
Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Recitation 6
Computer Architecture (section 1)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

What is an Instruction Set Architecture (ISA)?

● A contract between software and
hardware. Terms and

conditions

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

What is an Instruction Set Architecture (ISA)?

● A contract between software and
hardware.

● Hardware provides a specification,
software can use this specification
to do computation.

Terms and
conditions

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

What is an Instruction Set Architecture (ISA)?

● A contract between software and
hardware.

● Hardware provides a specification,
software can use this specification
to do computation.

● The ISA specifies all the hardware
understands.
○ This is the machine code.

Terms and
conditions

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

The x86 ISA

● Initially developed by
Intel.
○ Today’s market drivers are

Intel and AMD.

● Now competing with
ARM.
○ RISC-V in the future?

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

The x86 ISA

● Initially developed by
Intel.
○ Today’s market drivers are

Intel and AMD.

● Now competing with
ARM.
○ RISC-V in the future?

5082 pages
and growing!

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

The x86-64 ISA - General Purpose Registers

64 56 48 40 32 24 16 8

R?X

E?X

?X

?H ?L

 (A, B, C and D)

rax

ebx

cx

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Assembly

● A low-level programming
language that
corresponds (almost 1:1)
with machine code.

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Assembly

● A low-level programming
language that
corresponds (almost 1:1)
with machine code.

● The assembler converts
assembly to machine
code.

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Assembly

● A low-level programming
language that
corresponds (almost 1:1)
with machine code.

● The assembler converts
assembly to machine
code.

Can’t have a human
program in this

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Syntax

movl $3, %eax

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Syntax

movl $3, %eax
Instruction

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Syntax

movl $3, %eax
Instruction

Source Operand

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Syntax

movl $3, %eax
Instruction

Source Operand

Dest operand

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Syntax

movl $3, %eax
Instruction

Source Operand

Dest operand

x86 permits 0-3 operands

With 2 operands, the order is
source, destination

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Instruction Suffixes

movl $4, %eax4 bytes

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Instruction Suffixes

movl $4, %eax

movb $1, %ah

4 bytes

1 bytes

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Instruction Suffixes

movl $4, %eax

movb $1, %ah

movw $2, %ax

4 bytes

1 bytes

2 bytes

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Instruction Suffixes

movl $4, %eax

movb $1, %ah

movw $2, %ax

movq $8, %rax

4 bytes

1 bytes

2 bytes

8 bytes

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

movl %ebx, %eax

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

movl $3, %eax

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute (Direct)

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

movl $5, 0x123456

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

movl $2, (%eax)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

movl $2, -8(%ebp)

Address = %ebp + (-8)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

leal (%ebx,%ecx), %eax

Address = %ebx + %ecx

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

leal -8(%ebx,%ecx), %eax

Address = %ebx + %ecx + (-8)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

leal (,%ecx,4), %eax

Address = %ecx*4

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Addressing Modes
Register

Immediate

Absolute

Indirect

Indirect with offset

Indexed

Indexed with offset

Scaled indexed

Scaled indexed with offset

leal -8(,%ecx,4), %eax

Address = %ecx*4 + (-8)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address
● addl/subl %eax,%ebx

○ Add/sub source to/from
destination

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address
● addl/subl %eax,%ebx

○ Add/sub source to/from
destination

● imull %eax,%ebx

○ Multiply source and
destination

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address
● addl/subl %eax,%ebx

○ Add/sub source to/from
destination

● imull %eax,%ebx

○ Multiply source and
destination

● incl %eax

○ Increment by 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address
● addl/subl %eax,%ebx

○ Add/sub source to/from
destination

● imull %eax,%ebx

○ Multiply source and
destination

● incl %eax

○ Increment by 1
● sal %al,%ebx

○ Shift destination bits left by
source bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Common Instructions
● movl %eax,%ebx

○ Move source to destination
● leal -8(%eax), %ebx

○ Load effective address
● addl/subl %eax,%ebx

○ Add/sub source to/from
destination

● imull %eax,%ebx

○ Multiply source and
destination

● incl %eax

○ Increment by 1
● sal %al,%ebx

○ Shift destination bits left by
source bits

● sar %al,%ebx

○ Shift destination bits right
by source bits (keeps sign)
vs shr

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

array:

 movl 4(%esp), %eax

 movl 8(%esp), %edx

 movl $5, (%eax,%edx,4)

 ret

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

array:

 movl 4(%esp), %eax

 movl 8(%esp), %edx

 movl $5, (%eax,%edx,4)

 ret

int* a

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

array:

 movl 4(%esp), %eax

 movl 8(%esp), %edx

 movl $5, (%eax,%edx,4)

 ret

int* a

int i

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

array:

 movl 4(%esp), %eax

 movl 8(%esp), %edx

 movl $5, (%eax,%edx,4)

 ret

int* a

int i

%eax + %edx*4

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Indexing an array

int array(int* a, int i)
{
 a[i] = 5;
}

array:

 movl 4(%esp), %eax

 movl 8(%esp), %edx

 movl $5, (%eax,%edx,4)

 ret

int* a

int i

%eax + %edx*4

Try it out today! -> https://godbolt.org/

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags
● Carry (CF) - Arithmetic carry/

borrow

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags
● Carry (CF) - Arithmetic carry/

borrow

● Parity (PF) - Odd or even number

of bits set

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags
● Carry (CF) - Arithmetic carry/

borrow

● Parity (PF) - Odd or even number

of bits set

● Zero (ZF) - Result was zero

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags
● Carry (CF) - Arithmetic carry/

borrow

● Parity (PF) - Odd or even number

of bits set

● Zero (ZF) - Result was zero

● Sign (SF) - Most significant bit was

set

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Flags

● Flag registers are special
registers that are set by
some instructions
○ Each instructions has its own

side-effects on the flags
● Carry (CF) - Arithmetic carry/

borrow

● Parity (PF) - Odd or even number

of bits set

● Zero (ZF) - Result was zero

● Sign (SF) - Most significant bit was

set

● Overflow (OF) - Result does not fit

into the location

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test
● cmpl %eax,%ebx

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test
● cmpl %eax,%ebx

○ Calculates %ebx-%eax and sets flags accordingly

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

CF

PF

ZF

SF

OF

cmpl %eax,%ebx

eax ebx

7 7

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test
● cmpl %eax,%ebx

○ Calculates %ebx-%eax and sets flags accordingly

● testl %eax,%ebx

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test
● cmpl %eax,%ebx

○ Calculates %ebx-%eax and sets flags accordingly

● testl %eax,%ebx
○ Calculates %ebx&%eax and sets flags accordingly

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Setting Flags

● One way to set flags is by using cmp and test
● cmpl %eax,%ebx

○ Calculates %ebx-%eax and sets flags accordingly

● testl %eax,%ebx
○ Calculates %ebx&%eax and sets flags accordingly
○ testl %eax,%eax is the same as cmpl $0,%eax

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Branches

● je label
○ Jump if zero

CF

PF

ZF

SF

OF

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Branches

● je label
○ Jump if zero

● jne/jnz label
○ Jump if non-zero

CF

PF

ZF

SF

OF

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Branches

● je label
○ Jump if zero

● jne/jnz label
○ Jump if non-zero

● js label
○ Jump if negative

CF

PF

ZF

SF

OF

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

x86 Assembly - Branches

● je label
○ Jump if zero

● jne/jnz label
○ Jump if non-zero

● js label
○ Jump if negative

● jns label
○ Jump if non-negative

CF

PF

ZF

SF

OF

