
Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Recitation 4
Computer Architecture (section 1)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

111000000111001 → -12345

Extra bit to
denote sign

Sign magnitude encoding

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

111000000111001 → -12345

011000000111001 → 12345

Extra bit to
denote sign

Sign magnitude encoding

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

111000000111001 → -12345

011000000111001 → 12345

100000000000000 → -0

000000000000000 → 0

Extra bit to
denote sign

Sign magnitude encoding

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

111000000111001 → -12345

011000000111001 → 12345

100000000000000 → -0

000000000000000 → 0

Extra bit to
denote sign

Can represent 2n
values, but really
only 2n-1 are usable

Sign magnitude encoding

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

11000000111001

213+212+25+24+23+20

12345
What about -12345?

111000000111001 → -12345

011000000111001 → 12345

100000000000000 → -0

000000000000000 → 0

Extra bit to
denote sign

Can represent 2n
values, but really
only 2n-1 are usable

Sign magnitude encoding

Range:
[-2n-1-1, 2n-1-1]

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

How to avoid the -0?

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

How to avoid the -0?
Idea: shift over all negative numbers

Now, -0 will become a -1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

How to avoid the -0?
Idea: shift over all negative numbers

Now, -0 will become a -1

-8 -7 -6 -5 -4 -3 -2 -1 ±0 1 2 3 4 5 6 7 8

With 3 bits: sign magnitude encoding

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers

How to avoid the -0?
Idea: shift over all negative numbers

Now, -0 will become a -1

-8 -7 -6 -5 -4 -3 -2 -1 ±0 1 2 3 4 5 6 7 8

With 3 bits: sign magnitude encoding

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Now

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345
To invert sign: flip all bits and add 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345
To invert sign: flip all bits and add 1

100111111000110 + 1Still denotes
sign

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345
To invert sign: flip all bits and add 1

100111111000110 + 1

100111111000111 → -12345

Still denotes
sign

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345
To invert sign: flip all bits and add 1

100111111000110 + 1

100111111000111 → -12345
Now -0 = 0

000000000000000 → 0

111111111111111 + 1

000000000000000 → 0

Still denotes
sign

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Representing Signed Integers
Two’s complement encoding

011000000111001 → 12345
To invert sign: flip all bits and add 1

100111111000110 + 1

100111111000111 → -12345
Now -0 = 0

000000000000000 → 0

111111111111111 + 1

000000000000000 → 0

Range:
[-2n-1, 2n-1-1]

Still denotes
sign

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21
No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4
No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26 = 1/8 + 1/16 + 1/64 = 13/64

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26 = 1/8 + 1/16 + 1/64 = 13/64

101.011 →

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26 = 1/8 + 1/16 + 1/64 = 13/64

101.011 → 22+20

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26 = 1/8 + 1/16 + 1/64 = 13/64

101.011 → 22+20+1/22+1/23

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary

Binary to decimal: Each set bit behind the radix represents 1/2i

0.0 → 0/21

0.01 → 1/22 = 1/4

0.0011 → 1/23+1/24 = 1/8 + 1/16 = 3/16

0.0011010 → 1/23+1/24 1/26 = 1/8 + 1/16 + 1/64 = 13/64

101.011 → 22+20+1/22+1/23 = 4 + 1 + 1/4 + 1/8 = 5 + 3/8

No set bits

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

2 x 0.4 = 0.8

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

2 x 0.4 = 0.8

2 x 0.8 = 1.6

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

2 x 0.4 = 0.8

2 x 0.8 = 1.6

Repeating
pattern

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

2 x 0.4 = 0.8

2 x 0.8 = 1.6

LSB
Repeating
pattern

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fractions in Binary
Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

2 x 0.9 = 1.8

2 x 0.8 = 1.6

2 x 0.6 = 1.2

2 x 0.2 = 0.4

2 x 0.4 = 0.8

2 x 0.8 = 1.6

LSB

0.01(1100)

Repeating
pattern

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fixed Point Representation

Radix always at same index

1101.1001

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fixed Point Representation

Radix always at same index

1101.1001

Problem: What if we need more or less precision?

1101.0000

0000.0101

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Fixed Point Representation

Radix always at same index

1101.1001

Problem: What if we need more or less precision?

1101.0000

0000.0101
Wasted

Wasted

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

IEEE 754 Floating Point

A standard for floating point representation - unlike fixed point, the
radix can now “float”.

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

IEEE 754 Floating Point

A standard for floating point representation - unlike fixed point, the
radix can now “float”.

Single Precision: 32-bit

Double Precision: 64-bit

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

IEEE 754 Floating Point

A standard for floating point representation - unlike fixed point, the
radix can now “float”.

Single Precision: 32-bit

Double Precision: 64-bit

0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0
Sign bit (S) Exponent bits (E) Mantissa bits (M)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

IEEE 754 Floating Point

A standard for floating point representation - unlike fixed point, the
radix can now “float”.

Single Precision: 32-bit

Double Precision: 64-bit

0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0
Sign bit (S) Exponent bits (E) Mantissa bits (M)

Form: (-1)s⨯M⨯2E

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Fractional binary:

10111.(1100) = 1.0111(1100)⨯24

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Fractional binary:

10111.(1100) = 1.0111(1100)⨯24

Exponent: 4 + 7 (bias: 2k-1-1)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Fractional binary:

10111.(1100) = 1.0111(1100)⨯24

Exponent: 4 + 7 (bias: 2k-1-1)

11 → 1011

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Fractional binary:

10111.(1100) = 1.0111(1100)⨯24

Exponent: 4 + 7 (bias: 2k-1-1)

11 → 1011

0 1011 011111001

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Example
Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

23 / 2 = 11 R 1

11 / 2 = 5 R 1

5 / 2 = 2 R 1

2 / 2 = 1 R 0

1 / 2 = 0 R 1 MSB

0.8

2 ⨯0.8 = 1.6

2 ⨯0.6 = 1.2

2 ⨯0.2 = 0.4

2 ⨯0.4 = 0.8

2 ⨯0.8 = 1.6
LSB

Fractional binary:

10111.(1100) = 1.0111(1100)⨯24

Exponent: 4 + 7 (bias: 2k-1-1)

11 → 1011

0 1011 011111001

0 1011 1000
Round to nearest, ties to even

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)
○ Mantissa is a fractional binary with a “1” prefix in decimal form

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)
○ Mantissa is a fractional binary with a “1” prefix in decimal form

● Denormal values: Very small values near 0

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)
○ Mantissa is a fractional binary with a “1” prefix in decimal form

● Denormal values: Very small values near 0
○ Exponent field is all 0’s

■ E = 1 - bias

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)
○ Mantissa is a fractional binary with a “1” prefix in decimal form

● Denormal values: Very small values near 0
○ Exponent field is all 0’s

■ E = 1 - bias
○ Mantissa is a fractional binary, but without “1” prefix

■ Possible to represent 0, but also -0

Rutgers University

CS211 - Computer Architecture Spring 2024Alborz Jelvani

Floating Point - Modes
● Normal: For most fractions

○ Exponent field not all 0’s or 1’s

■ E = e + bias (2k-1-1)
○ Mantissa is a fractional binary with a “1” prefix in decimal form

● Denormal values: Very small values near 0
○ Exponent field is all 0’s

■ E = 1 - bias
○ Mantissa is a fractional binary, but without “1” prefix

■ Possible to represent 0, but also -0
● Special values

○ Exponent field all 1’s
○ Mantissa: All 0 → ±∞, non-zero → NaN

