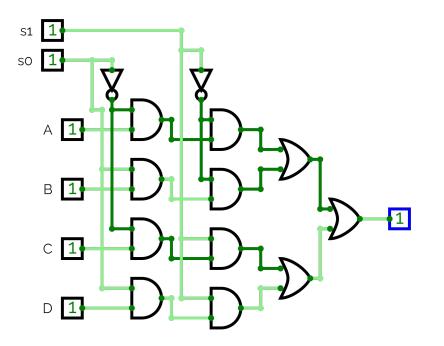
Recitation 12

Computer Architecture (section 1)

Combinatorial Circuits

- An arrangement of electronic components that perform operations on a set of inputs.
- Combinatorial logic is:
 - Time invariant
 - No memory
 - Composed of *logic gates*



Basic Logic Gates

- Common logic gates are: NOT, AND, OR, NAND, NOR, XOR.
- These gates can be combined together to form a logic circuit.

 Boolean algebra is a theoretical framework used to analyze logic circuits.

NOT Gate

Alborz Jelvani

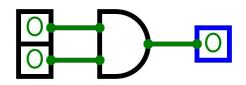
NOT Gate

Alborz Jelvani

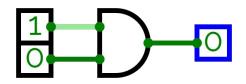
NOT Gate



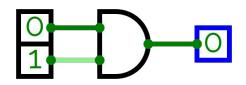
AND Gate



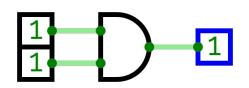
AND Gate

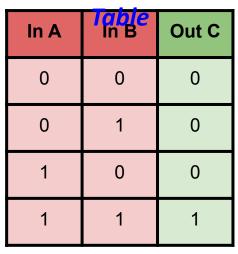


AND Gate

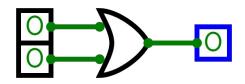


AND Gate



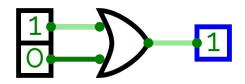


OR Gate



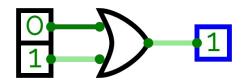
Alborz Jelvani

OR Gate

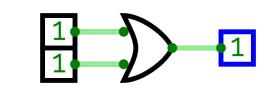


Alborz Jelvani

OR Gate

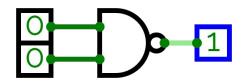


Alborz Jelvani



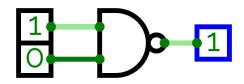
In A	in B	Out C
0	0	0
0	1	1
1	0	1
1	1	1

NAND Gate



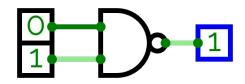
Alborz Jelvani

NAND Gate

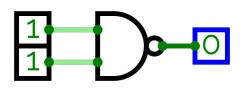


Alborz Jelvani

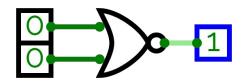
NAND Gate

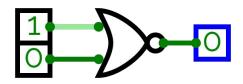


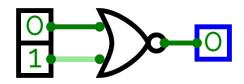
NAND Gate

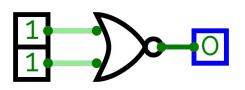


In A	in B	Out C
0	0	1
0	1	1
1	0	1
1	1	0

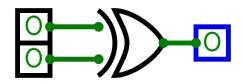




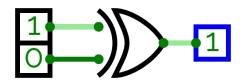


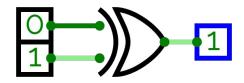


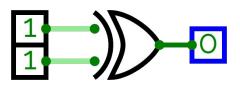
In A	in B	Out C
0	0	1
0	1	0
1	0	0
1	1	0



Alborz Jelvani

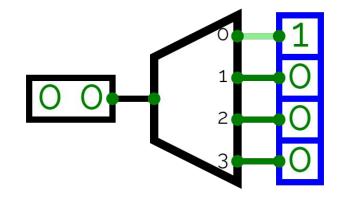


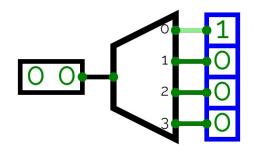




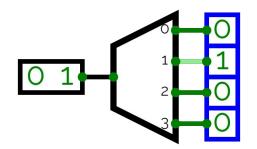
In A	in B	Out C
0	0	0
0	1	1
1	0	1
1	1	0

- A logic circuit with *n* inputs and 2^{*n*} outputs.
- Used to select the index of the represented binary input.
- Only one output bit can be set for any input.

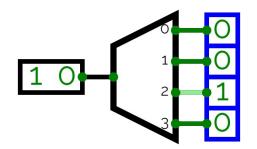




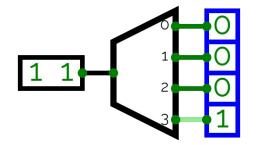
Alborz Jelvani



Alborz Jelvani

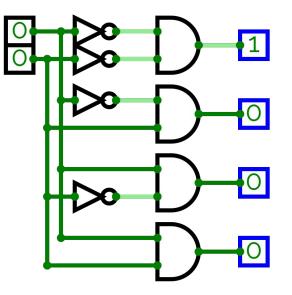


Alborz Jelvani

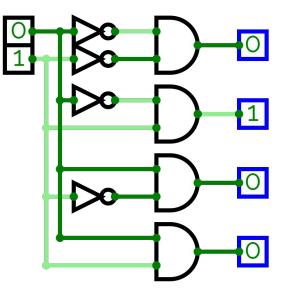


In A	In B	Out C	Out D	Out E	Out F
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Building a 2-bit Decoder

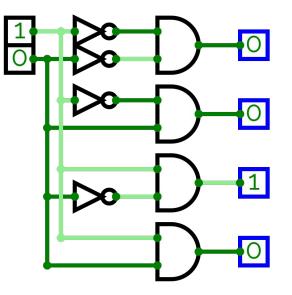


Building a 2-bit Decoder

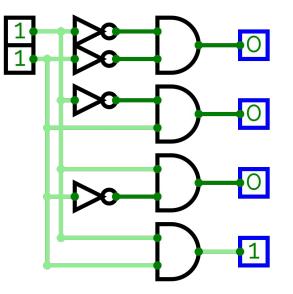


Alborz Jelvani

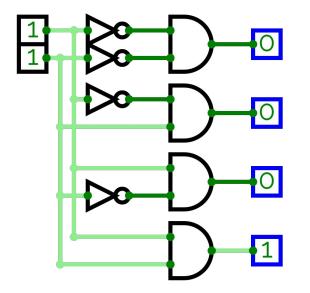
Building a 2-bit Decoder



Building a 2-bit Decoder



Building a 2-bit Decoder



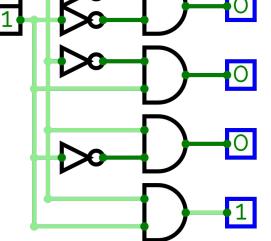
In A	In B	Out C	Out D	Out E	Out F
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Rutgers University

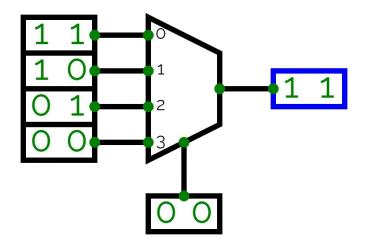
Building a 2-bit Decoder

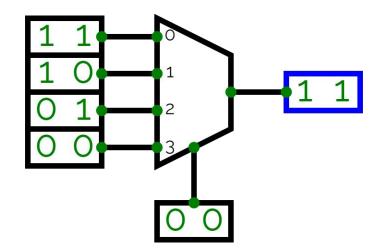
Try it out yourself

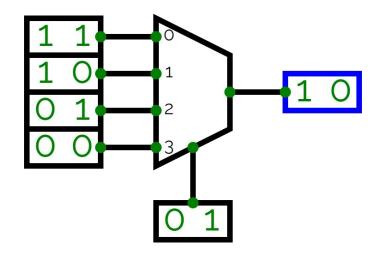
https://circuitverse.org/simulator

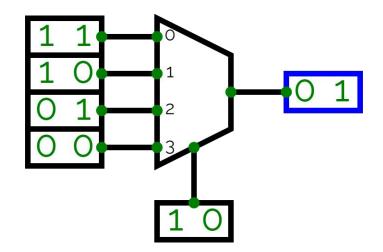


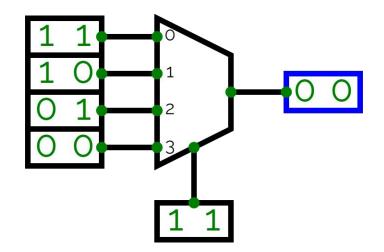
- A logic circuit with 2ⁿ signal inputs, *n* select inputs, and 1 signal output.
- Used to select which signal to output.
- Output is always one of the inputs.

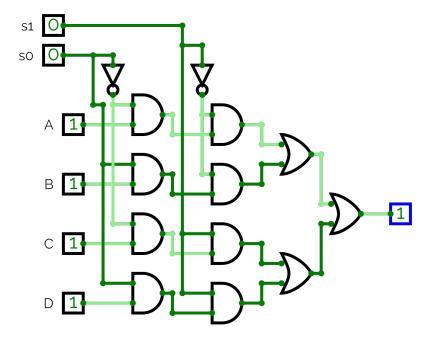


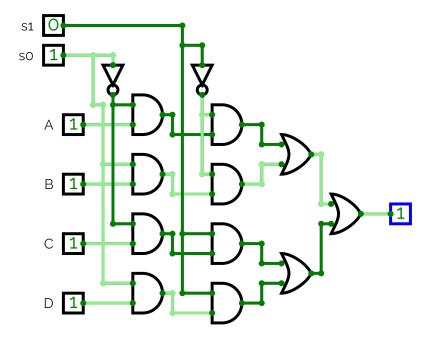


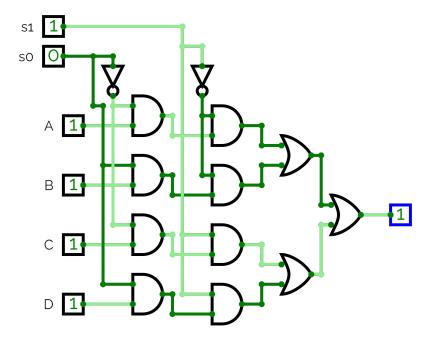


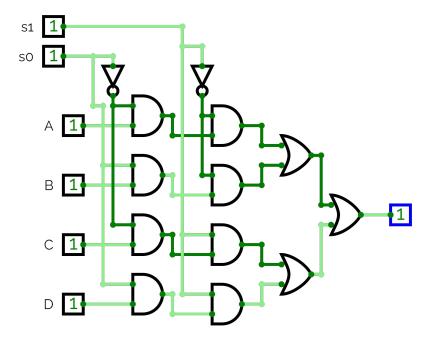








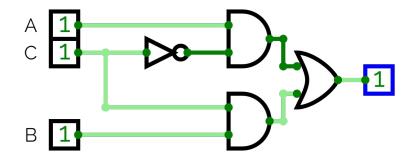




Boolean Algebra

We can define logic circuits with boolean algebra.

 $\mathbf{F} = \mathbf{A}\overline{\mathbf{C}} + \mathbf{B}\mathbf{C}$



Boolean Algebra Identities

I.	Law of Identity	$\frac{A}{A} = \frac{A}{A}$
2.	Commutative Law	$A \cdot B = B \cdot A$ $A + B = B + A$
3.	Associative Law	$A \cdot (B \cdot C) = A \cdot B \cdot C$ $A + (B + C) = A + B + C$
4.	Idempotent Law	$ A \cdot \dot{A} = A \\ A + A = A $
5.	Double Negative Law	$\overline{\overline{A}} = A$
6.	Complementary Law	$ A \cdot \overline{A} = 0 A + \overline{A} = 1 $
7.	Law of Intersection	$\begin{aligned} \mathbf{A} \cdot 1 &= \mathbf{A} \\ \mathbf{A} \cdot 0 &= 0 \end{aligned}$
8.	Law of Union	$\begin{array}{l} \mathbf{A} + \mathbf{l} = 1 \\ \mathbf{A} + 0 = \mathbf{A} \end{array}$
9.	DeMorgan's Theorem	$\overline{AB} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \overline{B}$
10.	Distributive Law	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $A + (BC) = (A + B) \cdot (A + C)$
11.	Law of Absorption	$A \cdot (A + B) = A$ $A + (AB) = A$
1 2 .	Law of Common Identities	$A \cdot (\overline{A} + B) = AB$ $A + (\overline{A}B) = A + B$

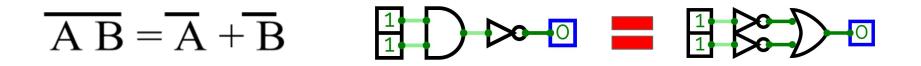
We can prove equality with truth tables.

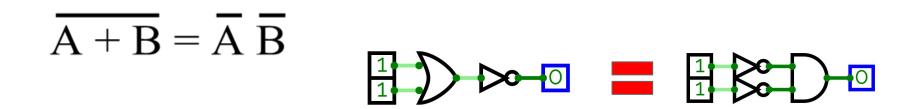
Alborz Jelvani

CS211 - Computer Architecture Spring 2024

Rutgers University

De Morgan's Law





CS211 - Computer Architecture Spring 2024

Expressing Boolean Functions

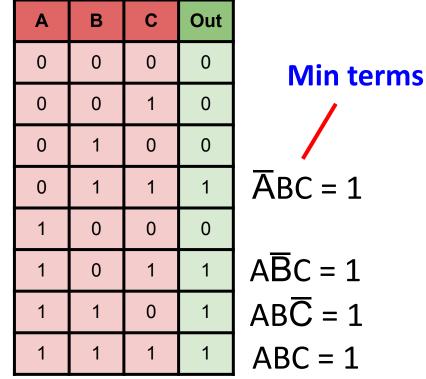
We can express boolean functions in canonical forms known and **sum-of-products** and **product-of-sums**. A minterm is the product of all literals in the expression where each literal may be negated. A minterm can only output 1 for a single input. SoP = $\overline{AB} + A\overline{B}$

 $PoS = (\overline{A}+B) (A+\overline{B})$

Boolean Algebra Exercise

Convert the truth table to a boolean expression.

 $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$



Simplifying Boolean Expressions

Often times a boolean expression has an equivalent more concise form.

One way to simplify an expression is via identities.

```
\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}
                                        Factoring BC out of 1<sup>st</sup> and 4<sup>th</sup> terms
BC(\overline{A} + A) + A\overline{B}C + A\overline{B}C
                                        Applying identity \mathbf{A} + \overline{\mathbf{A}} = \mathbf{1}
     BC(1) + ABC + ABC
                                        Applying identity 1A = A
         BC + ABC + ABC
                                        Factoring B out of 1<sup>st</sup> and 3<sup>rd</sup> terms
        B(C + A\overline{C}) + A\overline{B}C
                                        Applying rule \mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B} to
                                         the C + AC term
         B(C + A) + ABC
                                        Distributing terms
         BC + AB + A\overline{B}C
                                        Factoring A out of 2<sup>nd</sup> and 3<sup>rd</sup> terms
        BC + A(B + \overline{B}C)
                                        Applying rule \mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B} to
                                         the B + BC term
         BC + A(B + C)
                                        Distributing terms
         BC + AB + AC
                                        Simplified result
                    or
         AB + BC + AC
```