1 Reactive Systems and Temporal Properties

1.1 Example: the alternating bit protocol

Channels may drop (or perhaps duplicate).

Sender retransmits (at some interval) until matching ack received.

Sequence numbers prevent duplication of msgs or acks.

Sequence numbers are modulo 2 (hence, “alternating bit”).

This is an example of a “reactive” system (Pnueli):

• “Reacts” to stimulus from environment.
• Does not terminate.

Note each component (sender, receiver, channels) is also a reactive system.

1.2 Temporal properties

To reason about reactive systems and the interaction of their components, we need to be able to state temporal properties.

E.g., for the alternating bit protocol:

• Every message sent is eventually received.
- A message is not received unless one is sent
- If x is sent before y, then x is received before y.

Some properties of the components:

- Sender continues to resend msg until ack.
- If channel continues to receive input, it eventually transmits (does not drop) a msg.
- Recvr does not produce ack before msg is output.
- etc.

Note: these are properties about relationships in time (i.e., temporal properties).

1.3 Formalizing temporal properties

...to specify and reason about reactive systems.

- Consider using first order logic to write temporal properties, representing time by a natural number t.
 For example: “every time an x msg is input, one is eventually output”

\[
\forall t \geq 0 : \text{input}(x, t) \Rightarrow \exists t' \geq t : \text{output}(x, t')
\]

This is adequate, but a bit hard to read!

- Temporal Logic
 Pnueli suggested using *temporal logic* to express properties of reactive systems. In temporal logic, the time parameter t is implicit:

 - $G p$ true at time t if p is true at *all* $t' \geq t$.

 \[\begin{array}{ccccccccccc}
p & p & p & p & p & p & p & p & p & p & \ldots \\
 \hline
 \null & \null & \null & \null & p & p & p & p & p & p & \ldots \\
 \end{array}\]

 Gp...

 - $F p$ true at time t if p is true at *some* $t' \geq t$.

 \[\begin{array}{ccccccccccc}
p & p & p & p & p & p & p & p & p & p & \ldots \\
 \hline
 \null & \null & \null & \null & p & p & p & p & p & p & \ldots \\
 \end{array}\]

 Fp... \quad ...Fp
Note, G and F are dual:

$$Gp \equiv \neg F\neg p$$
$$Fp \equiv \neg G\neg p$$

Here are, for example, some other equivalances:

$$Gp \land Gq \equiv G(p \land q)$$
$$Fp \lor Fp \equiv F(p \lor q)$$

But note,

$$Gp \lor Gq \not\equiv G(p \lor q)$$
$$Fp \land Fp \not\equiv F(p \land q)$$

Our previous example in temporal logic:

$$G(input(x) \Rightarrow F output(x))$$

This can be read “always, if input(x) then eventually output(x).” It is an example of a \textit{liveness} property, since it states some “good” condition that must eventually occur.

- “Ininitely often” properties
 - Note $G F p$ means that p occurs infinitely often ("always eventually p”). This is equivalent by De Morgan’s laws to $\neg F G\neg p$ or “a point is never reached where p is forever false”.
 - example:
 $$GF\text{send}_{on_chan}(x) \Rightarrow GF\text{recv}_{on_chan}(x)$$
 “If msg x is sent infinitely often, it is received infinitely often”
 This is an example of a “fairness” property.

- The “until” operator
 $p U q$ true at time t if
 - q is true at some $t' \geq t$, and
 - p is true in the range $[t, t')$

 This can be read as “q is eventually true, and until that time p remains true.”
 The “weak” until:

$$pWq \equiv p U q \lor Gp$$
That is, the weak until allows the possibility that \(q \) never happens and \(p \) remains true forever. This is useful for expressing properties like:

\[
\neg \text{output}(x) \ W \text{input}(x)
\]

“An output does not occur before an input occurs.” This is an example of a safety property. It states some “bad” condition that should never occur.

Note: the formal distinction between safety and liveness is the following:

- A safety property, if false, can always be proved false by exhibiting a finite run.
- A liveness property can only be proved false by exhibiting an infinite run – any finite run can be extended so that it satisfies the eventuality condition.

- Some other temporal operators:
 - The “next time” operator: \(Xp \) is true at time \(t \) if \(p \) is true at time \(t + 1 \).
 - Past time operators: \(H \), \(P \) and \(S \) are “past time” versions of \(G \), \(F \) and \(U \) respectively.
 Example:
 \[
 G(\text{output}(x) \Rightarrow \text{P input}(x))
 \]
 expresses the same property as above “input must occur before output”.

1.4 Model theory for temporal logic

- To interpret temporal logic formulas formally, we take as our structure an infinite sequence of states

\[
\sigma = s_1, s_2, s_3, \ldots
\]

We write

- \(\sigma, s_i \models \phi \) if formula \(\phi \) is true in state \(s_i \) of sequence \(\sigma \),
- \(\sigma \models \phi \) if \(\phi \) is true in the first state of \(\sigma \)
- \(\models \sigma \) if \(\sigma \) is valid (true in all models).

- Propositional linear temporal logic (or PLTL) is a set of formulas defined as follows: A formula in PLTL is either an atomic proposition, or one of the following:

\[
\text{true}, \ p \lor q, \ \neg p, \ p \ U \ q, \ Xp
\]

where \(p \) and \(q \) are formulas.

Note: An atomic proposition is simply a propositional letter which takes on the value true or false in any given state. For our purposes, formulas like “\(\text{input}(x) \)” are atomic propositions.
The remaining operators of PLTL can be viewed as derived operators:

\[
\begin{align*}
p \land q &\equiv \neg(\neg p \lor \neg q) \\
Fp &\equiv \text{true} \lor q \\
Gp &\equiv \neg F\neg p
\end{align*}
\]

etc. . .

- Definition of PLTL satisfaction:

\[
\begin{align*}
\sigma, s_i &\models a \quad \text{(an atomic prop)} & \text{iff} & & s_i &\models a \\
\sigma, s_i &\models \neg p & \text{iff} & & \sigma, s_i &\not\models p \\
\sigma, s_i &\models p \lor q & \text{iff} & & \sigma, s_i &\models p \lor \sigma, s_i \models q \\
\sigma, s_i &\models Xp & \text{iff} & & \sigma, s_{i+1} &\models p \\
\sigma, s_i &\models p \lor q & \text{iff} & & \text{for some } j \geq i, \sigma, s_j &\models q \\
& & & & \text{and for all } i \leq k < j, \sigma, s_k &\models p
\end{align*}
\]

1.5 Proofs in temporal logic

Using a proof system for PLTL, we can, for example, formally prove some properties of the ABP, given some assumptions about its component parts (sender, channels and recvr).

- A proof is a sequence of formulas, each of which is either
 - An instance of an axiom, or
 - the result of applying an inference rule to earlier formulas in the sequence.

- The particular choice of axioms and inference rules for PLTL is not of much interest. It suffices to know that a set of such axioms and rules exists that is
 1. sound (no invalid formulas can be proved)
 2. complete (all valid formulas can be proved)

- Derived inference rules

 Of more interest are “derived” inference rules, which can be proved valid from the axioms and primitive inference rules, and are useful for program proofs. For example:

 - Chaining eventualities

 \[
 G(p \Rightarrow Fq) \\
 G(q \Rightarrow Fr) \\
 \hline
 G(p \Rightarrow Fr)
 \]

 - Proving invariance
\[G(p \Rightarrow Xp) \]

\[\frac{p}{Gp} \]

- A (partial) proof of liveness for ABP

We make the following assumptions about the system components:

A1: \(G(\text{input} \land \text{send} \Rightarrow (\text{F ack _recv} \lor \text{GF msg_send})) \)

A2: \(GF \text{msg_send} \Rightarrow GF \text{msg_recv} \)

A3: \(G(\text{recv} \land \text{F msg_recv} \Rightarrow F \text{output}) \)

From these, we want to prove \(G(\text{input} \Rightarrow F\text{output}) \). The following is a sketch of the proof:

The following assumption:

\[A1: \ G(\text{input} \land \text{send}; i \Rightarrow (\text{F ack_recv} \lor GF\text{msg_send}; i)) \]

states that the sender on receiving input, when the send count is \(i \), either eventually receives an ack (numbered \(i \)), or it retransmits a msg (numbered \(i \)) forever. We combine this with the fairness assumption

\[A2: \ G(GF\text{msg_send}; i \Rightarrow GF\text{msg_recv}; i) \]

on the message channel to infer

\[G(\text{input} \Rightarrow (\text{F ack_recv}; i \lor GF\text{msg_recv}; i)) \]

This in turn is combined with the liveness property of the receiver:

\[A3: \ G(\text{recv}; i \land F\text{msg_recv}; i \Rightarrow F\text{output})) \]

To obtain the following:

\[G(\text{input} \land \text{send}; i \land \text{recv}; i \Rightarrow (\text{F ack_recv}; i \lor F\text{output}) \]

That is, eventually, either anack is received by the sender, or an output is produced (if the sender and receiver count are both \(i \) when the input arrives). We now need to prove two safety lemmas. The first states that when input arrives, the receiver count always matches the sender count:

\[\text{safety_lemma}1: \ G(\text{input} \land \text{send}; i \Rightarrow \text{recv}; i) \]

(proof omitted). From this we infer

\[G(\text{input} \land \text{send}; i \Rightarrow (\text{F ack_recv}; i \lor F\text{output})) \]
The second safety lemma states that a spurious ack is not generated before an output has been produced. We will take this lemma as a given:

\[\text{safety lemma}_2 : \ G(\text{input} \land \text{send}_i \Rightarrow (\neg \text{ack}_i \lor \text{Woutput})) \]

From this and the preceding, we infer

\[G(\text{input} \land \text{send}_i \Rightarrow (\text{Foutput} \lor \text{Foutput})) \]

Since \(G(\text{send}_0 \lor \text{send}_1) \) holds, we have:

\[G(\text{input} \Rightarrow \text{Foutput}) \]

Note:
- This is just a proof sketch – the details of each step have to be filled in (perhaps by treating each step as an instance of a derived rule).
- We need to prove safety properties to prove the liveness property. The proof of these lemmas is actually quite a bit more involved than the liveness proof. [Hailpern uses 15 pages to prove the ABP]
- The above proof sketch probably contains a fallacy.
- There has to be a better way!

2 Model Checking

(Clarke/Emerson, Queille/Sifakis)

Instead of the previous approach of proving temporal properties of the system from temporal properties of the components, we can take the model checking approach:

1. Build a finite state (usually abstract) model \(M \) of the protocol.
2. Check automatically that \(M \models f \), where \(f \) is a desired temporal property, or
3. produce a \textit{counterexample} automatically if \(M \not\models f \).

A \textit{Kripke Model} \((S, R, L)\) consists of

1. a set of \textit{states} \(S \),
2. a set of transitions between states \(R \),
3. a labeling \(L \), giving the value of each atomic proposition in each state.
Example: Kripke model for a very simple sequential program:

\[
\text{repeat} \\
\quad p := \text{true}; \\
\quad p := \text{false}; \\
\text{end}
\]

\[
\text{p} \quad \text{p}
\]

2.1 Example: modeling a protocol in CSP (Hoare)

- A CSP program consists of a collection of parallel processes with only local variables:

\[
\text{program ::} \\
\quad \text{proc1 :: <local var decls> <statement>} \\
\quad \| \quad \text{proc2 :: <local var decls> <statement>} \\
\quad \| \quad \ldots \\
\quad \| \quad \text{procn :: <local var decls> <statement>}
\]

- Simple statements
 - \text{skip} (do nothing)
 - \text{x := x + 1} (local assignment)

- Sequential composition
 \[
y := 1; x := x + y
\]

- Communication by synchronous message passing
 - \text{P!y} send value of y to process P
 - \text{Q?x} receive value of x from process Q

Both send and receive actions are blocking. That is, a sender must wait until receiver is ready to receive and vice-versa.

- Nondeterministic choice operator: \(\boxdot \)

\[
\text{sender?x; [recvrlx \ \boxdot \ \text{skip}]}
\]

(Choose nondeterministically to transmit message or do nothing)

- Guarded commands: conditions \(\Rightarrow \) statement

\[
\text{chan?x; [x > last } \Rightarrow \text{output!x } \boxdot \\
\text{x } \leq \text{last } \Rightarrow \text{skip]}
\]
(If the received number greater than last, then transmit, else do nothing)

• Iteration: \([\text{statement}]^*\)
 Terminates when all guards are false:

\[
\text{chan}\ ?x; \; [\text{last_ack} < x \Rightarrow \left[\text{chan}\!x \; \square \; \text{ack}_\text{chan}\?\text{last_ack} \right]]^*
\]

(Continue sending until receive an ack \(\geq x\))

• Example – a mutual exclusion protocol
 Two processes must be prevented from entering their critical region simultaneously:

\[
p[i=1,2] :: | \quad N_i :: \; \text{skip}; \; (\text{abstracts non-critical section}) \quad \text{M}\!\text{try}(); \quad \text{M}\?\text{enter}(); \quad \text{C}_i :: \; \text{skip}; \; (\text{abstracts critical region}) \quad \text{M}\!\text{exit}(); \]

They communicate with a process \(M\) that enforces mutual exclusion and guarantees eventual access:

\[
\text{M :: try}[1,2] : \text{boolean, initially 0}; \quad \text{turn : 0..2, initially 0}; \quad L :: \quad p[i=1,2]?\text{try}() \Rightarrow \\
\quad [\text{turn} = 0 \Rightarrow \text{turn} := i]; \quad \text{try}[i] := 1 \quad \square i=1,2: \; \text{try}[i] \wedge (\text{turn} \neq 3-i) \Rightarrow \\
\quad \text{p}[i]\!\text{enter}(); \quad \text{E}_i :: \quad \text{p}[i]?\text{exit}(); \quad \text{try}[i] := 0; \quad \text{try}[3-i] \Rightarrow \text{turn} := 3-i]
\]

• Program state
 A state consists of

 – a program statement label for each process
 – a valuation for each local variable

Example: \(\{T_1, C_2, E_2\}, \text{try}[1] = 1, \text{try}[2] = 1, \text{turn} = 2\)
• Interleaving concurrency

Concurrency is modeled by allowing at each state a nondeterministic choice of which process to advance. (This is like simulating concurrency by coroutines).

Example: from the following program fragment:

\[
\begin{align*}
A:: & \quad x := x + 1; \quad B:: \quad \text{skip} || \\
C:: & \quad y := y + 1; \quad D:: \quad \text{skip}
\end{align*}
\]

we obtain this state graph:

\[
\begin{align*}
&\{(A,C), x=0, y=0\} \\
\downarrow & \\
&\{(B,C), x=1, y=1\} \quad \{(A,D), x=0, y=1\} \\
\downarrow & \\
&\{(B,D), x=1, y=1\}
\end{align*}
\]

• Synchronized transitions

A receive and a send combine to produce a single synchronized transition.

Example:

\[
\begin{align*}
A:: & \quad P!0; \quad B:: \quad \text{skip} || \\
C:: & \quad Q?x; \quad D:: \quad \text{skip}
\end{align*}
\]

produces (for example) the following transition:

\[
\begin{align*}
&\{(A,C), x=1\} \\
\downarrow & \\
&\{(B,D), x=0\}
\end{align*}
\]

• Example: Generating a Kripke model from a CSP program

The mutual exclusion protocol:

1. Start with the initial state

2. generate all possible transitions from that state

\[
\begin{align*}
&\{(N1,N2,L), t[1]=0, t[2]=0, \text{turn}=0\} \\
\downarrow & \\
&\{(T1,N2,L), t[1]=1, t[2]=0, \text{turn}=1\} \quad \{(N1,T2,L), t[1]=0, t[2]=1, \text{turn}=2\}
\end{align*}
\]

3. repeat on new states until none (breadth-first search)
Interpreting temporal formulas on Kripke models

A path in a Kripke model $M = (S, R, L)$ is any infinite sequence

$$
\sigma = s_1, s_2, s_3, \ldots
$$

of states in S such that every pair (s_i, s_{i+1}) is a transition in R.

If F is a PLTL formula, we say

$$M, s_1 \models f$$

when for every path $\sigma = s_1, s_2, s_3, \ldots$, $\sigma \models f$.

In our example, we have $M, s_{\text{init}} \models G(T_1 \Rightarrow F C_1)$, for example. To verify this automatically, we require another digression...