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1 Introduction

Computational complexity is the study of the difficulty of solving computational problems, in terms of the
required computational resources, such as time and space (memory). Whereas the analysis of algorithms
focuses on the time or space requirements of an individual algorithm for a specific problem (such as sorting),
complexity theory focuses on the complexity class of problems solvable in the same amount of time or
space. Most common computational problems fall into a small number of complexity classes. Two important
complexity classes are P, the set of problems that can be solved in polynomial time, and NP, the set of
problems whose solutions can be verified in polynomial time.

By quantifying the resources required to solve a problem, complexity theory has profoundly affected our
thinking about computation. Computability theory establishes the existence of undecidable problems, which
cannot be solved in principle regardless of the amount of time invested. However, computability theory fails
to find meaningful distinctions among decidable problems. In contrast, complexity theory establishes the
existence of decidable problems that, although solvable in principle, cannot be solved in practice, because
the time and space required would be larger than the age and size of the known universe [Stockmeyer and
Chandra, 1979]. Thus, complexity theory characterizes the computationally feasible problems.

The quest for the boundaries of the set of feasible problems has led to the most important unsolved ques-
tion in all of computer science: Is P different from NP? Hundreds of fundamental problems, including many
ubiquitous optimization problems of operations research, are NP-complete; they are the hardest problems
in NP. If someone could find a polynomial-time algorithm for any one NP-complete problem, then there
would be polynomial-time algorithms for all of them. Despite the concerted efforts of many scientists over
several decades, no polynomial-time algorithm has been found for any NP-complete problem. Although we
do not yet know whether P is different from NP, showing that a problem is NP-complete provides strong
evidence that the problem is computationally infeasible and justifies the use of heuristics for solving the
problem.

In this chapter, we define P, NP, and related complexity classes. We illustrate the use of diagonalization
and padding techniques to prove relationships between classes. Next, we define NP-completeness, and we
show how to prove that a problem is NP-complete. Finally, we define complexity classes for probabilistic
and interactive computations.

Throughout this chapter, all numeric functions take integer arguments and produce integer values. All
logarithms are taken to base 2. In particular, log n means [log, 2].

!Supported by the National Science Foundation under Grants CCF-0832787 and CCF-1064785.
2Supported by the National Science Foundation under Grants IIS-0832843, CNS-0851957, and DUE-1044207.
3Supported by the National Science Foundation under Grant CCR-9821040.



2 Models of Computation

To develop a theory of the difficulty of computational problems, we need to specify precisely what a problem
is, what an algorithm is, and what a measure of difficulty is. For simplicity, complexity theorists have
chosen to represent problems as languages (i.e., as sets of strings of symbols), to model algorithms by off-
line multitape Turing machines, and to measure computational difficulty by the time and space required
by a Turing machine. To justify these choices, some theorems of complexity theory show how to translate
statements about, say, the time complexity of language recognition by Turing machines into statements
about computational problems on more realistic models of computation. These theorems imply that the
principles of complexity theory are not artifacts of Turing machines, but instead are intrinsic properties of
computation.

This section defines different kinds of Turing machines. The deterministic Turing machine models
actual computers. The nondeterministic Turing machine is not a realistic model, but it helps classify the
complexity of important computational problems. The alternating Turing machine models a form of parallel
computation, and it helps elucidate the relationship between time and space.

2.1 Computational Problems and Languages

Computer scientists have invented many elegant formalisms for representing data and control structures.
Fundamentally, all representations are patterns of symbols. Therefore, we represent an instance of a com-
putational problem as a sequence of symbols.

Let X be a finite set, called the alphabet. A word over Y is a finite sequence of symbols from 3.
Sometimes a word is called a string. Let ¥* denote the set of all words over . For example, if ¥ = {0,1},
then

¥*=4{\0,1,00,01,10, 11, 000, ...}

is the set of all binary words, including the empty word A. The length of a word w, denoted by |w|, is the
number of symbols in w. A language over 3. is a subset of >.*.

A decision problem is a computational problem whose answer is simply yes or no. For example: Is
the input graph connected? or Is the input a sorted list of integers? A decision problem can be expressed
as a membership problem for a language A: for an input x, does = belong to A? For a language A that
represents connected graphs, the input word = might represent an input graph G, and x € A if and only if
G is connected.

For every decision problem, the representation should allow for easy parsing, to determine whether a
word represents a legitimate instance of the problem. Furthermore, the representation should be concise. In
particular, it would be unfair to encode the answer to the problem into the representation of an instance of the
problem; for example, for the problem of deciding whether an input graph is connected, the representation
should not have an extra bit that tells whether the graph is connected. A set of integers S = {x1,..., 2, } is
represented by listing the binary representation of each x;, with the representations of consecutive integers
in S separated by a nonbinary symbol. A graph is naturally represented by giving either its adjacency matrix
or a set of adjacency lists, where the list for each vertex v specifies the vertices adjacent to v.

Whereas the solution to a decision problem is yes or no, the solution to an optimization problem is
more complicated; for example, determine the shortest path from vertex « to vertex v in an input graph G.
Nevertheless, for every optimization (minimization) problem, with objective function g, there is a corre-
sponding decision problem that asks whether there exists a feasible solution z such that g(z) < k, where
k is a given target value. Clearly, if there is an algorithm that solves an optimization problem, then that
algorithm can be used to solve the corresponding decision problem. Conversely, if algorithm solves the
decision problem, then with a binary search on the range of values of g, we can determine the optimal value.
Moreover, using a decision problem as a subroutine often enables us to construct an optimal solution; for
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Figure 1: A 2-tape Turing machine.

example, if we are trying to find a shortest path, we can use a decision problem that determines if a shortest
path starting from a given vertex uses a given edge. Therefore, there is little loss of generality in considering
only decision problems, represented as language membership problems.

2.2 Turing Machines

This subsection and the next three give precise, formal definitions of Turing machines and their variants.
These subsections are intended for reference. For the rest of this chapter, the reader need not understand
these definitions in detail, but may generally substitute “program” or “computer” for each reference to
“Turing machine”.

A k-worktape Turing machine M consists of the following:

e A finite set of states (), with special states gg (initial state), ¢4 (accept state), and gp (reject state).
e A finite alphabet X, and a special blank symbol o & 3.

e The k + 1 linear tapes, each divided into cells. Tape O is the input tape, and tapes 1,.. .,k are the
worktapes. Each tape is infinite to the left and to the right. Each cell holds a single symbol from
¥ U {o}. By convention, the input tape is read only. Each tape has an access head, and at every
instant, each access head scans one cell. See Fig. 1.

e A finite transition table §, which comprises tuples of the form

! / /
(q,50,S15--+5k:,q 581, S do, d1, . .., d)



where ¢, ¢’ € @, each s;, s, € XU {0}, and each d; € {—1,0,+1}.

A tuple specifies a step of M: if the current state is ¢, and sg, S1, - . ., S; are the symbols in the cells
scanned by the access heads, then M replaces s; by s, fori = 1, ..., k simultaneously, changes state
to ¢/, and moves the head on tape 7 one cell to the left (d; = —1) or right (d; = +1) or not at all
(d; = 0)fort = 0,...,k. Note that M cannot write on tape O, that is, M/ may write only on the

worktapes, not on the input tape.

e No tuple contains g4 or g as its first component. Thus, once M enters state g4 or state gg, it stops.

e Initially, M is in state ¢g, an input word in X* is inscribed on contiguous cells of the input tape, the
access head on the input tape is on the leftmost symbol of the input word, and all other cells of all
tapes contain the blank symbol o.

The Turing machine M that we have defined is nondeterministic: 6 may have several tuples with the
same combination of state ¢ and symbols sg, S1, ..., Sk as the first £ + 2 components, so that M may have
several possible next steps. A machine M is deterministic if for every combination of state ¢ and symbols
S0, 81, - - - , Sk, at most one tuple in § contains the combination as its first k£ + 2 components. A deterministic
machine always has at most one possible next step.

A configuration of a Turing machine M specifies the current state, the contents of all tapes, and the
positions of all access heads.

A computation path is a sequence of configurations Cy, C1,...,Cy, ..., where Cj is the initial config-
uration of M, and each C)j1 follows from C); in one step by applying the changes specified by a tuple in J.
If no tuple is applicable to Cy, then C} is terminal, and the computation path is halting. If M has no infinite
computation paths, then M always halts.

A halting computation path is accepting if the state in the last configuration C} is q4; otherwise it is
rejecting. By adding tuples to the program if needed, we can ensure that every rejecting computation ends
in state gr. This leaves the question of computation paths that do not halt. In complexity theory we rule
this out by considering only machines whose computation paths always halt. M accepts an input word x
if there exists an accepting computation path that starts from the initial configuration in which z is on the
input tape. For nondeterministic M, it does not matter if some other computation paths end at gr. If M is
deterministic, then there is at most one halting computation path, hence at most one accepting path.

The language accepted by M, written L(M ), is the set of words accepted by M. If A = L(M), and M
always halts, then M decides A.

In addition to deciding languages, deterministic Turing machines can compute functions. Designate
tape 1 to be the output tape. If M halts on input word z, then the nonblank word on tape 1 in the final
configuration is the output of M. A function f is computable if there exists a deterministic Turing machine
M that always halts such that for each input word z, the output of M is the value of f(x).

Almost all results in complexity theory are insensitive to minor variations in the underlying computa-
tional models. For example, we could have chosen Turing machines whose tapes are restricted to be only
one-way infinite or whose alphabet is restricted to {0,1}. It is straightforward to simulate a Turing machine
as defined by one of these restricted Turing machines, one step at a time: each step of the original machine
can be simulated by O(1) steps of the restricted machine.

2.3 Universal Turing Machines

Chapter *** CHAPTER REFERENCE: FORMAL MODELS AND COMPUTABILITY *** stated that
there exists a universal Turing machine U, which takes as input a string (M, x) that encodes a Turing
machine M and a word x, and simulates the operation of M on xz, and U accepts (M, z) if and only if M



accepts x. For our purposes here, we also need that U simulates M efficiently: A theorem of Hennie and
Stearns [1966] implies that the machine U can be constructed to have only two worktapes, such that U can
simulate any ¢ steps of M in only O(¢log t) steps of its own, using only O(1) times the worktape cells used
by M. The constants implicit in these big-O bounds may depend on M.

We can think of U with a fixed M as a machine Uj; and define L(Uy;) = {z : U accepts (M, x)}.
Then L(Ups) = L(M). If M always halts, then Uy always halts, and if M is deterministic, then Uy, is
deterministic.

2.4 Alternating Turing Machines

By definition, a nondeterministic Turing machine M accepts its input word x if there exists an accepting
computation path, starting from the initial configuration with x on the input tape. Let us call a configuration
C accepting if there is a computation path of M that starts in C' and ends in a configuration whose state is
qa. Equivalently, a configuration C' is accepting if either the state in C' is g4 or there exists an accepting
configuration C’ reachable from C by one step of M. Then M accepts x if the initial configuration with
input word z is accepting.

The alternating Turing machine generalizes this notion of acceptance. In an alternating Turing machine
M, each state is labeled either existential or universal. (Do not confuse the universal state in an alternating
Turing machine with the universal Turing machine.) A nonterminal configuration C' is existential (respec-
tively, universal) if the state in C' is labeled existential (universal). A terminal configuration is accepting if its
state is 4. A nonterminal existential configuration C' is accepting if there exists an accepting configuration
(' reachable from C by one step of M. A nonterminal universal configuration C is accepting if for every
configuration C” reachable from C' by one step of M, the configuration C” is accepting. Finally, M accepts
x if the initial configuration with input word x is an accepting configuration.

A nondeterministic Turing machine is thus a special case of an alternating Turing machine in which
every state is existential.

The computation of an alternating Turing machine M alternates between existential states and universal
states. Intuitively, from an existential configuration, M guesses a step that leads toward acceptance; from
a universal configuration, M checks whether each possible next step leads toward acceptance—in a sense,
M checks all possible choices in parallel. An alternating computation captures the essence of a two-player
game: player 1 has a winning strategy if there exists a move for player 1 such that for every move by
player 2, there exists a subsequent move by player 1, etc., such that player 1 eventually wins.

2.5 Oracle Turing Machines

Complexity theoreticians have found it very useful to have a mechanism to describe when it is helpful to
have a subroutine for some problem A, when trying to solve another problem. The language A is called an
oracle. Conceptually, an algorithm queries the oracle whether a word w is in A, and it receives the correct
answer in one step.

An oracle Turing machine is a Turing machine M with a special oracle tape and special states QUERY,
YES, and NO. The computation of the oracle Turing machine M#, with oracle language A, is the same as
that of an ordinary Turing machine, except that when M enters the QUERY state with a word w on the oracle
tape, in one step, M enters either the YES state if w € A or the NO state if w ¢ A. Furthermore, during this
step, the oracle tape is erased, so that the time for setting up each query is accounted separately.



3 Resources and Complexity Classes

In this section, we define the measures of difficulty of solving computational problems. We introduce
complexity classes, which enable us to classify problems according to the difficulty of their solution.

3.1 Time and Space

We measure the difficulty of a computational problem by the running time and the space (memory) require-
ments of an algorithm that solves the problem.

We express the complexity of a problem, in terms of the growth of the required time or space, as a
function of the length n of the input word that encodes a problem instance. We consider the worst-case
complexity, that is, for each n, the maximum time or space required among all inputs of length n.

Let M be a Turing machine that always halts. The time taken by M on input word x, denoted by
Timeys(z), is defined as follows:

e If M accepts x, then Time, () is the number of steps in the shortest accepting computation path for
x.

o If M rejects x, then Timej; () is the number of steps in the longest computation path for z.

For a deterministic machine M, for every input x, there is at most one halting computation path, and its
length is Time/(x). For a nondeterministic machine M, if € L(M), then M can guess the correct steps
to take toward an accepting configuration, and Times(z) measures the length of the path on which M
always makes the best guess.

The space used by a Turing machine M on input z, denoted Space,;(x), is defined as follows. The
space used by a halting computation path is the number of worktape cells visited by the worktape heads of
M during the computation path. Because the space occupied by the input word is not counted, a machine
can use a sublinear (o(n)) amount of space.

e If M accepts x, then Space,,(x) is the minimum space used among all accepting computation paths
for x.

o If M rejects x, then Space,;(x) is the maximum space used among all computation paths for .
The time complexity of a machine M is the function
t(n) = max{Timey;(x) : |z| = n}

We assume that M reads all of its input word, and the blank symbol after the right end of the input word, so
t(n) > n + 1. The space complexity of M is the function

s(n) = max{Space,,(z) : |z| = n}

Because few interesting languages can be decided by machines of sublogarithmic space complexity, we
henceforth assume that s(n) > log n.

A function f(z) is computable in polynomial time if there exists a deterministic Turing machine M of
polynomial time complexity such that for each input word x, the output of M is f(z).



3.2 Complexity Classes

Having defined the time complexity and space complexity of individual Turing machines, we now define
classes of languages with particular complexity bounds. These definitions will lead to definitions of P and
NP.

Let t(n) and s(n) be numeric functions. Define the following classes of languages.

e DTIME[t(n)] is the class of languages decided by deterministic Turing machines of time complexity

O(t(n)).

e NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines of time com-
plexity O(t(n)).

e DSPACE[s(n)] is the class of languages decided by deterministic Turing machines of space complex-
ity O(s(n)).

e NSPACE[s(n)] is the class of languages decided by nondeterministic Turing machines of space com-
plexity O(s(n)).

We sometimes abbreviate DTIME[t(n)] to DTIME[¢] (and so on) when ¢ is understood to be a function, and
when no reference is made to the input length n.
The following are the canonical complexity classes:

e L = DSPACE[log n] (deterministic log space)
e NL = NSPACE[log n] (nondeterministic log space)
e P =DTIME[nOW)] = Ur>1 DTIME[n*] (polynomial time)

NP = NTIME[r°(M] = Uk>1 NTIME[n*] (nondeterministic polynomial time)

PSPACE = DSPACE[n°()] = Uk>1 DSPACE[n*] (polynomial space)

E = DTIME[2°(")] = |-, DTIME[%"]

NE = NTIME[2°(")] = .-, NTIME[k"]
o EXP = DTIME[2"""] = |J;.», DTIME[2""] (deterministic exponential time)

e NEXP = NTIME[2”O(1)] = U1 NTIME[2”k] (nondeterministic exponential time)

The class PSPACE is defined in terms of the DSPACE complexity measure. By Savitch’s Theorem
(see Theorem 4.2), the NSPACE measure with polynomial bounds also yields PSPACE.

The class P contains many familiar problems that can be solved efficiently, such as (decision problem
versions of) finding shortest paths in networks, parsing for context-free languages, sorting, matrix multipli-
cation, and linear programming. Consequently, P has become accepted as representing the set of compu-
tationally feasible problems. Although one could legitimately argue that a problem whose best algorithm
has time complexity ©(n??) is really infeasible, in practice, the time complexities of the vast majority of
natural polynomial-time problems have low degrees: they have algorithms that run in O(n*) time or less.
Moreover, P is a robust class: though defined by Turing machines, P remains the same when defined by
other models of sequential computation. For example, random access machines (RAMs) (a more realistic



model of computation defined in Chapter *** CHAPTER REFERENCE: FORMAL MODELS AND COM-
PUTABILITY ***) can be used to define P, because Turing machines and RAMs can simulate each other
with polynomial-time overhead.

The class NP can also be defined by means other than nondeterministic Turing machines. NP equals the
class of problems whose solutions can be verified quickly, by deterministic machines in polynomial time.
Equivalently, NP comprises those languages whose membership proofs can be checked quickly.

For example, one language in NP is the set of satisfiable Boolean formulas, called SAT. A Boolean
formula ¢ is satisfiable if there exists a way of assigning true or false to each variable such that under
this truth assignment, the value of ¢ is true. For example, the formula z A (T V y) is satisfiable, but
x AY A (T Vy) is not satisfiable. A nondeterministic Turing machine M, after checking the syntax of ¢
and counting the number n of variables, can nondeterministically write down an n-bit 0-1 string a on its tape,
and then deterministically (and easily) evaluate ¢ for the truth assignment denoted by a. The computation
path corresponding to each individual a accepts if and only if ¢(a) = true, and so M itself accepts ¢ if and
only if ¢ is satisfiable; i.e., L(M) = SAT. Again, this checking of given assignments differs significantly
from trying to find an accepting assignment.

Another language in NP is the set of undirected graphs with a Hamiltonian circuit, i.e., a path of edges
that visits each vertex exactly once and returns to the starting point. If a solution exists and is given, its
correctness can be verified quickly. Finding such a circuit, however, or proving one does not exist, appears
to be computationally difficult.

The characterization of NP as the set of problems with easily verified solutions is formalized as follows:
A € NP if and only if there exist a language A’ € P and a polynomial p such that for every x, x € A if
and only if there exists a y such that |y| < p(|x|) and (z,y) € A’. Here, whenever z belongs to A, y is
interpreted as a positive solution to the problem represented by x, or equivalently, as a proof that x belongs
to A. The difference between P and NP is that between solving and checking, or between finding a proof of
a mathematical theorem and testing whether a candidate proof is correct. In essence, NP represents all sets
of theorems with proofs that are short (i.e., of polynomial length) and checkable quickly (i.e., in polynomial
time), while P represents those statements that can proved or refuted quickly from scratch.

Further motivation for studying L, NL, and PSPACE, comes from their relationships to P and NP.
Namely, L and NL are the largest space-bounded classes known to be contained in P, and PSPACE is the
smallest space-bounded class known to contain NP. (It is worth mentioning here that NP does not stand for
“non-polynomial time”; the class P is a subclass of NP.) Similarly, EXP is of interest primarily because it
is the smallest deterministic time class known to contain NP. The closely-related class E is not known to
contain NP.

4 Relationships Between Complexity Classes

The P versus NP question asks about the relationship between these complexity classes: Is P a proper subset
of NP, or does P = NP? Much of complexity theory focuses on the relationships between complexity
classes, because these relationships have implications for the difficulty of solving computational problems.
In this section, we summarize important known relationships. We demonstrate two techniques for proving
relationships between classes: diagonalization and padding.

4.1 Constructibility

The most basic theorem that one should expect from complexity theory would say, “If you have more
resources, you can do more.” Unfortunately, if we aren’t careful with our definitions, then this claim is false:



Theorem 4.1 (Gap Theorem) There is a computable, strictly increasing time bound t(n) such that
DTIME]t(n)] = DTIME[22"™] [Borodin, 1972].

That is, there is an empty gap between time #(n) and time doubly-exponentially greater than ¢(n), in the
sense that anything that can be computed in the larger time bound can already be computed in the smaller
time bound. That is, even with much more time, you can’t compute more. This gap can be made much larger
than doubly-exponential; for any computable r, there is a computable time bound ¢ such that DTIME[t(n)] =
DTIME[r(t(n))]. Exactly analogous statements hold for the NTIME, DSPACE, and NSPACE measures.

Fortunately, the gap phenomenon cannot happen for time bounds ¢ that anyone would ever be interested
in. Indeed, the proof of the Gap Theorem proceeds by showing that one can define a time bound ¢ such
that no machine has a running time that is between ¢(n) and 22" This theorem indicates the need for
formulating only those time bounds that actually describe the complexity of some machine.

A function ¢(n) is time-constructible if there exists a deterministic Turing machine that halts after
exactly t(n) steps for every input of length n. A function s(n) is space-constructible if there exists a
deterministic Turing machine that uses exactly s(n) worktape cells for every input of length n. (Most authors
consider only functions ¢(n) > n + 1 to be time-constructible, and many limit attention to s(n) > logn
for space bounds. There do exist sub-logarithmic space-constructible functions, but we prefer to avoid the
tricky theory of o(logn) space bounds.)

For example, t(n) = n+ 1 is time-constructible. Furthermore, if ¢;(n) and t2(n) are time-constructible,
then so are the functions ¢1 + t9, t1to, ttf, and ¢!t for every integer ¢ > 1. Consequently, if p(n) is a
polynomial, then p(n) = O(t(n)) for some time-constructible polynomial function ¢(n). Similarly, s(n) =
log n is space-constructible, and if s1(n) and sa(n) are space-constructible, then so are the functions s; + s,
5182, s1%, and ¢*! for every integer ¢ > 1. Many common functions are space-constructible: e.g., nlogn,
n3, 2" nl.

Constructibility helps eliminate an arbitrary choice in the definition of the basic time and space classes.
For general time functions ¢, the classes DTIME[t] and NTIME[¢] may vary depending on whether ma-
chines are required to halt within ¢ steps on all computation paths, or just on those paths that accept. If
t is time-constructible and s is space-constructible, however, then DTIME[¢], NTIME[t], DSPACE[s], and
NSPACE]s] can be defined without loss of generality in terms of Turing machines that always halt.

As a general rule, any function ¢(n) > n + 1 and any function s(n) > log n that one is interested in as
a time or space bound, is time- or space-constructible, respectively. As we have seen, little of interest can
be proved without restricting attention to constructible functions. This restriction still leaves a rich class of
resource bounds.

4.2 Basic Relationships

Clearly, for all time functions t(n) and space functions s(n), DTIME[t(n)] C NTIME[t(n)] and
DSPACE][s(n)] € NSPACE]|s(n)], because a deterministic machine is a special case of a nondetermin-
istic machine. Furthermore, DTIME[t(n)] C DSPACE[t(n)] and NTIME[t(n)] € NSPACE[t(n)], because
at each step, a k-tape Turing machine can write on at most & = O(1) previously unwritten cells. The next
theorem presents additional important relationships between classes.

Theorem 4.2 Let t(n) be a time-constructible function, and let s(n) be a space-constructible function,
s(n) > logn.

(a) NTIME[¢(n)] C DTIME[20(t(n)],
() NSPACE[s(n)] € DTIME[20(:(W)],
(c) NTIME[t(n)] € DSPACE[t(n)).



Figure 2: Inclusion relationships between the canonical complexity classes.

(d) (Savitch’s Theorem) NSPACE[s(n)] C DSPACE([s(n)?] [Savitch, 1970].

As a consequence of the first part of this theorem, NP C EXP. No better general upper bound on
deterministic time is known for languages in NP. See Figure 2 for other known inclusion relationships
between canonical complexity classes.

Although we do not know whether allowing nondeterminism strictly increases the class of languages
decided in polynomial time, Savitch’s Theorem says that for space classes, nondeterminism does not help
by more than a polynomial amount.

4.3 Complementation

For a language A over an alphabet ¥, define A to be the complement of A in the set of words over X: i.e.,
A = ¥* — A. For aclass of languages C, define co-C = { A : A € C}. If C = co-C, then C is closed under
complementation.

In particular, co-NP is the class of languages that are complements of languages in NP. For the language
SAT of satisfiable Boolean formulas, SAT is essentially the set of unsatisfiable formulas, whose value is
false for every truth assignment, together with the syntactically incorrect formulas. A closely related
language in cO-NP is the set of Boolean tautologies, namely, those formulas whose value is true for every
truth assignment. The question of whether NP equals co-NP comes down to whether every tautology has
a short (i.e., polynomial-sized) proof. The only obvious general way to prove a tautology ¢ in m variables
is to verify all 2" rows of the truth table for ¢, taking exponential time. Most complexity theorists believe
that there is no general way to reduce this time to polynomial, hence that NP # co-NP.
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Questions about complementation bear directly on the P vs. NP question. It is easy to show that P is
closed under complementation (see the next theorem). Consequently, if NP # co-NP, then P # NP.

Theorem 4.3 (Complementation Theorems) Let t be a time-constructible function, and let s be a space-
constructible function, with s(n) > logn for all n. Then

1. DTIMEL[t] is closed under complementation.
2. DSPACE]s] is closed under complementation.

3. NSPACE]s] is closed under complementation [Immerman, 1988; Szelepcsényi, 1988].

The Complementation Theorems are used to prove the Hierarchy Theorems in the next section.

4.4 Hierarchy Theorems and Diagonalization

A hierarchy theorem is a theorem that says “If you have more resources, you can compute more.” As we saw
in Section 4.1, this theorem is possible only if we restrict attention to constructible time and space bounds.
Next, we state hierarchy theorems for deterministic and nondeterministic time and space classes. In the
following, C denotes strict inclusion between complexity classes.

Theorem 4.4 (Hierarchy Theorems) Let t; and to be time-constructible functions, and let s; and so be
space-constructible functions, with s1(n), so(n) > logn for all n.

(a) Ifti(n)logti(n) = o(ta(n)), then DTIME[t;] C DTIME[t2].
(b) Ifti(n+ 1) = o(ta(n)), then NTIME[t;] C NTIME[t2] [Seiferas et al., 1978].
(c) If s1(n) = o(s2(n)), then DSPACE[s1] ¢ DSPACE|s2].
(d) If s1(n) = o(s2(n)), then NSPACE[s;] C NSPACE][s,].
As a corollary of the Hierarchy Theorem for DTIME,
P C DTIME[»'¢"] c DTIME[2"] C E;

hence we have the strict inclusion P C E. Although we do not know whether P C NP, there exists a
problem in E that cannot be solved in polynomial time. Other consequences of the Hierarchy Theorems are
NE c NEXP and NL c PSPACE.

In the Hierarchy Theorem for DTIME, the hypothesis on ¢1 and ¢ is ¢1(n) log t1(n) = o(t2(n)), instead
of t1(n) = o(ta(n)), for technical reasons related to the simulation of machines with multiple worktapes by
a single universal Turing machine with a fixed number of worktapes. Other computational models, such as
random access machines, enjoy tighter time hierarchy theorems.

All proofs of the Hierarchy Theorems use the technique of diagonalization. For example, the proof
for DTIME constructs a Turing machine M of time complexity ¢, that considers all machines My, Mo, . ..
whose time complexity is t1; for each ¢, the proof finds a word x; that is accepted by M if and only if
x; ¢ L(M;), the language decided by M;. Consequently, L(M), the language decided by M, differs from
each L(M;), hence L(M) ¢ DTIME[t;]. The diagonalization technique resembles the classic method used
to prove that the real numbers are uncountable, by constructing a number whose ;" digit differs from the
4™ digit of the j™ number on the list. To illustrate the diagonalization technique, we outline the proof of the
Hierarchy Theorem for DSPACE. In this subsection, (i, z) stands for the string 0°1x, and zeroes(y) stands
for the number of 0’s that a given string y starts with. Note that zeroes({(i, x)) = i.
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Proof. (of the DSPACE Hierarchy Theorem)

We construct a deterministic Turing machine M that decides a language A such that A € DSPACE|s3]—
DSPACE]s].

Let U be a deterministic universal Turing machine, as described in Section 2.3. On input x of length n,
machine M performs the following:

1. Lay out sy(n) cells on a worktape.
2. Let i = zeroes(x).

3. Simulate the universal machine U on input (i, z). Accept x if U tries to use more than so worktape
cells. (We omit some technical details, such as the way in which the constructibility of sy is used to
ensure that this process halts.)

4. If U accepts (i, x), then reject; if U rejects (i, x), then accept.

Clearly, M always halts and uses space O(s2(n)). Let A = L(M).

Suppose A € DSPACE][s; (n)]. Then there is some Turing machine ); accepting A using space at most
s1(n). Since the space used by U is O(1) times the space used by M}, there is a constant k£ depending only
on j (in fact, we can take k = |j|), such that U, on inputs z of the form z = (j, z), uses at most ks (|z|)
space.

Since s1(n) = o(s2(n)), there is an ng such that ksi(n) < sa(n) for all n > ng. Let  be a string of
length greater than ng such that the first j + 1 symbols of x are 0°1. Note that the universal Turing machine
U, oninput (j, z), simulates M; on input = and uses space at most ksi(n) < sa(n). Thus, when we consider
the machine M defining A, we see that on input = the simulation does not stop in step 3, but continues on
to step 4, and thus = € A if and only if U rejects (j, ). Consequently, M; does not accept A, contrary to
our assumption. Thus A ¢ DSPACE[s;(n)]. O

Although the diagonalization technique successfully separates some pairs of complexity classes, diago-
nalization does not seem strong enough to separate P from NP. (See Theorem 6.1 below.)

4.5 Padding Arguments

A useful technique for establishing relationships between complexity classes is the padding argument. Let
A be alanguage over alphabet X, and let # be a symbol not in . Let f be a numeric function. The f-padded
version of L is the language

A = {z#5™ .z € Aand n = |z|}.

That is, each word of A’ is a word in A concatenated with f(n) consecutive # symbols. The padded version
A’ has the same information content as A, but because each word is longer, the computational complexity
of A’ is smaller.

The proof of the next theorem illustrates the use of a padding argument.

Theorem 4.5 If P = NP, then E = NE [Book, 1974].

Proof. Since E C NE, we prove that NE C E.

Let A € NE be decided by a nondeterministic Turing machine M in at most ¢(n) = k™ time for some
constant integer k. Let A’ be the ¢(n)-padded version of A. From M, we construct a nondeterministic
Turing machine M’ that decides A’ in linear time: M’ checks that its input has the correct format, using

the time-constructibility of ¢; then M’ runs M on the prefix of the input preceding the first # symbol. Thus,
A" € NP.
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If P = NP, then there is a deterministic Turing machine D’ that decides A’ in at most p’(n) time for
some polynomial p’. From D’, we construct a deterministic Turing machine D that decides A, as follows.
On input = of length n, since (n) is time-constructible, machine D constructs z#*(™), whose length is
n + t(n), in O(t(n)) time. Then D runs D’ on this input word. The time complexity of D is at most
O(t(n)) + p/(n + t(n)) = 20 Therefore, NE C E. O

A similar argument shows that the E = NE question is equivalent to the question of whether NP — P
contains a subset of 1%, that is, a language over a single-letter alphabet.

S Reducibility and Completeness

In this section, we discuss relationships between problems: informally, if one problem reduces to another
problem, then in a sense, the second problem is harder than the first. The hardest problems in NP are the
NP-complete problems. We define NP-completeness precisely, and we show how to prove that a problem
is NP-complete. The theory of NP-completeness, together with the many known NP-complete problems,
is perhaps the best justification for interest in the classes P and NP. All of the other canonical complexity
classes listed above have natural and important problems that are complete for them; we give some of these
as well.

5.1 Resource-Bounded Reducibilities

In mathematics, as in everyday life, a typical way to solve a new problem is to reduce it to a previously
solved problem. Frequently, an instance of the new problem is expressed completely in terms of an instance
of the prior problem, and the solution is then interpreted in the terms of the new problem. For example,
the maximum matching problem for bipartite graphs reduces to the network flow problem (see Chapter ***
CHAPTER REFERENCE: GRAPH AND NETWORK PROBLEMS **%). This kind of reduction is called
many-one reducibility, and is defined below.

A different way to solve the new problem is to use a subroutine that solves the prior problem. For
example, we can solve an optimization problem whose solution is feasible and maximizes the value of an
objective function g by repeatedly calling a subroutine that solves the corresponding decision problem of
whether there exists a feasible solution x whose value g(x) satisfies g(x) > k. This kind of reduction is
called Turing reducibility, and is also defined below.

Let A; and As be languages. A; is many-one reducible to Ao, written A; <,, A, if there exists a
computable function f such that for all z, € A; if and only if f(x) € Ay. The function f is called the
transformation function. A; is Turing reducible to As, written A; <7 As, if A; can be decided by a
deterministic oracle Turing machine M using As as its oracle, i.e., Ay = L(M A2). (Computable functions
and oracle Turing machines are defined in Section 2). The oracle for As models a hypothetical efficient
subroutine for As.

If f or M above consumes too much time or space, the reductions they compute are not helpful. To study
complexity classes defined by bounds on time and space resources, it is natural to consider resource-bounded
reducibilities. Let A; and Ao be languages.

e Aj is Karp reducible to As, written A1 <, As,if A; is many-one reducible to A5 via a transforma-
tion function that is computable deterministically in polynomial time.

e A; is log-space reducible to Ao, written A; §i?lg Ao, if Ay is many-one reducible to A, via a
transformation function that is computable deterministically in O(logn) space.

e A is Cook reducible to Ao, written A; g’; Ao, if A; is Turing reducible to A, via a deterministic
oracle Turing machine of polynomial time complexity.
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The term “polynomial-time reducibility” usually refers to Karp reducibility. If A; <}, Ay and A5 <%,
Aj, then A and A, are equivalent under Karp reducibility. Equivalence under Cook reducibility is defined
similarly.

Karp and Cook reductions are useful for finding relationships between languages of high complexity, but
they are not useful at all for distinguishing between problems in P, because all problems in P are equivalent
under Karp (and hence Cook) reductions. (Here and later we ignore the special cases A1 = () and A; = X%,
and consider them to reduce to any language.) Since there are interesting distinctions to be made among
problems in P, it is useful to have a more restrictive notion of reducibility.

Log-space reducibility [Jones, 1975] is just such a notion. Although it is not known whether whether
log-space reducibility is different from Karp reducibility (just as it is not known whether L is a proper subset
of P), this is widely believed to be true. (However, in practice, most problems that can be shown to be
NP-complete under Karp reductions remain complete under log-space reductions.)

Theorem 5.1 Log-space reducibility implies Karp reducibility, which implies Cook reducibility:
1. If Ay <log A, then Ay <P, As.
2. If Ay <b, Ao, then Ay S’} As.
Theorem 5.2 Log-space reducibility, Karp reducibility, and Cook reducibility are transitive:
1. If Ay <% Ay and Ay <I8 As, then Ay <98 As.
2. If Ay <b, Ag and Ay <B, As, then A <b, As.
3. If Ay <. A and Ay <%, As, then Ay <7, As.

The key property of Cook and Karp reductions is that they preserve polynomial-time feasibility. Suppose
Ay <b, A, via a transformation f. If M> decides As, and M + computes f, then to decide whether an input
word z is in Ay, we may use M to compute f(x), and then run A, on input f(x). If the time complexities
of M5 and M are bounded by polynomials ¢5 and ¢, respectively, then on each input z of length n = ||,
the time taken by this method of deciding A, is at most ¢(n) + t2(t¢(n)), which is also a polynomial in
n. In summary, if Ay is feasible, and there is an efficient reduction from Ay to Ao, then A; is feasible.
Although this is a simple observation, this fact is important enough to state as a theorem (Theorem 5.3).
First, though, we need the concept of “closure.”

A class of languages C is closed under a reducibility <, if for all languages A; and Ao, whenever
Ay <, A and As € C, necessarily A; € C.

Theorem 5.3
1. P is closed under log-space reducibility, Karp reducibility, and Cook reducibility.
2. NP is closed under log-space reducibility and Karp reducibility.

3. L and NL are closed under log-space reducibility.

We shall see the importance of closure under a reducibility in conjunction with the concept of complete-
ness, which we define in the next section.
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5.2 Complete Languages

Let C be a class of languages that represent computational problems. A language Ag is C-hard under a
reducibility <, if for all Ain C, A <, Ag. A language Ag is C-complete under <, if Ay is C-hard, and
Ap € C. Informally, if Ay is C-hard, then Ay represents a problem that is at least as difficult to solve as any
problem in C. If Ay is C-complete, then in a sense, A is one of the most difficult problems in C.

There is another way to view completeness. Completeness provides us with tight lower bounds on the
complexity of problems. If a language A is complete for complexity class C, then we have a lower bound on
its complexity. Namely, A is as hard as the most difficult problem in C, assuming that the complexity of the
reduction itself is small enough not to matter. The lower bound is tight because A is in C; that is, the upper
bound matches the lower bound.

In the case C = NP, the reducibility <, is usually taken to be Karp reducibility unless otherwise stated.
Thus we say

e A language Ay is NP-hard if Ag is NP-hard under Karp reducibility.
e Ajis NP-complete if Aj is NP-complete under Karp reducibility.

Note, however, that some sources use the term “NP-hard” to refer to Cook reducibility.

Many important languages are now known to be NP-complete. Before we get to them, let us discuss
some implications of the statement “Aq is NP-complete,” and also some things this statement does not mean.

The first implication is that if there exists a deterministic Turing machine that decides A in polynomial
time—that is, if Ag € P—then because P is closed under Karp reducibility (Theorem 5.3 in Section 5.1), it
would follow that NP C P, hence P = NP. In essence, the question of whether P is the same as NP comes
down to the question of whether any particular NP-complete language is in P. Put another way, all of the
NP-complete languages stand or fall together: if one is in P, then all are in P; if one is not, then all are not.
Another implication, which follows by a similar closure argument applied to co-NP, is that if Ay € co-NP
then NP = co-NP. It is also believed unlikely that NP = co-NP, as was noted in Section 4.3 in connection
with whether all tautologies have short proofs.

A common misconception is that the above property of NP-complete languages is actually their defini-
tion, namely: if A € NP, and A € P implies P = NP, then A is NP-complete. This “definition” is wrong
if P £ NP. A theorem due to Ladner [1975] shows that P # NP if and only if there exists a language A’ in
NP — P such that A’ is not NP-complete. Thus, if P # NP, then A’ is a counterexample to the “definition.”

Another common misconception arises from a misunderstanding of the statement “If Ay is NP-complete,
then Ag is one of the most difficult problems in NP.” This statement is true on one level: if there is any
problem at all in NP that is not in P, then the NP-complete language A is one such problem. However,
note that there are NP-complete problems in NTIME[n|—and these problems are, in some sense, much
simpler than many problems in NTIME[nwsOO].

5.3 Cook-Levin Theorem

Interest in NP-complete problems started with a theorem of Cook [1971], proved independently by Levin
[1973]. Recall that SAT is the language of Boolean formulas ¢(z1, ..., 2,) such that there exists a truth
assignment to the variables z1, ..., z, that makes ¢ true.

Theorem 5.4 (Cook-Levin Theorem) SAT is NP-complete.
Proof. We know already that SAT is in NP, so to prove that SAT is NP-complete, we need to take an

arbitrary given language A in NP and show that A <, SAT. Take N to be a nondeterministic Turing
machine that decides A in polynomial time. Then the relation R(z,y) = “y is a computation path of N
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that leads it to accept 2” is decidable in deterministic polynomial time depending only on n = |z|. We can
assume that the length m of possible y’s encoded as binary strings depends only on n and not on a particular
T.

It is straightforward to show that there is a polynomial p and for each n a Boolean circuit C* with p(n)
wires, with n + m input wires labeled 1, ..., Z,,¥1, . . ., Ym and one output wire wg, such that C2(z, y)
outputs 1 if and only if R(z,y) holds. (We describe circuits in more detail below, and state a theorem for
this principle as Part 1. of Theorem 9.1.) Importantly, C itself can be designed in time polynomial in
n, and by the universality of NAND, may be composed entirely of binary NAND gates. Label the wires
by variables 1, ..., Zn, Y1, -, Ym, W0, W1, - - -, Wp(n)—n—m—1- Lhese become the variables of our Boolean
formulas. For each NAND gate g with input wires » and v, and for each output wire w of g, write down the
subformula

g =(uVwW)A(vVw)A(uVoVw).

This subformula is satisfied by precisely those assignments to u, v, w that give w = uw NAND v. The
conjunction ¢q of ¢, ., over the polynomially many gates g and their output wires w thus is satisfied only
by assignments that set every gate’s output correctly given its inputs. Thus for any binary strings x and
y of lengths n, m respectively, the formula ¢; = ¢¢ A wy is satisfiable by a setting of the wire variables
WO, W1, -+ + s Wp(n)—n—m—1 if and only if CE(z,y) = 1 -i.e., if and only if R(z, ) holds.

Now given any fixed z and taking n = |z|, the Karp reduction computes ¢; as above, and finally
outputs the Boolean formula ¢ obtained by substituting the bit-values of x into ¢;. This ¢ has variables
YLy« -+ s Ymy WO, W1, -+, Wp(n)—p—m—1, and the computation of ¢ from z runs in deterministic polynomial
time. Then x € A if and only if N accepts z, if and only if there exists y such that R(z,y) holds, if and
only if there exists an assignment to the variables wo, w1, . . ., Wy(n)—n—m—1 and Y1, . . . , Y that satisfies ¢,
if and only if ¢ € SAT. This shows A <}, SAT. O

We have actually proved that SAT remains NP-complete even when the given instances ¢ are restricted
to Boolean formulas that are a conjunction of clauses, where each clause consists of (here, at most three)
disjuncted literals. Such formulas are said to be in conjunctive normal form. Theorem 5.4 is also commonly
known as Cook’s Theorem.

5.4 Proving NP-Completeness

After one language has been proved complete for a class, others can be proved complete by constructing
transformations. For NP, if Ay is NP-complete, then to prove that another language A; is NP-complete, it
suffices to prove that A; € NP, and to construct a polynomial-time transformation that establishes Ag <},
Aj. Since Ag is NP-complete, for every language A in NP, A <, A, hence, by transitivity (Theorem 5.2),
A<h Ay

Beginning with Cook [1971] and Karp [1972], hundreds of computational problems in many fields of
science and engineering have been proved to be NP-complete, almost always by reduction from a problem
that was previously known to be NP-complete. The following NP-complete decision problems are fre-
quently used in these reductions—the language corresponding to each problem is the set of instances whose
answers are yes.

e 3-SATISFIABILITY (3SAT)

Instance: A Boolean expression ¢ in conjunctive normal form with three literals per clause [e.g.,
(WVaVY)AN(TVyVz)]

Question: Is ¢ satisfiable?
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e VERTEX COVER
Instance: A graph G and an integer k
Question: Does G have a set W of k vertices such that every edge in G is incident on a vertex of
w?
e CLIQUE
Instance: A graph G and an integer k

Question: Does G have a set U of k vertices such that every two vertices in U are adjacent in G?

e INDEPENDENT SET
Instance: A graph G and an integer &

Question: Does G have a set U of k vertices such that no two vertices in U are adjacent in G?

e HAMILTONIAN CIRCUIT
Instance: A graph G

Question: Does G have a circuit that includes every vertex exactly once?

e THREE-DIMENSIONAL MATCHING
Instance:  Sets W, X,Y with |W|=|X|=|Y|=q¢andasubset S C W x X xY

Question: s there a subset S’ C S of size ¢ such that no two triples in S’ agree in any coordinate?

e PARTITION
Instance: A set S of positive integers

Question: s there a subset S’ C S such that the sum of the elements of S’ equals the sum of the
elements of S — S'?

Note that our ¢ in the above proof of the Cook-Levin Theorem already meets a form of the definition of
3SAT relaxed to allow “at most 3 literals per clause.” Padding ¢ with some extra variables to bring up
the number in each clause to exactly three, while preserving whether the formula is satisfiable or not, is not
difficult, and establishes the NP-completeness of 3S AT. Below we use this in showing the NP-completeness
of INDEPENDENT SET.

Some NP-completeness proofs require only “minor adjustments” even between different-looking prob-
lems. Consider CLIQUE, INDEPENDENT SET, and VERTEX COVER. A graph G has a clique of size k if
and only if its complementary graph G’ has an independent set of size k. It follows that the function f
defined by f(G,k) = (G', k) is a Karp reduction from INDEPENDENT SET to CLIQUE. To forge a link
to the VERTEX COVER problem, note that all vertices not in a given vertex cover form an independent set,
and vice versa. Thus a graph G on n vertices has a vertex cover of size at most & if and only if G has an
independent set of size at least n — k. Hence the function ¢(G, k) = (G,n — k) is a Karp reduction from
INDEPENDENT SET to VERTEX COVER.

Here is another example of an NP-completeness proof, for the following decision problem:

e TRAVELING SALESMAN PROBLEM (TSP)

Instance: A set of m “cities” C1,...,Cy,, with an integer distance d(i, j) between every pair of
cities C; and C;, and an integer D.

Question: Is there a tour of the cities whose total length is at most D, i.e., a permutation ¢y, . . ., ¢,
of {1,...,m}, such that

d<61702) + -+ d(Cm—la Cm) + d(Cm, Cl) S D?
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First, it is easy to see that TSP is in NP: a nondeterministic Turing machine simply guesses a tour and
checks that the total length is at most D.

Next, we construct a reduction from Hamiltonian Circuit to TSP. (The reduction goes from the known
NP-complete problem, Hamiltonian Circuit, to the new problem, TSP, not vice versa.)

From a graph GG on m vertices v1, . . ., Up,, define the distance function d as follows:
- 1 if (v, v;) is an edge in G
d(i,j) = _
m+ 1 otherwise.

Set D = m. Clearly, d and D can be computed in polynomial time from G. Each vertex of G corresponds
to a city in the constructed instance of TSP.

If G has a Hamiltonian circuit, then the length of the tour that corresponds to this circuit is exactly m.
Conversely, if there is a tour whose length is at most m, then each step of the tour must have distance 1, not
m + 1. Thus, each step corresponds to an edge of (G, and the corresponding sequence of vertices in G is a
Hamiltonian circuit.

5.5 NP-Completeness by Combinatorial Transformation

The following example shows how the combinatorial mechanism of one problem (here, 3SAT) can be
transformed by a reduction into the seemingly much different mechanism of another problem.

Theorem 5.5 INDEPENDENT SET is NP-complete. Hence also CLIQUE and VERTEX COVER are NP-
complete.

Proof. We have remarked already that the languages of these three problems belong to NP, and shown
already that INDEPENDENT SET <P CLIQUE and INDEPENDENT SET <}, VERTEX COVER. It suffices to
show that 3SAT <?, INDEPENDENT SET.

Construction. Let the Boolean formula ¢ be a given instance of 3SAT with variables z, ..., x, and
clauses C1, ..., Cy,. The graph G4 we build consists of a “ladder” on 2n vertices labeled x1, Z1, . . ., Tpn, Tn,
with edges (z;, Z;) for 1 < i < n forming the “rungs,” and m “clause components.” Here the component
for each clause C has one vertex for each literal x; or Z; in the clause, and all pairs of vertices within each
clause component are joined by an edge. Finally, each clause-component node with a label z; is connected
by a “crossing edge” to the node with the opposite label Z; in the ¢th “rung,” and similarly each occurrence
of Z; in a clause is joined to the rung node x;. This finishes the construction of G 4. See Figure 3.

Also set k = n + m. Then the reduction function f is defined for all arguments ¢ by f(¢) = (G4, k).

Complexity. It is not hard to see that f is computable in polynomial time given (a straightforward
encoding of) ¢.

Correctness. To complete the proof, we need to argue that ¢ is satisfiable if and only if G has an
independent set of size n + m. To see this, first note that any independent set I of that size must contain
exactly one of the two nodes from each “rung,” and exactly one node from each clause component—because
the edges in the rungs and the clause component prevent any more nodes from being added. And if I selects
a node labeled z; in a clause component, then I must also select x; in the ith rung. If I selects Z; in a
clause component, then I must also select Z; in the rung. In this manner I induces a truth assignment in
which z; = true and x; = false, and so on for all variables. This assignment satisfies ¢, because the
node selected from each clause component tells how the corresponding clause is satisfied by the assignment.
Going the other way, if ¢ has a satisfying assignment, then that assignment yields an independent set I of
size n + m in like manner. O
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X1

I3 I I3 X3

Figure 3: Construction in the proof of NP-completeness of INDEPENDENT SET for the formula
(1 V22 V Z3) A (21 V T2 V x3). The independent set of size 5 corresponding to the satisfying assign-
ment x; = false, x9 = true, and x3 = true is shown by nodes marked I.

5.6 Complete Problems for Other Classes

Besides NP, the following canonical complexity classes have natural complete problems. The three prob-
lems now listed are complete for their respective classes under log-space reducibility.

e NL: GRAPH ACCESSIBILITY PROBLEM
Instance: A directed graph G withnodes 1,..., N

Question: Does G have a directed path from node 1 to node N?

e P: CIRCUIT VALUE PROBLEM

Instance: A Boolean circuit (see Section 9) with output node u, and an assignment I of {0,1} to
each input node

Question: Is 1 the value of u under I?

e PSPACE: QUANTIFIED BOOLEAN FORMULAS
Instance: A Boolean expression with all variables quantified with either V or 3 [e.g., VaVy3z(z A
Vv 2))l

Question: Is the expression true?

These problems can be used to prove other problems are NL-complete, P-complete, and PSPACE-
complete, respectively.

Stockmeyer and Meyer [1973] defined a natural decision problem that they proved to be complete for
NE. If this problem were in P, then by closure under Karp reducibility (Theorem 5.3), we would have
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NE C P, a contradiction of the hierarchy theorems (Theorem 4.4). Therefore, this decision problem is
infeasible: it has no polynomial-time algorithm. In contrast, decision problems in NEXP — P that have been
constructed by diagonalization are artificial problems that nobody would want to solve anyway. Although
diagonalization produces unnatural problems by itself, the combination of diagonalization and completeness
shows that natural problems are intractable.

The next section points out some limitations of current diagonalization techniques.

6 Relativization of the P vs NP Problem

Let A be a language. Define pA (respectively, NP%) to be the class of languages accepted in polynomial
time by deterministic (nondeterministic) oracle Turing machines with oracle A.

Proofs that use the diagonalization technique on Turing machines without oracles generally carry over
to oracle Turing machines. Thus, for instance, the proof of the DTIME hierarchy theorem also shows that,
for any oracle A, DTIME“[n?] is properly contained in DTIME“[n3]. This can be seen as a strength of the
diagonalization technique, since it allows an argument to “relativize” to computation carried out relative to
an oracle. In fact, there are examples of lower bounds (for deterministic, “unrelativized” circuit models) that
make crucial use of the fact that the time hierarchies relativize in this sense.

But it can also be seen as a weakness of the diagonalization technique. The following important theorem
demonstrates why.

Theorem 6.1 There exist languages A and B such that PA = NP4, and P £ NPPB. [Baker et al., 1975].

This shows that resolving the P vs. NP question requires techniques that do not relativize, i.e., that
do not apply to oracle Turing machines too. Thus, diagonalization as we currently know it is unlikely to
succeed in separating P from NP, because the diagonalization arguments we know (and in fact most of the
arguments we know) relativize. Important non-relativizing proof techniques were discovered in the early
1990s, in connection with interactive proof systems (Section 12.1).

7 The Polynomial Hierarchy

Let C be a class of languages. Define
o NPC = J, e NP4,
o X =TI =P;
and for k£ > 0, define
e 5P, = NP,
° HkP+1 = CO_ZkP+1‘
Observe that ¥’ = NPP — NP, because each of polynomially many queries to an oracle language

in P can be answered directly by a (nondeterministic) Turing machine in polynomial time. Consequently,

I{" = co-NP. For each k, ©f UTI]’ C &/ | N1II{, |, but this inclusion is not known to be strict.

The classes X7 and I constitute the polynomial hierarchy. Define

PH=[J=¢.

k>0
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It is straightforward to prove that PH C PSPACE, but it is not known whether the inclusion is strict. In
fact, if PH = PSPACE, then the polynomial hierarchy collapses to some level, i.e., PH = £ for some
m. In the next section, we define the polynomial hierarchy in two other ways, one of which is in terms of
alternating Turing machines.

8 Alternating Complexity Classes

In this section, we define time and space complexity classes for alternating Turing machines, and we show
how these classes are related to the classes introduced already. The possible computations of an alternating
Turing machine M on an input word x can be represented by a tree 7, in which the root is the initial
configuration, and the children of a nonterminal node C' are the configurations reachable from C' by one step
of M. For a word x in L(M ), define an accepting subtree S of T, to be a subtree of T}, with the following
properties:

e S is finite.
e The root of S is the initial configuration with input word .

e If S has an existential configuration C, then S has exactly one child of C' in T,; if S has a universal
configuration C, then .S has all children of C'in 7.

e Every leaf is a configuration whose state is the accepting state ¢ 4.

Observe that each node in S is an accepting configuration.

We consider only alternating Turing machines that always halt. For x € L(M ), define the time taken by
M to be the height of the shortest accepting tree for x, and the space to be the maximum number of worktape
cells visited along any path in an accepting tree that minimizes this number. For x ¢ L(M ), define the time
to be the height of T, and the space to be the maximum number of worktape cells visited along any path in
Ty.

Let ¢(n) be a time-constructible function, and let s(n) be a space-constructible function. Define the
following complexity classes:

e ATIME[t(n)] is the class of languages decided by alternating Turing machines of time complexity
O(t(n)).

e ASPACE[s(n)] is the class of languages decided by alternating Turing machines of space complexity

O(s(n)).

Because a nondeterministic Turing machine is a special case of an alternating Turing machine, for every
t(n) and s(n), NTIME[t] C ATIME[t] and NSPACE[s] C ASPACE[s]. The next theorem states further
relationships between computational resources used by alternating Turing machines, and resources used by
deterministic and nondeterministic Turing machines.

Theorem 8.1 (Alternation Theorems) [Chandra et al., 1981]. Ler t(n) be a time-constructible function,
and let s(n) be a space-constructible function, s(n) > logn.

(a) NSPACE[s(n)] C ATIME[s(n)?]
(b) ATIME[t(n)] € DSPACE][t(n)]
(¢c) ASPACE[s(n)] € DTIME[206:(7)]
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(d) DTIME[t(n)] € ASPACE[log (n)]

In other words, space on deterministic and nondeterministic Turing machines is polynomially related to
time on alternating Turing machines. Space on alternating Turing machines is exponentially related to time
on deterministic Turing machines. The following corollary is immediate.

Theorem 8.2
(a) ASPACE[O(logn)] = P.
(b) ATIME[nO()] = PSPACE.
(c) ASPACE[nO()] = EXP.

In Section 7, we defined the classes of the polynomial hierarchy in terms of oracles, but we can also
define them in terms of alternating Turing machines with restrictions on the number of alternations between
existential and universal states. Define a k-alternating Turing machine to be a machine such that on every
computation path, the number of changes from an existential state to universal state, or from a universal state
to an existential state, is at most k& — 1. Thus, a nondeterministic Turing machine, which stays in existential
states, is a 1-alternating Turing machine.

Theorem 8.3 [Stockmeyer, 1976; Wrathall, 1976]. For any language A, the following are equivalent:
1. Ae ¥l
2. A is decided in polynomial time by a k-alternating Turing machine that starts in an existential state.

3. There exists a language B in P and a polynomial p such that for all x, x € A if and only if

(Fy1 : [ya] < p(J2))(Vy2 = [y2| < p(l])) - (Quk : lyk] < p(lz])[(@, v1,- .., yx) € Bl

where the quantifier Q is 3 if k is odd, ¥V if k is even.

Alternating Turing machines are closely related to Boolean circuits, which are defined in the next sec-
tion.

9 Circuit Complexity

The hardware of electronic digital computers is based on digital logic gates, connected into combinational
circuits. (See Chapter ***CHAPTER REFERENCE: DIGITAL LOGIC***.) Here, we specify a model of
computation that formalizes the combinational circuit.

A Boolean circuit on n input variables x1, . . ., z, is a directed acyclic graph with exactly n input nodes
of indegree 0 labeled z1, . . ., z,, and other nodes of indegree 1 or 2, called gates, labeled with the Boolean
operators in {A,V,—}. One node is designated as the output of the circuit. See Fig. 4. Without loss of
generality, we assume that there are no extraneous nodes; there is a directed path from each node to the
output node. The indegree of a gate is also called its fan-in.

An input assignment a function I that maps each variable z; to either O or 1. The value of each gate g un-
der I is obtained by applying the Boolean operation that labels g to the values of the immediate predecessors
of g. The function computed by the circuit is the value of the output node for each input assignment.

A Boolean circuit computes a finite function: a function of only n binary input variables. To decide
membership in a language, we need a circuit for each input length n.
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Figure 4: A Boolean circuit.

A circuit family is an infinite set of circuits C' = {¢, ¢, ...} in which each ¢,, is a Boolean circuit on
n inputs. C decides a language A C {0,1}* if for every n and every assignment aj, . .., a, of {0,1} to the
n inputs, the value of the output node of ¢,, is 1 if and only if the word aq - - - a,, € A. The size complexity
of C is the function z(n) that specifies the number of nodes in each ¢,,. The depth complexity of C is the
function d(n) that specifies the length of the longest directed path in ¢,,. Clearly, since the fan-in of each
gate is at most 2, d(n) > log z(n) > logn. The class of languages decided by polynomial-size circuits is
denoted by P/poly.

With a different circuit for each input length, a circuit family could solve an undecidable problem such
as the halting problem (see Chapter *** CHAPTER REFERENCE: FORMAL MODELS AND COM-
PUTABILITY ***). For each input length, a table of all answers for machine descriptions of that length
could be encoded into the circuit. Thus, we need to restrict our circuit families. The most natural restriction
is that all circuits in a family should have a concise, uniform description, to disallow a different answer
table for each input length. Several uniformity conditions have been studied; the following is the easiest to
present:

A circuit family {cy, co, ...} of size complexity z(n) is log-space uniform if there exists a deterministic
Turing machine M such that on each input of length n, machine M produces a description of ¢,,, using
space O(log z(n)).

Now we define complexity classes for uniform circuit families and relate these classes to previously
defined classes. Define the following complexity classes:

e SIZE[z(n)] is the class of languages decided by log-space uniform circuit families of size complexity

e DEPTHI[d(n)] is the class of languages decided by log-space uniform circuit families of depth com-
plexity O(d(n)).

In our notation, SIZE[n©(M)] equals P, which is a proper subclass of P/poly.
Theorem 9.1

1. If t(n) is a time-constructible function, then DTIME[t(n)] C SIZE[t(n)logt(n)] [Pippenger and
Fischer, 1979].

2. SIZE[2(n)] € DTIME[z(n)°M)].
3. If s(n) is a space-constructible function and s(n) > logn, then NSPACE[s(n)] € DEPTH[s(n)?]
[Borodin, 1977].
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4. If d(n) > logn, then DEPTH[d(n)] € DSPACE|d(n)] [Borodin, 1977].

The next theorem shows that size and depth on Boolean circuits are closely related to space and time
on alternating Turing machines, provided that we permit sublinear running times for alternating Turing
machines, as follows. We augment alternating Turing machines with a random-access input capability. To
access the cell at position j on the input tape, M writes the binary representation of j on a special tape, in
log j steps, and enters a special reading state to obtain the symbol in cell j.

Theorem 9.2 [Ruzzo, 1979]. Let t(n) > logn and s(n) > logn be such that the mapping n
(t(n), s(n)) (in binary) is computable in time s(n).

1. Every language decided by an alternating Turing machine of simultaneous space complexity s(n)
and time complexity t(n) can be decided by a log-space uniform circuit family of simultaneous size
complexity 20) and depth complexity O(t(n)).

2. If d(n) > (log z(n))?, then every language decided by a log-space uniform circuit family of simul-
taneous size complexity z(n) and depth complexity d(n) can be decided by an alternating Turing
machine of simultaneous space complexity O(log z(n)) and time complexity O(d(n)).

The correspondence between time on alternating Turing machines and depth on log-space uniform cir-
cuits breaks down for time and depth less than log? n, primarily because L is not known to be contained
in ATIME(o(log?n)). This has motivated the adoption of more restrictive notions of uniformity (see, e.g.,
[Ruzzo, 1981], [Vollmer, 1999]). When researchers mention small uniform circuit classes, they usually are
referring to these more restrictive notions of uniformity. (For depths at least log n, the complexity classes
obtained via these different notions of uniformity coincide.)

In a sense, the Boolean circuit family is a model of parallel computation, because all gates compute
independently, in parallel. Foreach k > 0, NCF denotes the class of languages decided by uniform bounded-
fan-in circuits of polynomial size and depth O((logn)¥), and AC” is defined analogously for unbounded
fan-in circuits. In particular, AC is the same as the class of languages decided by a parallel machine model
called the CRCW PRAM with polynomially many processors in parallel time O((logn)*) [Stockmeyer and
Vishkin, 1984].

10 Probabilistic Complexity Classes

Since the 1970s, with the development of randomized algorithms for computational problems (see Chapter
#** CHAPTER REFERENCE: RANDOMIZED ALGORITHMS ***)_ complexity theorists have placed
randomized algorithms on a firm intellectual foundation. In this section, we outline some basic concepts in
this area.

A probabilistic Turing machine M can be formalized as a nondeterministic Turing machine with
exactly two choices at each step. During a computation, M chooses each possible next step with independent
probability 1/2. Intuitively, at each step, M flips a fair coin to decide what to do next. The probability of a
computation path of ¢ steps is 1/2¢. The probability that M accepts an input string z, denoted by py/(x), is
the sum of the probabilities of the accepting computation paths.

Throughout this section, we consider only machines whose time complexity ¢(n) is time-constructible.
Without loss of generality, we may assume that every computation path of such a machine halts in exactly ¢
steps.

Let A be a language. A probabilistic Turing machine M decides A with
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forallz € A forallxz € A
unbounded two-sided error if pys(z) > 1/2 pam(z) <1/2
bounded two-sided error if pu(x)>1/2+€¢ pu(z)<1/2—c¢

for some positive constant e
one-sided error if pu(x)>1/2 pym(z) =0.

Many practical and important probabilistic algorithms make one-sided errors. For example, in the pri-
mality testing algorithm of Solovay and Strassen [1977], when the input x is a prime number, the algorithm
always says “prime”; when z is composite, the algorithm usually says “composite,” but may occasionally
say “prime.” Using the definitions above, this means that the Solovay-Strassen algorithm is a one-sided error
algorithm for the set A of composite numbers. It also is a bounded two-sided error algorithm for A, the set
of prime numbers.

These three kinds of errors suggest three complexity classes:

e PP is the class of languages decided by probabilistic Turing machines of polynomial time complexity
with unbounded two-sided error.

e BPP is the class of languages decided by probabilistic Turing machines of polynomial time complex-
ity with bounded two-sided error.

e RP is the class of languages decided by probabilistic Turing machines of polynomial time complexity
with one-sided error.

In the literature, RP has also sometimes been called R.

A probabilistic Turing machine M is a PP-machine (respectively, a BPP-machine, an RP-machine)
if M has polynomial time complexity, and M decides with two-sided error (bounded two-sided error, one-
sided error).

Through repeated Bernoulli trials, we can make the error probabilities of BPP-machines and RP-
machines arbitrarily small, as stated in the following theorem. (Among other things, this theorem implies

that RP C BPP.)

Theorem 10.1 If A € BPP, then for every polynomial q(n), there exists a BPP-machine M such that
par(x) > 1—1/290) for every x € A, and pys(z) < 1/29M) for every z & A.

If L € RP, then for every polynomial q(n), there exists an RP-machine M such that pyr(x) > 1 —
1/29) for every x in L.

It is important to note just how minuscule the probability of error is (provided that the coin flips are truly
random). If the probability of error is less than 1/259%°, then it is less likely that the algorithm produces
an incorrect answer than that the computer will be struck by a meteor. An algorithm whose probability of
error is 1/259%0 js essentially as good as an algorithm that makes no errors. For this reason, many computer
scientists consider BPP to be the class of practically feasible computational problems.

Next, we define a class of problems that have probabilistic algorithms that make no errors. Define

e Z/PP = RP nco-RP.

The letter Z in ZPP is for zero probability of error, as we now demonstrate. Suppose A € ZPP. Here
is an algorithm that checks membership in A. Let M be an RP-machine that decides A, and let M’ be
an RP-machine that decides A. For an input string z, alternately run M and M’ on z, repeatedly, until a
computation path of one machine accepts x. If M accepts x, then accept x; if M’ accepts z, then reject x.
This algorithm works correctly because when an RP-machine accepts its input, it does not make a mistake.

25



PSPACE

o
Y
)

PP PH
BPP NP
RP
|
ZPP
|
P

Figure 5: Probabilistic complexity classes.

This algorithm might not terminate, but with very high probability, the algorithm terminates after a few
iterations.

The next theorem expresses some known relationships between probabilistic complexity classes and
other complexity classes, such as classes in the polynomial hierarchy. See Section 7 and Figure 10.

Theorem 10.2
(a) P C ZPP C RP C BPP C PP C PSPACE [Gill, 1977].
(b) RP C NP C PP [Gill, 1977].
(c) BPP C ©I’ N 11 [Lautemann, 1983; Sipser, 1983].
(d) BPP C P/poly.

(e) PH C PPP [Toda, 1991].
An important recent research area called de-randomization studies whether randomized algorithms can
be converted to deterministic ones of the same or comparable efficiency. For example, if there is a language

in E that requires Boolean circuits of size 22() to decide it, then BPP = P [Impagliazzo and Wigderson,
1997].
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11 Quantum Computation

A probabilistic computer enables one to sample efficiently over exponentially many possible computation
paths. However, if BPP = P then the added capability is weak. A quantum computer, however, can
harness parallelism and randomness in ways that appear theoretically to be much more powerful, ways that
are able to solve problems believed not to lie in BPP. A key difference is that by quantum interference,
opening up new computation paths may cause the probabilities of some other paths to vanish, whereas for a
BPP-machine those probabilities would remain positive.

e BQP is the class of languages decided by quantum machines of polynomial time complexity with
bounded two-sided error.

A prime motivation for studying BQP is that it includes language versions of the integer factoring and
discrete logarithm problems, which are not known to belong to BPP. The public-key cryptosystems in
common use today rely on the presumed intractability of these problems, and are theoretically breakable by
eavesdroppers armed with quantum computers. This is one of several reasons why the interplay of quantum
mechanics and computational complexity is important to cryptographers.

In terms of the complexity classes depicted in Figure 5, the only inclusions that are known involving
BQP are

BPP C BQP C PP.

In particular, it is important to emphasize that it is not generally believed that quantum computers can
solve NP-complete problems quickly. For more information on quantum computation, see Chapter ***
CHAPTER REFERENCE: QUANTUM COMPUTATION *#*),

12 Interactive Models and Complexity Classes

12.1 Interactive Proofs

In Section 3.2, we characterized NP as the set of languages whose membership proofs can be checked
quickly, by a deterministic Turing machine M of polynomial time complexity. A different notion of proof
involves interaction between two parties, a prover P and a verifier V, who exchange messages. In an in-
teractive proof system [Goldwasser et al., 1989], the prover is an all-powerful machine, with unlimited
computational resources, analogous to a teacher. The verifier is a computationally limited machine, anal-
ogous to a student. Interactive proof systems are also called “Arthur-Merlin games”: the wizard Merlin
corresponds to P, and the impatient Arthur corresponds to V' [Babai and Moran, 1988].
Formally, an interactive proof system comprises the following:

A read-only input tape on which an input string x is written.

A verifier V, which is a probabilistic Turing machine augmented with the capability to send and
receive messages. The running time of V' is bounded by a polynomial in |z|.

A prover P, which receives messages from V' and sends messages to V.

A tape on which V' writes messages to send to P, and a tape on which P writes messages to send to
V. The length of every message is bounded by a polynomial in |z|.

A computation of an interactive proof system (P, V') proceeds in rounds, as follows. For j = 1,2,...,
in round j, V' performs some steps, writes a message m;, and temporarily stops. Then P reads m; and
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responds with a message m; which V reads in round j + 1. An interactive proof system (P, V') accepts an
input string x if the probability of acceptance by V satisfies py (z) > 1/2.

In an interactive proof system, a prover can convince the verifier about the truth of a statement without
exhibiting an entire proof, as the following example illustrates.

Consider the graph non-isomorphism problem: the input consists of two graphs GG and H, and the de-
cision is yes if and only if G is not isomorphic to H. Although there is a short proof that two graphs
are isomorphic (namely: the proof consists of the isomorphism mapping G onto H), nobody has found a
general way of proving that two graphs are not isomorphic that is significantly shorter than listing all n! per-
mutations and showing that each fails to be an isomorphism. (That is, the graph non-isomorphism problem
is in co-NP, but is not known to be in NP.) In contrast, the verifier V' in an interactive proof system is able
to take statistical evidence into account, and determine “beyond all reasonable doubt” that two graphs are
non-isomorphic, using the following protocol.

In each round, V randomly chooses either G or H with equal probability; if V' chooses GG, then V
computes a random permutation G’ of G, presents G’ to P, and asks P whether G’ came from G or from
H (and similarly if V chooses H). If P gave an erroneous answer on the first round, and G is isomorphic
to H, then after £ subsequent rounds, the probability that P answers all the subsequent queries correctly
is 1/2%. (To see this, it is important to understand that the prover P does not see the coins that V' flips in
making its random choices; P sees only the graphs G’ and H' that V' sends as messages.) V' accepts the
interaction with P as “proof” that G and H are non-isomorphic if P is able to pick the correct graph for
100 consecutive rounds. Note that V' has ample grounds to accept this as a convincing demonstration: if the
graphs are indeed isomorphic, the prover P would have to have an incredible streak of luck to fool V.

It is important to comment that de-randomization techniques applied to these proof systems have shown
that under plausible hardness assumptions, proofs of non-isomorphism of sub-exponential length (or even
polynomial length) do exist [Klivans and van Melkebeek, 2002]. Thus many complexity theoreticians now
conjecture that the graph isomorphism problem lies in NP N co-NP.

The complexity class IP comprises the languages A for which there exists a verifier V' and a positive €
such that

e there exists a prover P such that for all z in A, the interactive proof system (]5, V') accepts x with
probability greater than 1/2 + ¢; and

e for every prover P and every ¢ A, the interactive proof system (P, V') rejects x with probability
greater than 1/2 + €.

By substituting random choices for existential choices in the proof that ATIME(¢) C DSPACE(t) (The-
orem 8.1), it is straightforward to show that IP C PSPACE. It was originally believed likely that IP was a
small subclass of PSPACE. Evidence supporting this belief was the construction of an oracle language B
for which co-NPZ —IPZ £ () [Fortnow and Sipser, 1988], so that IP? is strictly included in PSPACE®. Us-
ing a proof technique that does not relativize, however, Shamir [1992] proved that in fact, IP and PSPACE
are the same class.

Theorem 12.1 IP = PSPACE. [Shamir, 1992].

If NP is a proper subset of PSPACE, as is widely believed, then Theorem 12.1 says that interactive
proof systems can decide a larger class of languages than NP.

12.2 Probabilistically Checkable Proofs

In an interactive proof system, the verifier does not need a complete conventional proof to become convinced
about the membership of a word in a language, but uses random choices to query parts of a proof that the
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prover may know. This interpretation inspired another notion of “proof™: a proof consists of a (potentially)
large amount of information that the verifier need only inspect in a few places in order to become convinced.
The following definition makes this idea more precise.

A language A has a probabilistically checkable proof if there exists an oracle BPP-machine M such
that

e forall z € A, there exists an oracle language B, such that M 5= accepts x with probability 1.

e forall x ¢ A, and for every language B, machine M accepts = with probability strictly less than
1/2.

Intuitively, the oracle language B, represents a proof of membership of = in A. Notice that B, can be
finite since the length of each possible query during a computation of M 5= on z is bounded by the running
time of M. The oracle language takes the role of the prover in an interactive proof system—but in contrast
to an interactive proof system, the prover cannot change strategy adaptively in response to the questions
that the verifier poses. This change results in a potentially stronger system, since a machine M that has
bounded error probability relative to all languages B might not have bounded error probability relative to
some adaptive prover. Although this change to the proof system framework may seem modest, it leads to a
characterization of a class that seems to be much larger than PSPACE.

Theorem 12.2 A has a probabilistically checkable proof if and only if A € NEXP [Babai et al., 1991].

Although the notion of probabilistically checkable proofs seems to lead us away from feasible complex-
ity classes, by considering natural restrictions on how the proof is accessed, we can obtain important insights
into familiar complexity classes.

Let PCP[r(n),q(n)] denote the class of languages with probabilistically checkable proofs in which
the probabilistic oracle Turing machine M makes r(n) random binary choices, and queries its oracle ¢(n)
times. (For this definition, we assume that M has either one or two choices for each step.) It follows from
the definitions that BPP = PCP[n®("), 0], and NP = PCP[0, n®M)].

Theorem 12.3 (The PCP Theorem) NP = PCP[O(logn), O(1)] [Arora et al., 1998].

Theorem 12.3 asserts that for every language A in NP, a proof that z € A can be encoded so that the
verifier can be convinced of the correctness of the proof (or detect an incorrect proof) by using only O(log n)
random choices, and inspecting only a constant number of bits of the proof.

13 Kolmogorov Complexity

Until now, we have considered only dynamic complexity measures, namely, the time and space used by
Turing machines. Kolmogorov complexity is a static complexity measure that captures the difficulty of
describing a string. For example, the string consisting of three million zeroes can be described with fewer
than three million symbols (as in this sentence). In contrast, for a string consisting of three million randomly
generated bits, with high probability there is no shorter description than the string itself.

Our goal will be to equate the complexity of a string with the length of its shortest “description” — but
this raises the question of what class of “descriptions” should be considered. Given any Turing machine
M, one can define a measure Cs(x) to be the length of the shortest input d (the “description”) such that
M (d) = x. At first, this might not seem to be a very promising approach, because using different machines
M and My will yield measures C)y, and C'yy, that differ wildly (or worse, are undefined for those x that
are never produced as output). Fortunately, the next theorem shows that if one chooses a universal Turing
machine U to define a measure Cpy(z) in this way, the resulting measure is roughly the same as that obtained
by using any other universal machine.
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Theorem 13.1 (Invariance Theorem) There exists a universal Turing machine U such that for every uni-
versal Turing machine U’, there is a constant ¢ such that for all y, Cy (y) < Cy(y) + ¢

Henceforth, let C be defined by the universal Turing machine of Theorem 13.1. For every integer n and
every binary string y of length n, because y can be described by giving itself explicitly, C'(y) < n + ¢ for
a constant ¢/. Call y incompressible if C'(y) > n. Since there are 2" binary strings of length n and only
2™ — 1 possible shorter descriptions, there exists an incompressible string for every length n.

Kolmogorov complexity gives a precise mathematical meaning to the intuitive notion of “randomness.”
If someone flips a coin fifty times and it comes up “heads” each time, then intuitively, the sequence of flips
is not random—although from the standpoint of probability theory the all-heads sequence is precisely as
likely as any other sequence. Probability theory does not provide the tools for calling one sequence “more
random” than another; Kolmogorov complexity theory does.

Kolmogorov complexity provides a useful framework for presenting combinatorial arguments. For ex-
ample, when one wants to prove that an object with some property P exists, then it is sufficient to show that
any object that does not have property P has a short description; thus any incompressible (or “random’)
object must have property P. This sort of argument has been useful in proving lower bounds in complexity
theory.

14 Research Issues and Summary

The core research questions in complexity theory are expressed in terms of separating complexity classes:

e Is L different from NL?
e Is P different from RP or BPP?
e Is P different from NP?
e Is NP different from PSPACE?

Motivated by these questions, much current research is devoted to efforts to understand the power of nonde-
terminism, randomization, and interaction. In these studies, researchers have gone well beyond the theory
presented in this chapter:

e beyond Turing machines and Boolean circuits, to restricted and specialized models in which nontrivial
lower bounds on complexity can be proved;

e beyond deterministic reducibilities, to nondeterministic and probabilistic reducibilities, and refined
versions of the reducibilities considered here;

e beyond worst case complexity, to average case complexity.

Recent research in complexity theory has had direct applications to other areas of computer science and
mathematics. Probabilistically checkable proofs were used to show that obtaining approximate solutions to
some optimization problems is as difficult as solving them exactly. Complexity theory has provided new
tools for studying questions in finite model theory, a branch of mathematical logic. Fundamental questions
in complexity theory are intimately linked to practical questions about the use of cryptography for computer
security, such as the existence of one-way functions and the strength of public key cryptosystems.

This last point illustrates the urgent practical need for progress in computational complexity theory.
Many popular cryptographic systems in current use are based on unproven assumptions about the difficulty
of computing certain functions (such as the factoring and discrete logarithm problems). All of these systems
are thus based on wishful thinking and conjecture. Research is needed to resolve these open questions and
replace conjecture with mathematical certainty.
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Defining Terms

Complexity class: A set of languages that are decided within a particular resource bound. For example,
NTIME(n2log n) is the set of languages decided by nondeterministic Turing machines within O(n?logn)
time.

Constructibility: A function f(n) is time (respectively, space) constructible if there exists a determin-
istic Turing machine that halts after exactly f(n) steps [after using exactly f(n) worktape cells] for every
input of length n.

Diagonalization: A technique for constructing a language A that differs from every L(M;) for a list of
machines M7, Mo, . ...

NP-complete: A language Ag is NP-complete if A9 € NP and A <, A for every A in NP; that is,
for every A in NP, there exists a function f computable in polynomial time such that for every z, z € A if
and only if f(x) € Ao.

Oracle: An oracle is a language A to which a machine presents queries of the form “Is w in A” and
receives each correct answer in one step.

Padding: A technique for establishing relationships between complexity classes that uses padded ver-
sions of languages, in which each word is padded out with multiple occurrences of a new symbol—the word
x is replaced by the word z#-f (I2]) for a numeric function f—in order to artificially lower the complexity of
the language.

Reduction: A language A reduces to a language B if a machine that decides B can be used to decide A
efficiently.

Time and space complexity: The time (respectively, space) complexity of a deterministic Turing ma-
chine M is the maximum number of steps taken (worktape cells visited) by M among all input words of
length n.

Turing machine: A Turing machine M is a model of computation with a read-only input tape and mul-
tiple worktapes. At each step, M reads the tape cells on which its access heads are located, and depending
on its current state and the symbols in those cells, M changes state, writes new symbols on the worktape
cells, and moves each access head one cell left or right or not at all.
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Further Information

This chapter is a short version of three chapters written by the same authors for the Algorithms and Theory
of Computation Handbook [Allender et al., 1999].

The formal theoretical study of computational complexity began with the paper of Hartmanis and Stearns
[1965], who introduced the basic concepts and proved the first results. For historical perspectives on com-
plexity theory, see Hartmanis [1994], Wigderson [2006], Allender [2009], and Fortnow [2009].

Contemporary textbooks on complexity theory are by Moore and Mertens [2011], Homer and Selman
[2011], Arora and Barak [2009], Goldreich [2008], while venerable texts include Sipser [2005], Hopcroft,
Ullman, and Motwani [2000], Hemaspaandra and Ogihara [2002], and Papadimitriou [1994]. A good gen-
eral reference is the Handbook of Theoretical Computer Science [van Leeuwen, 1990], volume A.

The text by Garey and Johnson [1979] explains NP-completeness thoroughly, with exam-
ples of NP-completeness proofs, and a collection of hundreds of NP-complete problems. Li
and Vitdnyi [2008] provide a comprehensive scholarly treatment of Kolmogorov complexity,
with many applications. One source for surveys and lecture notes on complexity theory is
http://web.ift.uib.no/~antonych/scripts.html, by A. Czumaj and M. Kutylowski.

Five organizations and mainstay websites that promote research in computational complexity online
sources are the the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT), the
European Association for Theoretical Computer Science (EATCS), the annual IEEE Conference on Com-
putational Complexity, the “Complexity Zoo,” and the theory section of StackExchange:

http://sigact.org/
http://www.eatcs.org/
http://www.computationalcomplexity.org/
http://www.complexityzoo.com/
http://cstheory.stackexchange.com/
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The Electronic Colloquium on Computational Complexity maintained at the University of Trier, Ger-
many at http://eccc.hpi-web.de/, and arxiv.org/ run by Cornell University, include down-
loadable current research papers in the field, often with updates and revisions. Most individual researchers
have websites with their work, and some also write blogs where news and ideas can be found. Among the
most prominent blogs are:

Computational Complexity, http://blog.computationalcomplexity.org/, by Lance Fortnow
and William Gasarch.

Shtetl-Optimized, http://www.scottaaronson.com/blog/, by Scott Aaronson.

Godel’s Lost Letter and P=NP, http://rjlipton.wordpress.com/, by Richard Lipton and the
third author of this chapter.

Research papers on complexity theory are presented at several annual conferences, including the ACM
Symposium on Theory of Computing (STOC); the IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), the International Colloquium on Automata, Languages, and Programming (ICALP) spon-
sored by EATCS, and the Symposium on Theoretical Aspects of Computer Science (STACS). The annual
Conference on Computational Complexity (formerly Structure in Complexity Theory), also sponsored by
the 1IEEE, is entirely devoted to complexity theory. Journals in which complexity research often appears
include: Chicago Journal on Theoretical Computer Science, Computational Complexity, Information and
Computation, Journal of the ACM, Journal of Computer and System Sciences, SIAM Journal on Comput-
ing, Theoretical Computer Science, Theory of Computing Systems (formerly Mathematical Systems Theory),
ACM Transactions on Computation Theory, and Theory of Computing. Each issue of ACM SIGACT News
and Bulletin of the EATCS contains a column on complexity theory.
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