Recitation 4

Computer Architecture (section 1)

CS211 - Computer Architecture Spring 2024

1100000111001

 $1100000111001 \\ 2^{13}+2^{12}+2^5+2^4+2^3+2^0$

1100000111001 $2^{13}+2^{12}+2^{5}+2^{4}+2^{3}+2^{0}$ 12345

1100000111001 2¹³+2¹²+2⁵+2⁴+2³+2⁰ 12345 What about -12345?

 $\begin{array}{c} 11000000111001\\ 2^{13}+2^{12}+2^5+2^4+2^3+2^0\\ \hline 12345\\ \mbox{Extra bit to}\\ \mbox{denote sign} \end{array} \begin{array}{c} 12345\\ \mbox{What about -12345?}\\ 111000000111001 \longrightarrow -12345 \end{array}$

11000000111001 $2^{13}+2^{12}+2^{5}+2^{4}+2^{3}+2^{0}$ 12345What about -12345? $111000000111001 \rightarrow -12345$ $011000000111001 \rightarrow 12345$

Sign magnitude encoding Extra bit to

denote sign

11000000111001 $2^{13}+2^{12}+2^{5}+2^{4}+2^{3}+2^{0}$ 12345 Sign magnitude encoding Extra bit to What about -12345? denote sign $111000000111001 \rightarrow -12345$ $01100000111001 \rightarrow 12345$ $1000000000000 \rightarrow -0$ $00000000000000 \rightarrow 0$

11000000111001 $2^{13}+2^{12}+2^{5}+2^{4}+2^{3}+2^{0}$ 12345 Sign magnitude encoding Extra bit to What about -12345? denote sign $111000000111001 \rightarrow -12345$ $01100000111001 \rightarrow 12345$ Can represent 2ⁿ $1000000000000 \rightarrow -0$ values, but really only 2ⁿ-1 are usable $0000000000000 \rightarrow 0$

How to avoid the -0?

- How to avoid the -0?
- Idea: shift over all negative numbers
- Now, -0 will become a -1

- How to avoid the -0?
- Idea: shift over all negative numbers
- Now, -0 will become a -1

With 3 bits: sign magnitude encoding

- How to avoid the -0?
- Idea: shift over all negative numbers
- Now, -0 will become a -1

With 3 bits: sign magnitude encoding

Two's complement encoding $01100000111001 \rightarrow 12345$

Two's complement encoding $011000000111001 \rightarrow 12345$ To invert sign: flip all bits and add 1

Two's complement encoding $011000000111001 \rightarrow 12345$ To invert sign: flip all bits and add 1 Still denotes 10011111000110 + 1sign

Two's complement encoding $011000000111001 \rightarrow 12345$ To invert sign: flip all bits and add 1 Still denotes sign 10011111000110 + 1 $10011111000111 \rightarrow -12345$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6}$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6} = 1/8 + 1/16 + 1/64 = 13/64$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6} = 1/8 + 1/16 + 1/64 = 13/64$
 $101.011 \rightarrow$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6} = 1/8 + 1/16 + 1/64 = 13/64$
 $101.011 \rightarrow 2^{2} + 2^{0}$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6} = 1/8 + 1/16 + 1/64 = 13/64$
 $101.011 \rightarrow 2^{2} + 2^{0} + 1/2^{2} + 1/2^{3}$

No set bits

$$0.0 \rightarrow 0/2^{1}$$

 $0.01 \rightarrow 1/2^{2} = 1/4$
 $0.0011 \rightarrow 1/2^{3} + 1/2^{4} = 1/8 + 1/16 = 3/16$
 $0.0011010 \rightarrow 1/2^{3} + 1/2^{4} 1/2^{6} = 1/8 + 1/16 + 1/64 = 13/64$
 $101.011 \rightarrow 2^{2} + 2^{0} + 1/2^{2} + 1/2^{3} = 4 + 1 + 1/4 + 1/8 = 5 + 3/8$

Decimal to binary: Keep multiplying fractional portion by 2

Decimal to binary: Keep multiplying fractional portion by 2

0.45

Decimal to binary: Keep multiplying fractional portion by 2

0.45

2 x 0.45 = 0.9

Decimal to binary: Keep multiplying fractional portion by 2

0.45 2 x 0.45 = 0.9 2 x 0.9 = 1.8

Decimal to binary: Keep multiplying fractional portion by 2

0.45 2 x 0.45 = 0.9 2 x 0.9 = 1.8 2 x 0.8 = 1.6
Decimal to binary: Keep multiplying fractional portion by 2

0.45 2 x 0.45 = 0.9 2 x 0.9 = 1.8 2 x 0.8 = 1.6 2 x 0.6 = 1.2

Decimal to binary: Keep multiplying fractional portion by 2

0.45 2 x 0.45 = 0.9 2 x 0.9 = 1.8 2 x 0.8 = 1.6 2 x 0.6 = 1.2 2 x 0.2 = 0.4

Decimal to binary: Keep multiplying fractional portion by 2

0.45 2 x 0.45 = 0.9 2 x 0.9 = 1.8 2 x 0.8 = 1.6 2 x 0.6 = 1.2 2 x 0.2 = 0.4

 $2 \times 0.4 = 0.8$

Decimal to binary: Keep multiplying fractional portion by 2

0.45 $2 \times 0.45 = 0.9$ $2 \times 0.9 = 1.8$ $2 \times 0.8 = 1.6$ $2 \times 0.6 = 1.2$ $2 \times 0.2 = 0.4$ $2 \times 0.4 = 0.8$

2 x 0.8 = 1.6

Decimal to binary: Keep multiplying fractional portion by 2

Decimal to binary: Keep multiplying fractional portion by 2

Decimal to binary: Keep multiplying fractional portion by 2

Fixed Point Representation

Radix always at same index

1101.1001

Fixed Point Representation

Radix always at same index

1101.1001

Problem: What if we need more or less precision?

1101.0000

0000.0101

Fixed Point Representation

Radix always at same index

1101.1001

Problem: What if we need more or less precision?

1101.0000 Wasted Wasted

A standard for floating point representation - unlike fixed point, the radix can now "float".

A standard for floating point representation - unlike fixed point, the radix can now "float".

- Single Precision: 32-bit
- **Double Precision: 64-bit**

A standard for floating point representation - unlike fixed point, the radix can now "float".

- Single Precision: 32-bit
- **Double Precision: 64-bit**

 001111111001110000101000010100

 Sign bit (S) Exponent bits (E)
 Mantissa bits (M)

A standard for floating point representation - unlike fixed point, the radix can now "float".

- Single Precision: 32-bit
- **Double Precision: 64-bit**

 001111111001110000101000010100

 Sign bit (S) Exponent bits (E)
 Mantissa bits (M)

Form: (-1)^s×M×2^E

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 **R** 1

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 **R** 1 11 / 2 = 5 **R** 1

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 **R** 1 11 / 2 = 5 **R** 1 5 / 2 = 2 **R** 1

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 R 1 11 / 2 = 5 R 1 5 / 2 = 2 R 1 2 / 2 = 1 R 0

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 R 1 11 / 2 = 5 R 1 5 / 2 = 2 R 1 2 / 2 = 1 R 0 1 / 2 = 0 R 1

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

23 23 / 2 = 11 R 1 11 / 2 = 5 R 1 5 / 2 = 2 R 1 2 / 2 = 1 R 0 1 / 2 = 0 R 1 MSB

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

0.8

23	0.8
23 / 2 = 11 R 1	2 ×0.8 = 1.6
11 / 2 = 5 R 1	2 ×0.6 = 1.2
5 / 2 = 2 R 1	2 ×0.2 = 0.4
2 / 2 = 1 R 0	
1/2=0 R 1	MSB

23		0.8
23 / 2 = 11 R 1		2 ×0.8 = 1.6
11 / 2 = 5 R 1		2 ×0.6 = 1.2
5 / 2 = 2 R 1		2 ×0.2 = 0.4
2 / 2 = 1 R 0		2 ×0.4 = 0.8
1 / 2 = 0 R 1	MSB	

23	0.8	
23 / 2 = 11 R 1	2 ×0.8 = 1.6	
11 / 2 = 5 R 1	2 ×0.6 = 1.2	
5 / 2 = 2 R 1	2 ×0.2 = 0.4	
2 / 2 = 1 R 0	2 ×0.4 = 0.8	
1/2=0 R 1 MSB	2 ×0.8 = 1.6	

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

LSB

23	0.8
23 / 2 = 11 R 1	2 ×0.8 =16
11 / 2 = 5 R 1	2 ×0.6 = 1 2
5 / 2 = 2 R 1	2 ×0.2 = 0 4
2 / 2 = 1 R 0	2 ×0.4 = 0 8
1/2=0 R 1 MSB	2 ×0.8 = 1.6

Fractional binary:

 $10111.(1100) = 1.0111(1100) \times 2^4$

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

SB

23	0.8
23 / 2 = 11 R 1	2 ×0.8 =16
11 / 2 = 5 R 1	2 ×0.6 = 1 2
5 / 2 = 2 R 1	2 ×0.2 = 0 4
2 / 2 = 1 R 0	2 ×0.4 = 0 8
1/2=0 R 1 MSB	2 ×0.8 = 1.6

Fractional binary:

 $10111.(1100) = 1.0111(1100) \times 2^4$

Exponent: 4 + 7 (bias: $2^{k-1}-1$)

23	0.8	
23 / 2 = 11 R 1	2 ×0.8 =	16
11 / 2 = 5 R 1	2 ×0.6 =	12
5 / 2 = 2 R 1	2 ×0.2 =	04
2 / 2 = 1 R 0	2 ×0.4 =	08
1/2=0 R 1	MSB 2 ×0.8 =	<u> </u>

Fractional binary:

$$10111.(1100) = 1.0111(1100) \times 2^4$$

Exponent: 4 + 7 (bias: 2^{k-1}-1)
 $11 \rightarrow 1011$

23	0.8	Eractional hinary
23 / 2 = 11 R 1	2 ×0.8 = 16	
11 / 2 = 5 R 1	2 ×0.6 = 1 2	$10111.(1100) = 1.0111(1100) \times 2^{-1}$
5 / 2 = 2 R 1	2 ×0.2 = 0 4	Exponent: 4 + 7 (bias: 2 ⁻¹ -1)
$2/2 = 1 \mathbf{R} 0$	$2 \times 0.4 = 0.8$	$11 \rightarrow 1011$
1/2 = 0 R 1 MSB	$2 \times 0.8 = 1.6$	0 1011 011111001

Spec: 9 bit FP with 4 bit exponent and 4 bit mantissa. Convert 23.8 to FP

0.8 23 **Fractional binary:** 2 ×0.8 = 16 23 / 2 = 11 **R** 1 $10111.(1100) = 1.0111(1100) \times 2^4$ 11/2=5**R**1 2 ×0.6 = 1 2 Exponent: 4 + 7 (bias: $2^{k-1}-1$) 5 / 2 = 2 **R** 1 2 ×0.2 = 0 4 $11 \rightarrow 1011$ 2 / 2 = 1 **R** 0 2 ×0.4 = LSB 1/2=0**R** 0 1011 011111001 **MSB** $2 \times 0 8 = 16$ 0 1011 1000 Round to nearest, ties to even

Floating Point - Modes

• Normal: For most fractions

Floating Point - Modes

- Normal: For most fractions
 - Exponent field not all 0's or 1's

■ $E = e + bias (2^{k-1}-1)$
- Normal: For most fractions
 - Exponent field not all 0's or 1's

• $E = e + bias (2^{k-1}-1)$

• Mantissa is a fractional binary with a "1" prefix in decimal form

- Normal: For most fractions
 - Exponent field not all 0's or 1's

■ $E = e + bias (2^{k-1}-1)$

- Mantissa is a fractional binary with a "1" prefix in decimal form
- Denormal values: Very small values near 0

- Normal: For most fractions
 - Exponent field not all 0's or 1's

• $E = e + bias (2^{k-1}-1)$

- Mantissa is a fractional binary with a "1" prefix in decimal form
- Denormal values: Very small values near 0
 - Exponent field is all 0's
 - E = 1 bias

- Normal: For most fractions
 - Exponent field not all 0's or 1's

■ $E = e + bias (2^{k-1}-1)$

- Mantissa is a fractional binary with a "1" prefix in decimal form
- Denormal values: Very small values near 0
 - Exponent field is all 0's
 - E = 1 bias
 - Mantissa is a fractional binary, but without "1" prefix
 - Possible to represent 0, but also -0

- Normal: For most fractions
 - Exponent field not all 0's or 1's

• $E = e + bias (2^{k-1}-1)$

- Mantissa is a fractional binary with a "1" prefix in decimal form
- Denormal values: Very small values near 0
 - Exponent field is all 0's

■ E = 1 - bias

- Mantissa is a fractional binary, but without "1" prefix
 - Possible to represent 0, but also -0
- Special values
 - Exponent field all 1's
 - Mantissa: All $0 \rightarrow \pm \infty$, non-zero \rightarrow NaN