sigma_k \text{Time}(\log n)$. Note that r and m are constants here and ξ_1, \ldots, ξ_m depend only on y_1, \ldots, y_n and not on x. Therefore, the conversion of y_1, \ldots, y_n into ξ_1, \ldots, ξ_m only requires a finite amount of information that can be supplied to an ATM in its finite control.

Let f be a function that converts strings of the form x, y_1, \ldots, y_r into x, ξ_1, \ldots, ξ_m. If we can show that f can be computed in LH, then we can use the fact that LH functions are closed under composition to conclude the proof for this case, using the inductive hypothesis. That is, we need to show that the language $A_f = \{ c \# i \# z : \text{the } i^{\text{th}} \text{ symbol of } f(z) \text{ is } c \}$ is in LH. (Note that, for well-formed inputs, z will be of the form x, y_1, \ldots, y_r.)
Consider an ATM M that behaves as follows:

On input $\$c\#i\#z$:

- M guesses all the marker positions in $\$c\#i\#z$ as well as in z itself (there is a constant number of these) and verifies them as in the previous cases.
- M uses the marker positions to compute $|z|$ and $|i|$. As in the previous cases, M guesses the contents of the c, i, and y_1, \ldots, y_r fields of the input, and checks that the guesses are correct.
- If $i \leq |z|$, accept iff the i^{th} bit of z is c. Otherwise, compute ξ_1, \ldots, ξ_m. Reject if $i > |x, \xi_1, \ldots, \xi_m|$; otherwise accept iff c is in position $i - |z|$ of ξ_1, \ldots, ξ_m. (It is easy to verify that there is ample time to perform these operations.)

5. If c is a positive integer, and $Q(x, y_1, \ldots, y_m, z)$ is in RUD_{\log}, then the predicates R and R' defined as follows are also in RUD_{\log}

$$R(x, y_1, \ldots, y_m) \iff (\exists z)[|z| \leq c \cdot \log |z| \land Q(x, y_1, \ldots, y_m, z)]$$

$$R'(x, y_1, \ldots, y_m) \iff (\forall z)[|z| \leq c \cdot \log |z| \Rightarrow Q(x, y_1, \ldots, y_m, z)]$$

Inductively, Q is accepted by some LH machine M. We construct a machine M' accepting R'. On input $\$x, y_1, \ldots, y_m$, M' starts off by getting the marker positions as in the previous cases. Then it universally verifies that for all z with $|z| \leq c \cdot \log |z|$, M accepts $\$x, y_1, \ldots, y_m, z$. To see that this is possible, note that M consults its input only at the end of a computation branch. As soon as M goes into input mode and has j written on its index tape, M' either consults the j^{th} symbol of its input, or reads the symbol in position $j - |x, y_1, \ldots, y_m|$ of z.

A similar argument, using existential branching, shows that R is in LH.

(\subseteq) To prove this inclusion, let $L \in \text{FO}$. Therefore, there exists a sentence in Prenex Normal Form

$$\eta = (Q_1 j_1)(Q_2 j_2) \cdots (Q_m j_m) \phi(j_1, \ldots, j_m)$$
such that \(\forall x \)

\[
x \in L \iff x \models (Q_1 j_1)(Q_2 j_2) \cdots (Q_m j_m) \phi(j_1, \ldots, j_m)
\]

where each \(Q_i \) is a quantifier (\(\exists \) or \(\forall \)).

We will show that for each such \(\eta \) (and its associated \(\phi \)) there is a \(\text{RUD}_{\log} \) predicate \(R_\phi \) such that for each string \(x \),

\[
x \models (Q_1 j_1)(Q_2 j_2) \cdots (Q_m j_m) \phi(j_1, \ldots, j_m)
\]

if and only if

\[
(Q'_1 y_1)(Q'_2 y_2) \cdots (Q'_m y_m) R_\phi(x, y_1, \ldots, y_m)
\]

where each \(Q'_i \) ranges over all binary strings of length at most \(\log |x| + 1 \) and is the same type (existential or universal) as \(Q_i \). By the closure properties of \(\text{RUD}_{\log} \), and by the fact that the length of each \(y_i \) is bounded, it follows that since \(R_\phi \) is in \(\text{RUD}_{\log} \), \(L \) is also in \(\text{RUD}_{\log} \), and the proof is complete. It remains only to construct \(R_\phi \).

The formula \(\phi \) is built up from the primitive predicates \(=, <, X, \) and \(\text{BIT} \), and from the constants 1 and \(n \). Clearly, it will suffice to show that each of these primitive predicates is “equivalent” in the same sense to a relation in \(\text{RUD}_{\log} \). For example, we will show that there is a relation \(S \) in \(\text{RUD}_{\log} \) such that, for every string \(x \), and for any numbers \(j_1 \) and \(j_2 \) (that represent positions in \(x \)), the primitive predicate \(j_1 < j_2 \) is true iff the relation \(S(x, y_1, y_2) \) holds, where \(y_1 \) and \(y_2 \) are binary strings of length at most \(\log |x| + 1 \) representing the numbers \(j_1 \) and \(j_2 \), respectively.

The constant 1 is explicitly definable in \(\text{RUD}_{\log} \), and Jones [Jon75] has already observed that the relations \(u + v = w, u \cdot v = w, u^v = w \) and \(|u| = w \) are all in \(\text{RUD}_{\log} \), so long as \(u, v, w \) are constrained to have length \(\leq c \cdot \log |x| \) for some \(c \). Thus the constant \(n \) is definable, since the relation \(|x| = j \) is equivalent to \((\sigma(x, j, 0) \lor \sigma(x, j, 1)) \land \neg(\sigma(x, j + 1, 0) \lor \sigma(x, j + 1, 1))\). It follows easily that the following set is in \(\text{RUD}_{\log} \):

\[
\{x, y_1, \ldots, y_m : \text{for each } i, |y_i| = \lceil \log |x| \rceil + 1 \}\].

Therefore for the rest of this proof, we will assume that all variables \(y_i \) refer to strings of exactly this length. (This will result in a few simplifications.)

Now we consider each of the primitive predicates in turn.
\[(j_1 = j_2) \iff (\forall i)[\sigma(y_1, i, 0) \iff \sigma(y_2, i, 0)] \]

\[(j_1 < j_2) \iff (\exists u)(\exists v)(\exists w)[Q(x, u, v, y_1) \land Q(x, u, w, y_2) \land \sigma(v, 1, 0) \land \sigma(w, 1, 1)] \]

This says that the binary representation of \(j_1 \) is \(uv \) and the binary representation \(j_2 \) is \(uw \) such that the most significant bits of \(v \) and \(w \) are 0 and 1 respectively. Note that the values taken by each of the variables \(u, v, w \) have lengths \(\leq \log |z| \).

\[X(j_1) \leftrightarrow \sigma(x, y_1, 1). \]

\[BIT(j_1, j_2) \leftrightarrow \sigma(y_2, y_1, 1). \]

This completes the proof.

We remark that standard translational techniques may be used to prove the following generalization of Theorem 7.1. Note that for the case of \(S(n) = n \), this is the well-known theorem of Wrathall [Wra78].

Corollary 7.2 For functions \(S \) such that the binary representation of \(S(n) \) can be computed from \(n \) in time \(O(S(n)) \), \(\text{RUD}_S = \bigcup_k \Sigma_k \text{time}(S(n)) \).

7.2 Reducibilities

Jones defined \(\text{RUD}_{\log} \) as a first step towards defining a very restrictive notion of reducibility. Jones took the familiar notion of a many-one reduction (namely, \(f \) reduces \(A \) to \(B \) if \(x \in A \iff f(x) \in B \)), and imposed the restriction that \(f \) be log-bounded rudimentary. There was one additional restriction that Jones imposed in defining his logspace-rudimentary reducibility (denoted \(\leq_{\log}^\text{rd} \); he required that there be some constant \(c \) such that for all \(x \), \(\log |f(x)| = c \cdot \log |x| \). In [Jon75], Jones comments that this final restriction is stronger than the more natural restriction of simply having \(f \) have polynomial growth rate, but explains that it “seems to be necessary” in order to have the \(\leq_{\log}^\text{rd} \) relation be transitive (i.e., in order for the composition of two log-bounded rudimentary functions to be log-bounded rudimentary). However by Theorem 7.1 we see that for functions \(f \) with polynomial growth rate, \(f \) is log-bounded rudimentary iff \(f \) is in LH. Since the composition of two functions in LH is easily seen to be in
LH, it follows that Jones' rationale for imposing the stronger length requirement was unfounded.

Another closely related type of reducibility is the class of first order translations introduced by Immerman in [Imm83]. (A more complete definition, modified to allow the BIT predicate as a primitive, is presented in [Imm87]. We use that definition in the following discussion.) In Immerman's formulation, a first-order translation takes as input a structure on \{1, n\} and outputs a structure on \{1, n^k\}, where elements of \{1, n^k\} are identified with \(k\)-tuples of elements from \{1, n\}. Since the input and output structures may consist of many relations of different arity, there are polynomials \(p\) and \(q\) such that the length of the encoding of the input structure is \(p(n)\) and the length of the encoding of the output structure is \(q(n)\). As Immerman has observed in [Imm87], a first-order translation may be viewed as a many-one reduction computed by dlogtime-uniform \(AC^0\) circuits. Indeed, the only differences among (1) logspace-rudimentary reducibility as defined by Jones, (2) first-order translations as defined by Immerman, and (3) functions computed by dlogtime-uniform \(AC^0\) circuits, is in the allowable relations between the input and output lengths. For (1) inputs of length \(n\) are mapped to inputs of length \(n^k\), for (2) inputs of length \(n\) are mapped to inputs of length \(q(p^{-1}(n))\) for some polynomials \(p\) and \(q\), and for (3) the only limitations are the implicit limitations imposed by the uniformity condition.
Chapter 8
Conclusion

In this thesis we have studied the power of uniform constant depth circuits. In particular, we studied the classes AC^0 and ACC and proved upper and lower bounds for them. We have shown that uniform ACC type circuits of subexponential size cannot compute the permanent function. We have also proved a somewhat weaker bound for certain sets in PP and in C_mP by showing that these sets cannot be recognized by uniform ACC type circuit families of susbsubexponential size. The proofs are based on a simulation of ACC given by Beigel and Tarui in [BT91]. We have shown how to carry out this simulation in the setting of uniform circuits. Some of the obvious open problems are:

- Is uniformity really necessary? Our lower bound proofs work only in the uniform setting. Can we prove a lower bound for the permanent with respect to nonuniform ACC circuits? Note that it is still unknown if $\text{Ntime} \left(2^{o(n)} \right)$ contains sets that are not accepted by nonuniform ACC circuit families.

- The lower bound that we have for PP is not quite as strong as the one for the permanent. Can it be improved? Even though the permanent function seems to provide more information about the number of accepting paths of NP machines (the permanent gives us all the bits whereas PP only gives us the most significant bit) we still think that a subexponential lower bound can be proved for PP as well.

- In Corollary 3.3 we prove that ACC is properly contained in PP. It would be interesting to see if this result translates upwards to exponential analogs of ACC and PP. The exponential size analog of ACC has been considered before. In
[GKT92], Green, Köbler and Torán define the class ModPH (see Definition 2.10). It is not hard to see that ModPH = ACC(2^{n^{O(1)}}). We can also show that ModPH is precisely the class of languages accepted by polynomial time ATM's with \exists, \forall and MOD states (cf. Definition 2.7) that make a constant number of alternations. It would be interesting if we can show that ModPH \subseteq \text{PrTime}(2^{n^{O(1)}}) using the fact that ACC \subseteq PP. Our results (as well as the results in [GKT92]) imply that ModPH \subseteq P^PP.

It should be emphasized that our results about the complexity of PERM do not rely on any unproven complexity-theoretic assumptions. This is in contrast to other results such as [FL92], which proves stronger intractability results about PERM under the hypothesis that the polynomial hierarchy is infinite.

Let SYM\(^+\) denote the class of Boolean functions computable by depth two circuit families of size \(2^{(\log n)^{O(1)}}\) where the circuits have a symmetric gate at the root and AND gates of fan-in \((\log n)^{O(1)}\) at the next level. This is exactly the class of Boolean functions \(f\) such that \(f(x_1, x_2, \ldots, x_n)\) can be expressed as \(h_n(p_n(x_1, x_2, \ldots, x_n))\) for some polynomial \(p_n\) over \(\mathbb{Z}\) of degree \((\log n)^{O(1)}\) and norm (the sum of the absolute values of its coefficients) \(2^{(\log n)^{O(1)}}\) and some function \(h_n : \mathbb{Z} \rightarrow \{0, 1\}\). Beigel and Tarui [BT91] showed\(^1\) that ACC \(\subseteq\) SYM\(^+\) in the nonuniform setting. The techniques used in the proof of Theorem 3.1 enable us to show that ACC \(\subseteq\) SYM\(^+\) holds in the setting of uniform circuits as well. Theorem 3.2 then gives us the following immediate corollary:

Corollary 8.1 There is a set \(Y \in PP\) such that uniform SYM\(^+\) \(\subseteq\) Dtime\((n^2)^Y\).

It would be interesting to see if our techniques can be used to prove lower bounds for uniform SYM\(^+\). For example, it is not obvious that our techniques can be used to show that there is something in PP that is not in uniform SYM\(^+\).

In this thesis we also began an investigation into the immunity properties of AC\(^0\) and other circuit complexity classes. In addition to observing that there are sets in

\(^1\)In [BT91], the class SYM\(^+\) was called SYMMC. The name SYM\(^+\) has been suggested by Barrington in his recent survey [Bar92]. Beigel, Tarui and Toda have used the name SYM\(^+\) in their recent paper [BTT92] as well.
superlogarithmic deterministic space classes and superpolynomial deterministic time classes, we have also shown that there are sets in P^{PP} that are immune to AC^0. In fact, we have shown that P^{PP} contains sets that are immune to $ACC(subexp)$ (Theorem 4.3). Corollary 8.1 trivially implies that P^{PP} contains sets that are immune to uniform SYM^+. In [BTT92], Beigel, Tarui and Toda have considered augmented ACC circuit families where the circuits are allowed to have probabilistic inputs and are also allowed to have an exact-threshold gate as the output gate (an exact-threshold gate outputs 1 if exactly k of its inputs are 1, where k is a parameter; it outputs 0 otherwise). They are able to show that every Boolean function computed by these augmented ACC circuits is still in SYM^+. Since it seems that the results of [BTT92] also hold in the setting of uniform circuits, it follows that P^{PP} contains sets that are immune to the augmented version of ACC as well.

We also show that it would represent a significant advance if one were able to prove the existence (or nonexistence) of sets in NP that are immune to AC^0. Any answer to the question

Are there sets in NP that are immune to AC^0?

yields non-relativizing proof techniques for attacking questions concerning deterministic and nondeterministic time-bounded computation.

Earlier work by Impagliazzo and Naor [IN88] showed that many relationships among very small complexity classes (such as $Dtime((\log n)^{O(1)})$ and $Ntime((\log n)^{O(1)})$) cannot be resolved without first answering long-standing questions such as whether $P = NP \cap \text{co-NP}$. However, this is the first time that questions about very small complexity classes like AC^0 have been shown to have a bearing on questions about fairly large classes like E and NE.

In Theorem 3.2, we have shown that there is a set Y in PP such that $ACC(subexp)$ is contained in $Dtime(n^2)^Y$ and we used this result to prove Theorem 4.3. It is an interesting open question if there is any set Y' in the polynomial hierarchy such that $ACC(subexp)$ (or even AC^0) can be recognized in deterministic time n^k relative to Y', for some k. If so, then there are sets in the polynomial hierarchy that are immune to $ACC(subexp)(AC^0)$. However, this would also have significant consequences concerning
the complexity of the rudimentary sets.

Proposition 8.2 If there is a set L in the polynomial hierarchy and a constant b such that $\text{AC}^0 \subseteq \text{Dtime}(n^b)^L$, then there exist constants c and l such that $\bigcup_k \Sigma_k \text{Time}(n) \subseteq \Sigma_l \text{Time}(2^{cn})$.

The proof follows quite easily from the result in Proposition 5.3. However, the conclusion of Proposition 8.2 is a much better inclusion than is known to hold, and it is reasonable to conjecture that this inclusion fails relative to some oracle, but this is not known to be the case.

Recall that $\text{AC}^0 = \text{FO} + < + \text{BIT}$. One reason it seems unlikely that this class would be contained in $\text{Dtime}(n^k)$ for any fixed k, is that a first order formula with $k+1$ quantifiers, with variables ranging over the set $\{1, \ldots, n\}$ cannot be evaluated in any straightforward way in time less than n^{k+1}. However, it should be noted that the class $\text{FO} + <$ is exactly the star-free regular sets, and thus each language in that class has a linear time algorithm [MP71] (see also [Lad77]). Some (but clearly not all) of the combinatorial techniques that are used to prove this characterization of $\text{FO} + <$ apply also to the system $\text{FO} + < + \text{BIT}$. It seems possible that techniques could be developed in this setting to prove non-relativizing results, using the logic-based characterizations of uniform AC^0.

In this thesis we also considered the log-bounded rudimentary predicates defined by Jones in [Jon75] and we have shown that they correspond exactly to the class of sets accepted by dlogtime-uniform AC^0 circuits. Thus Jones was probably the first to study this complexity class, which has loomed large in importance in recent years. We believe that this augments the (already compelling) arguments of [BIS90] in favor of using the dlogtime-uniformity condition when studying small circuit complexity classes.

It is instructive to note some of the open questions posed by Jones in [Jon75]. He mentions on more than one occasion the question of whether or not $\text{RUD}_S = \text{Dspace}(S(n))$, and he explicitly considers the possibility that $\text{RUD}_{\text{log}} = \text{Nspace}(\log n)$ ([Jon75, Theorem 23]). However, the results of [H\a{s}87, Yao85] show that for any function S such that for all c, $S(n) = o(n^c)$, the PARITY language is in $\text{REG} - \text{RUD}_S$.
(Here, REG denotes the class of regular sets.) However, any generalization of this result for larger functions S will require entirely different techniques and will have to take uniformity into account in some way, since the techniques of [Nep70] (see also [Vol83]) show that for each $\epsilon > 0$, NLOG \subseteq RUD$_{n,\epsilon}$, and it follows from [Wra78] that RUD$_{n,\epsilon}$ contains complete sets for each level of the polynomial hierarchy. Thus the question of whether or not RUD$_{n,\epsilon} =$ Dspace(n^ϵ) remains an interesting open problem. Note, however, that an affirmative answer would imply that the polynomial hierarchy is equal to PSPACE.
References

[AG93] E. Allender and V. Gore. On strong separations from AC^0. Accepted for publication in the DIMACS-AMS Special Volume on Complexity Theory, 1993.

Vita

Vivek Gore

1983 Graduated from Colvin Taluqdar’s College, Lucknow, India.
1983-87 Attended Indian Institute of Technology, Kanpur, India.
1987 B.Tech. in Computer Science, Indian Institute of Technology, Kanpur, India.
1987-92 Graduate work in Computer Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.
1989 M.S. in Computer Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.
1993 Ph.D. in Computer Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey.