Here are some corrections that were necessary, in Lecture 22.

On page 142, change the last 7 lines to the following: Let σ be an $\equiv_{2m^2}^k$ -equivalence class, and τ an \equiv_m^{k+1} -equivalence class. Let $a \in \sigma \subseteq \mathbb{R}^k$. We say that τ is consistent with σ via a if there exists an $a' \in \mathbb{R}$ such that $(a, a') \in \tau$.

Lemma 22.4: Let $a \in \mathbb{Q}^k$, and let σ be the $\equiv_{2m^2}^k$ -equivalence class of a. The set

$$\{(a, f(a)/c) : f \in A^k_{2m^2}, |c| \le 2m^2, c \in \mathbb{Z}\}$$

contains a representative of every \equiv^{k+1}_m -equivalence class that is consistent with σ via a.