
Influence of Program Inputs on the Selection of Garbage
Collectors

Feng Mao Eddy Z. Zhang Xipeng Shen
Computer Science Department

College of William and Mary, VA, USA
{fmao,eddy,xshen}@cs.wm.edu

Abstract
Many studies have shown that the best performer among a set
of garbage collectors tends to be different for different applica-
tions. Researchers have proposed application-specific selection of
garbage collectors. In this work, we concentrate on a second di-
mension of the problem: the influence of program inputs on the
selection of garbage collectors.

We collect tens to hundreds of inputs for a set of Java bench-
marks, and measure their performance on Jikes RVM with differ-
ent heap sizes and garbage collectors. A rigorous statistical analy-
sis produces four-fold insights. First, inputs influence the relative
performance of garbage collectors significantly, causing large vari-
ations to the top set of garbage collectors across inputs. Profiling
one or few runs is thus inadequate for selecting the garbage col-
lector that works well for most inputs. Second, when the heap size
ratio is fixed, one or two types of garbage collectors are enough to
stimulate the top performance of the program on all inputs. Third,
for some programs, the heap size ratio significantly affects the rel-
ative performance of different types of garbage collectors. For the
selection of garbage collectors on those programs, it is necessary to
have a cross-input predictive model that predicts the minimum pos-
sible heap size of the execution on an arbitrary input. Finally, based
on regression techniques, we demonstrate the predictability of the
minimum possible heap size, indicating the potential feasibility of
the input-specific selection of garbage collectors.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory Management (Garbage Collection)

General Terms Performance, Experimentation

Keywords Cross-Input Program Analysis, Input-Specific Selec-
tion, Selection of Garbage Collectors, Profiling, Minimum Possible
Heap Size

1. Introduction
Garbage collection (GC), as one of the major tasks in managed run-
time environments, critically determines the efficiency of memory
management and the resulted data locality. Consequently, a large
body of research has proposed various types of GC techniques.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’09, March 11–13, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

Many studies have shown that the optimal garbage collector differs
in different scenarios for different applications [7,11,15,18–20,22].

Based on those observations, researchers have proposed application-
specific garbage collection, in which, a specialized GC algorithm
is selected for each program. Example work includes static selec-
tion during compile time by Fitzgerald and Tarditi [11], dynamic
switching of GC algorithms by Soman and others [20], and ma-
chine learning based selection by Singer and others [18]. Most of
these techniques require the profiling of some typical runs of the
application to attain either some application-specific information
(such as, the minimum possible heap size), or more directly, the
best GC algorithms. They have shown considerable performance
improvement for applications running on Java Virtual Machines
(JVM) or Common Language Runtime (CLR).

In this work, we concentrate on a different dimension of GC
selection: the influence from program inputs. Given that most
application-specific selections of garbage collectors depend on
profiling results, a good understanding of the input influence is
essential: If the influence is negligible, profiling one run would suf-
fice; otherwise, cross input adaptivity would be important for the
selection of garbage collectors.

While most previous work has been focused on applications, the
influence of inputs remains preliminarily explored. Some studies
have briefly explored the influence, using few (typically two) inputs
per application. The limited explorations have led to an unclear
picture: Depending on the settings, some work has seen negligible
influence from inputs [20], but some have shown more significant
effects [18].

The objective of this work is to offer a more comprehensive un-
derstanding of the influence of inputs on the selection of garbage
collectors. We conduct a series of systematic measurement of the
effects of program inputs on the performance of GC. For 10 pro-
grams from 3 benchmark suites, we collect and create hundreds of
different inputs. We measure the performance of totally 316,000
executions of those programs with 5 types of garbage collectors,
1580 different inputs, and 4 heap size ratios (the ratio between the
used heap size and the minimum possible heap size.) In a rigorous
manner, we analyze the influence of program inputs on the top set
of garbage collectors and the combined effects with heap sizes. The
analysis reveals the following findings.

First, inputs influence the relative performance of garbage col-
lectors significantly. For most programs, the top set of garbage col-
lectors varies significantly across inputs. So, in general, profiling
one or few runs is inadequate for selecting the garbage collector
that works well for most inputs. Second, despite that influence, cer-
tain consistency does exist across inputs for all the programs in
our test set: When the heap size ratio is fixed, one or two types of
garbage collectors are enough to stimulate the top performance of
a program on all inputs. This consistency seems to suggest a po-

91

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1508293.1508307&domain=pdf&date_stamp=2009-03-11

Table 1. Garbage collectors used in this work
Garbage collector Description

GC1: GenCopy a classic copying generational col-
lector with a copying higher gener-
ation.

GC2: GenMS∗ a copying generational collector
with a non-copying mark-and-
sweep mature space.

GC3: MarkSweep a mark-and-sweep (non copying)
collector.

GC4: RefCount a reference counting collector with
synchronous (non-concurrent) cy-
cle collection.

GC5: SemiSpace.SS a copying semi-space collector.
* : The default Jikes RVM configuration for the production distribution.

tential solution to the input-sensitivity problem: profiling a number
of different inputs and selecting the most popular top garbage col-
lector for an application. However, the heap size factor complicates
the problem further. On some programs, the heap size ratio shows
significant influence on the relative performance of different types
of garbage collectors. Therefore, for the selection of garbage col-
lectors on those programs, it is necessary to have a cross-input pre-
dictive model that forecasts the minimum possible heap size of the
execution on an arbitrary input. Finally, through regression tech-
niques, we verify the predictability of the minimum possible heap
size, showing the potential feasibility of the input-specific selection
of garbage collectors.

In the rest of this paper, Section 2 describes the methodology
of the experiments. Section 3 reports the measurement results and
exposes three-fold findings. Section 4 presents the cross-input pre-
dictability of the minimum possible heap size. Section 5 discusses
some related work. Section 6 concludes the paper with a short sum-
mary.

2. Methodology
To uncover the effects of program inputs on the selection of GC al-
gorithms, we measure the running time of a sequence of executions
of Java programs on different inputs, heap sizes, and garbage col-
lectors. This section presents the experimental settings, describes
the performance measurement scheme, and introduces the statisti-
cal approach used for data analysis.

2.1 Experimental Settings

The machine we use is equipped with Intel Xeon E5310 processors
running Redhat Linux 2.6.9 at 1.6GHz. We use Jikes RVM [3]
version 2.9.1 as our Java virtual machine. Among the various
garbage collectors included in the memory management toolkit
(MMTK) [6] coming with Jikes RVM, we select five of them that
are stable for all the executions. Table 1 lists those garbage collec-
tors.

We select 10 programs from 3 benchmark suites to form a mix
of different types of applications, as shown in Table 2. Using part
rather than all of the content in the suites is because of the diffi-
culty in the creation and collection of inputs. We do not choose a
benchmark if its input is too difficult to collect or create. Further-
more, it is common in the construction of a benchmark suite that
some benchmarks are obtained by simplifying the original applica-
tions. Many input options of the original applications are disabled
to make the benchmark interface simple. Given that input is the fo-
cus of this work, we select the 10 programs that are close to the
original application in terms of the usage and interface.

Table 2. Benchmarks
Benchmark Num of Min heap Input features

inputs size (MB) Total Used
Compressj 18 20–98 3 1

Dbj 100 16–31 11 2
Mpegaudioj 30 16–20 3 1

Mtrtj 100 15–49 2 2
Bloatd 976 22–23 23 4

Fopd 224 72–86 27 3
Eulerg 14 16–55 1 1

MolDyng 15 18–21 1 1
MonteCarlog 30 39–74 1 1

Searchg 8 21–21 2 1
j: JVM98 [2]; d: DaCapo [8]; g: Grande [1]

2.2 Input Collection

In the benchmark suites, most programs come with only one or
two inputs, which are insufficient for a systematic study of input
influence. We collect more inputs as shown in the second column
of Table 2. For some programs, such as Search, we have a small
number of inputs due to the special requirements on their inputs.
During the collection, we try to ensure that the inputs are typical
in the normal executions of the benchmarks. More specifically, we
either collect the inputs by searching the real uses of the corre-
sponding applications, or derive the inputs after getting a thorough
understanding of the benchmark through reading its source code
and example inputs. To make the benchmarks close to real applica-
tions, for some programs (Bloat, Fop and Mtrt), we enable some of
their command-line options that were disabled by the benchmark
suite interface.

2.3 Performance Measurement

In this work, we use the running time of an application as the
performance metric. Because we are interested in the influence
of the garbage collector selection on the entire execution, we did
not use replay mode. The measured performance is not stead-state
performance, but start-up performance. The running time is simply
end-to-end execution time, consisting of all the time spent in both
the application and the JVM.

In the experiments, we use 4 different heap size ratios. The heap
sizes are multiples (1,2,4,8) of the minimum possible heap size for
an application to run on an input. We measure the minimum possi-
ble heap size by conducting a binary search in a similar manner as
Singer et al. do [18]. During the binary search, for a given input, we
run the application on that input several times using a range of heap
sizes (from 16MB to 500MB) to find the smallest size, on which the
application can finish successfully. The granularity is 1MB. Note
that some applications have different minimum possible heap sizes
on different inputs. The third column in Table 2 shows the range of
minimum possible heap sizes for every benchmark.

2.4 Statistical Performance Analysis

The goal of garbage collector selection is to select the best garbage
collector—that is, to minimize the execution time of a Java appli-
cation in our setting. However, as previous work suggests [12], it
requires statistical analyses to compare running times of Java ap-
plications to eliminate the effects of random noises in Java virtual
machines.

In this work, we adopt the approach that Georges et al. has de-
scribed [12]. For every combination of (program, input, heap size
ratio, garbage collector), we execute it for 10 times. We then use
the Student’s t-distribution to compute the statistical confidence in-
terval of the average execution time from the 10 runs. We use 90%

92

as the confidence level (the significance level, α, is hence 0.1.) A
confidence interval computed in this way shows the range that con-
tains the true running time (i.e. the running time in a no-noise set-
ting) with 90% probability. The key guideline of the rigorous anal-
ysis is that if the confidence intervals of two sets of runs overlap,
the two sets are regarded as having no significant difference. In the
context of garbage collector selection, two garbage selectors have
similar performance for a program if there is an overlap between
the two confidence intervals corresponding to the two garbage col-
lectors.

This statistical analysis turns out to be vital for this work. The 10
measurements of a single combination often exhibit considerable
variations in the experimental results. Those variations suggest that
it would be difficult to draw reliable conclusions based on the
comparison of average or minimum running times. The confidence
intervals remove the effects of the variations in a large degree.

As an example, suppose for a given combination of (program,
heap size ratio, input), we measure its execution 5 times with GC1
used; the running times are S1 ={22s, 22.1s, 21.9s, 22.2s, 21.8s}.
We then use GC2 for the execution and get another 5 running times
as S2={21.1s, 20.8s, 20.7s, 20.7s, 22.8s}. Their average running
times are respectively mT1 = 22s and mT2 = 21.2s. Their confi-
dence intervals are respectively [20.5s, 23.5s], and [19.7s, 22.8s].
Although mT2 is smaller than mT1, their confidence intervals over-
lap with each other. So, according to the statistics theory, there
is no significant difference between the two garbage collectors in
terms of their effects on the program execution time. The difference
between their average running times are likely caused by random
noises rather than the difference between the two garbage collec-
tors.

3. Measurement Results
This section presents three findings we obtain from the experi-
ments. We first demonstrate that due to the influence program in-
puts impose on the performance of different garbage collectors, the
set of the best garbage collectors rarely remain constant across in-
puts. The variations suggest the risks of traditional profiling-based
garbage collector selection: A garbage collector selected by profil-
ing the execution on one or few inputs may be an inferior or even
the worst choice for other inputs. On the other hand, the results in
Section 3.3 show that even with the influence from program inputs,
it is typical for one or two garbage collectors to meet the needs
of almost all inputs of an application. This phenomenon suggests
some possible solutions to handle program inputs in the selection
of garbage collectors. But the observations revealed in Section 3.4
indicate that, with the combined influence from heap sizes, some
special treatment must be taken for some programs that are sensi-
tive to heap size changes.

3.1 Metrics

Before describing the results, we first explain several concepts
related the metrics used in our data analyses.

Top Set of Garbage Collectors. In our experiment, there are 10
runs for every combination of (program, input, heap size ratio,
garbage collector). The 10 running times result in a confidence
interval. So, for a fixed (program, input, heap size ratio) tuple,
we have 5 confidence intervals, corresponding to the 5 garbage
collectors used in the experiments. We cluster the 5 intervals into
several sets based on their overlaps. The clustering works in an
iterative way. It maintains a working list, initially including all
the 5 confidence intervals. In each iteration, it selects the interval
whose upper bound is the smallest among all the intervals in the
working list as the seed of a new set. It then includes into that
set all the intervals in the working list that overlap with that seed.

 1 2 3 4 5

R
un

ni
ng

 ti
m

e Set 1: {3,1} (top set)

Set 2: {2}

Set 3: {4,5}

Confidence Intervals

Figure 1. Illustration of the clustering scheme used for compar-
isons among confidence intervals.

Those intervals and the seed interval are then removed from the
working list. This process continues until the working list becomes
empty. At the end, every interval belongs to exactly one set, and
no members of a set are significantly different from each other
(according to the definition of the confidence interval.) The garbage
collectors corresponding to the set constructed in the first iteration
are the top performers among all 5 garbage collectors. They form
the top set of garbage collectors.

Figure 1 illustrates the clustering scheme. The 5 intervals form
3 sets with the top set covering the first and third intervals. The
second interval, for instance, forms a separate set because it is
significantly different from at least one interval in each of the other
two sets.

Coverage of a Garbage Collector. For a given program and heap
size ratio, all the runs of the program on each input yield one top
set of garbage collectors. The coverage of a garbage collector, gc,
is the number of the top sets that include gc divided by the total
number of top sets. For instance, there are 10 inputs and the top
sets of 6 inputs include GC1. The coverage of GC1 is 6/10 = 0.6.

Top Garbage Collector. The top garbage collector of a program
is the collector with the largest coverage for that program.

3.2 Variations of the Top Set of Garbage Collectors

The runs of each combination of (program, input, heap size ratio)
yields a top set of garbage collectors. The cross-input variations
of those sets reflect the influence of program inputs on the relative
performance of different garbage collectors.

The pie graphs in Figure 2 summarize the cross-input variations
for every program and heap size ratio. Take MonteCarlo as an
example. When r=1, for 60% of its inputs, the corresponding top
sets of garbage collectors are {GC1, GC3}; for 75% of its other
inputs, the top sets are {GC1, GC2, GC3}; for the remaining
inputs, the top sets are always {GC3}. The three kinds of top sets
correspond to the 3 pieces in the leftmost pie of MonteCarlo in
Figure 2. When the heap size ratio becomes larger (r=2), the set
{GC3} becomes the top set for every input. The corresponding pie
thus has no splits at all.

The number of pieces in a pie is equal to the number of unique
top sets. Most pies in Figure 2 have some splits, showing that the
top set of garbage collectors changes across inputs for most of the
programs.

To understand the reasons for the input influence, we take pro-
gram Mtrt (when r=1) as an example. Garbage collectors GC2 and
GC3 are two of the most popular collectors in the top sets of Mtrt.
However, the ranking between them changes across inputs. For 9%
of the inputs of Mtrt, their top sets include GC3 but not GC2. For
23% of the inputs, the top sets include both. And for the other 68%
inputs, the top sets include GC2 but not GC3.

Figure 3 (a) and (b) reveal the reasons for such cross-input
differences. Figure 3 (a) shows the running times of Mtrt when it
runs on the smallest heap size and either GC2 or GC3 is used. The

93

r=1 r=2 r=4 r=8

Compress

Db

Mpegaudio

Bloat

Fop

Euler

MolDyn

MonteCarlo

Search

Mtrt

Figure 2. The influence of inputs on the top sets of garbage collectors. Each column of pies correspond to one heap size ratio (r is the ratio
of the heap size to the minimum possible heap size.) Each piece in a pie shows the fraction of a program’s inputs whose top sets of garbage
collectors is equal to a particular set. The number of pieces in a pie equals the number of unique top sets of garbage collectors of the program
under a given heap size ratio.

inputs are ordered in the program’s corresponding running times
under GC2, from the shortest to the longest. The crosses (“x”)
in the figure indicate those inputs whose corresponding top sets
of garbage collectors include GC3. Almost all of those inputs are
among the smallest; the corresponding segments of the GC2 and
GC3 curves are close to each other. As the input size increases, the
gap between the two curves enlarges and GC3 becomes unfavorable
after the 32nd input. One of the reasons for the enlarging gap is that
as input becomes larger, the time spent by GC3 increases faster than
the time by GC2, as shown in Figure 3 (b).

A more detailed analysis on Figure 3 (b) exposes the reason why
the 9% inputs have GC3 but not GC2 in their top sets. Those inputs
are the inputs 1 to 9 in the Figure 3. As shown by Figure 3 (b), GC2
and GC3 have similar GC times on each of those inputs. So, the
reason for the better performance of the program under GC3 than
GC2 is because GC3 brings better data locality to the program and
shortens the mutator running time. This explanation concurs with
the performance on inputs 10 to 32, on which, although GC3 takes
longer time to finish than GC2, the program performs similarly on
the two garbage collectors.

Figure 4 exposes the number of garbage collections. Although
GC2 is invoked more often than GC3, an invocation of GC2 takes
less time to finish than an invocation of GC3.

Implications to Garbage Collector Selection. The example of
Mtrt reflects the potential risk of the existing approaches in profiling-
based garbage collector selection. In those approaches, typically
very few (one or two) inputs are used for profiling to select the best
garbage collector. If the input used for profiling of Mtrt happens to
be a small input, GC3 may be chosen as the best garbage collector.
That decision would cause the program inferior performance on
most large inputs, reflected by the gap between the two curves on
Figure 3 (a).

The many splits in the pies in Figure 2 suggest that such risks
exist for almost all programs. To demonstrate the potential severity
of such risks, the boxplots in Figure 5 show the performance when
the user happens to choose a garbage collector that, although ap-
pearing in the top sets of more than 20% inputs, is not in the top
sets of the majority of the inputs. (The greater than 20% coverage
suggests the non-trivial probability for the garbage collector to be
chosen in a profiling-based selection.) We normalize the running

94

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Benchmarks
Com

pr
es

s Db

M
pe

ga
ud

io
M

trt

Bloa
t

Fop

Eule
r

M
olD

yn

M
on

te
Car

lo

Sea
rc

h

R
un

tim
e

/ M
in

im
um

−
ru

nt
im

e
1.5 1.8--2.5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Benchmarks
Com

pr
es

s Db

M
pe

ga
ud

io
M

trt

Bloa
t

Fop

Eule
r

M
olD

yn

M
on

te
Car

lo

Sea
rc

h

R
un

tim
e

/ M
in

im
um

−
ru

nt
im

e

(a) r=1 (b) r=4

Figure 5. The potential performance degradation of input-oblivious garbage collector selection.

0 20 40 60 80 100
0

1

2

3

4

5

6

Inputs

R
un

 T
im

e
(s

)

GC2
GC3
GC3 in top set

(a) Running Time of Mtrt

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Inputs

G
C

 T
im

e
(s

)

GC2
GC3
GC3 in top set

(b) GC time of Mtrt

Figure 3. The average running time and GC time of Mtrt on GC2
and GC3 when r=1. The crosses (“x”) indicate those inputs whose
top sets of garbage collectors include GC3. As input becomes
larger, the time spent by GC3 increases much faster than by GC2,
turning GC3 from favorable to unfavorable.

0 20 40 60 80 100
0

5

10

15

20

25

30

Inputs

G
ar

ba
ge

 C
ol

le
ct

io
ns

GC2
GC3
GC3 in top set

Figure 4. Number of Garbage collections of Mtrt

time by the time achieved when the best garbage collector is used
for every input.

When r=1, except Euler and Search, all programs show signif-
icant performance degradations. Programs Mtrt and MolDyn show
up to 1.5 and 2.5 times slowdown. When r=4, all programs except
MonteCarlo exhibit significant slowdown.

The results draw the conclusion that selecting garbage collectors
by profiling few inputs is subject to the risk of significant perfor-
mance degradations.

3.3 Consistency of the Top Garbage Collector

The previous section shows that program inputs complicate the
selection of garbage collections. The analysis in this section, on the
other hand, shows another aspect of the measurement, and suggests
a potential way to address the input influence.

In Figure 6, the largest piece in a pie shows the fraction of a
program’s inputs whose top sets of garbage collectors include the
garbage collector that has the largest coverage. The other pieces in a
pie show how other garbage collectors cover the remaining inputs.
Take MolDyn as an example. When r=8, GC2 is the top garbage
collector with 60% coverage. GC3 is the most popular one in the
remaining 40% inputs, covering 82.5% of them. GC1 then covers

95

r=1 r=2 r=4 r=8 top 1 top 2

Compress

Db

Mpegaudio

Bloat

Fop

Euler

MolDyn

MonteCarlo

Search

Mtrt

top 1

top 2

GC1
GC2
GC3
GC4
GC5

.90 1

.95 1

1 1

.83 1

.98 1

.84 1

.93 1

.67 .98

 1 1

.94 1

.94 .89 .91 .88

1 1 1 .99

Figure 6. The influence of inputs on the top garbage collectors. The largest piece in a pie shows the fraction of a program’s inputs whose
top sets of garbage collectors include the overall top garbage collector. The other pieces in a pie show how other garbage collectors cover the
remaining inputs. Each column of pies correspond to one heap size ratio (r is the ratio of the heap size to the minimum possible heap size.)
The right-most two columns show the fraction of the most dominant garbage collector(s) averaged across the 4 heap sizes. The bottom two
rows show the corresponding fraction averaged across benchmarks.

the remaining inputs. Together, the 3 garbage collectors correspond
to the three pieces in the rightmost pie of MolDyn in Figure 6.

In contrast to Figure 2, the pies in Figure 6 have fewer pieces.
Out of the 40 pies, only one of the 40 pies have more than 2
pieces, and 15 of the pies consist of only 1 piece in each. For every
program except MolDyn, there exist one garbage collector that can
cover over 83% inputs of the program. Two garbage collectors are
virtually enough to cover all inputs for all the programs.

Implications to Garbage Collector Selection. Figure 7 shows the
performance degradation when the top garbage collector is used
for all inputs to a program. Compared to Figure 5, the degradations
become much smaller. Most programs have less than 3% degrada-
tions on most inputs. This result suggests that, given a fixed heap
size ratio, using the top garbage collector is often sufficient for the
selection of a reasonably good garbage collector.

However, if the heap size ratio changes, the problem becomes
more complex. Before discussing the effects of heap sizes, we note
that Figure 6 should not be used for understanding the influence of

heap sizes. Some information it leaves out may cause misleading
conclusions. For example, the r=4 pie of Search contains no portion
of GC2 at all, even though GC2 has a coverage of 87.5% in that
scenario. The reason for not having GC2 in the pie is because GC1
and GC3 together already form a full coverage of the pie.

3.4 Influence from Heap Sizes

The size of heap significantly influences the number of garbage
collections that happen in an execution. Table 3 reports the average
number of garbage collections in an execution of each program.
The increase in heap size reduces the number of garbage collec-
tions. It also causes changes in the ranking of garbage collectors.

To demonstrate the influence from heap sizes on garbage col-
lector selection, we examine how the coverage of a garbage collec-
tor changes across heap sizes. Figure 8 show the cross-heap-size
changes of the coverage of the top garbage collector for a program.
For example, Mtrt shows -40% changes in the r=1 case, indicating
that by applying the top garbage collector obtained when r=2 to
the executions when r=1, 40% more runs would suffer from sig-

96

Table 3. The average number of garbage collections
Benchmark Compress Db Mpegaudio Mtrt Bloat Fop Euler MolDyn MonteCarlo Search

r=1

GC1 3.9 216.3 35.4 86.0 2.1 2.3 150.5 4.2 3.0 1076.6
GC2 3.0 94.1 12.6 10.3 1.0 1.6 73.1 2.2 3.0 822.4
GC3 2.0 23.5 5.8 5.6 0.0 1.0 18.3 1.0 3.0 548.0
GC4 2.7 65.4 12.8 12.9 1.0 3.1 47.9 1.7 4.0 754.3
GC5 3.7 116.3 19.3 53.0 2.0 2.0 71.8 3.6 3.0 1024.8

r=2

GC1 2.0 41.2 5.6 5.1 0.0 1.0 27.4 1.0 2.0 349.2
GC2 2.0 29.2 4.4 4.3 0.0 1.0 19.2 1.0 2.0 299.7
GC3 2.0 10.1 3.0 2.8 0.0 0.0 8.1 1.0 2.0 155.0
GC4 2.0 16.3 3.8 4.0 0.0 0.0 10.8 1.0 2.0 212.4
GC5 2.0 17.0 4.8 4.9 0.0 0.0 14.1 1.0 2.0 335.4

r=4

GC1 2.0 9.6 3.0 3.1 0.0 1.0 12.0 1.0 2.0 138.1
GC2 2.0 9.1 3.0 3.0 0.0 1.0 11.4 1.0 2.0 138.1
GC3 2.0 5.2 2.0 2.1 0.0 0.0 3.6 1.0 2.0 102.1
GC4 2.0 7.9 2.2 2.6 0.0 0.0 7.3 1.0 2.0 85.0
GC5 2.0 8.2 3.0 2.7 0.0 0.0 6.4 1.0 2.0 129.6

r=8

GC1 2.0 8.4 2.9 3.0 0.0 1.0 11.9 1.0 2.0 138.1
GC2 2.0 8.4 2.9 3.0 0.0 1.0 11.3 1.0 2.0 138.1
GC3 2.0 3.4 2.0 2.0 0.0 0.0 2.9 1.0 2.0 91.0
GC4 2.0 7.8 2.0 2.6 0.0 0.0 6.8 1.0 2.0 52.7
GC5 2.0 4.8 2.0 2.2 0.0 0.0 5.2 1.0 2.0 106.3

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Benchmarks
Com

pr
es

s Db

M
pe

ga
ud

io
M

trt

Bloa
t

Fop

Eule
r

M
olD

yn

M
on

te
Car

lo

Sea
rc

h

R
un

tim
e

/ M
in

im
um

−
ru

nt
im

e

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Benchmarks
Com

pr
es

s Db

M
pe

ga
ud

io
M

trt

Bloa
t

Fop

Eule
r

M
olD

yn

M
on

te
Car

lo

Sea
rc

h

R
un

tim
e

/ M
in

im
um

−
ru

nt
im

e

(a) r=1 (b) r=4

Figure 7. The potential performance degradation if the top garbage collector is used for all inputs.

nificant performance degradations. (The significance is in the sense
of statistical confidence.) Whereas, there are positive changes in
the cases of r=4 and r=8 for Mtrt. The positive changes are also
reflected by the rightmost 3 pies of Mtrt in Figure 6: The most pop-
ular garbage collector is GC3 for all three cases and its coverage
increases as heap size increases. (We note again that Figure 6, even
though showing some heap-related information, cannot be used for
analyzing heap size effects in general.) Some bars, like the r=4 bar
in Search, are invisible because their values are 0.

There are small coverage changes on r=4 and r=8, but some
large changes on r=1. The reason is that the heap is large enough
in all the cases of (r=2,4,8). So as showed in Table 3, the number
of garbage collections does not change as dramatically as between
the (r=2) and (r=1) cases.

Figure 9 shows the similar barplots as Figure 8, except that the
garbage collector that is used is obtained in the case of (r=1) rather
than (r = 2.)

On both figures, the programs fall into two categories: Programs
that are sensitive to heap size ratio changes—including Db, Mpe-

gaudio, Mtrt, and Bloat, and the insensitive programs—including
all other programs. For the insensitive programs, profiling multi-
ple inputs on one heap size should be sufficient for the selection of
garbage collectors.

But for the sensitive programs, it is necessary to profile on not
only multiple inputs but also multiple heap sizes. But even with
that, it is still not enough: To use the right garbage collector for a
new run, we have to first determine the heap size ratio of the current
run. To do that, we must know the minimum possible heap size
of this run besides the given heap size. Unfortunately, as shown in
Table 2, the minimum possible heap size may change across inputs.
Therefore, to solve this problem, we need to have a cross-input
predictive model that can forecast the minimum possible heap size
for an arbitrary run of a program.

4. Cross-Input Predictability
Given the importance of the possible minimum possible heap size
in garbage collector selection, we examine its cross-input pre-

97

Compress Db Mpegaudio Mtrt Bloat Fop Euler MolDyn MonteCarlo Search
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
C

ov
er

ag
e

D
iff

er
en

ce

r=1

r=4

r=8

Benchmarks

Figure 8. Coverage changes due to the changes in the heap size ratio. Each bar shows: Coverage (gc, r=i) - Coverage (gc, r=2), (i=1,4,8),
where, gc is the top garbage collector when r=2.

Compress Db Mpegaudio Mtrt Bloat Fop Euler MolDyn MonteCarlo Search
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

C
ov

er
ag

e
D

iff
er

en
ce

r=2

r=4

r=8

Benchmarks

Figure 9. Coverage changes due to the changes in the heap size ratio. Each bar shows: Coverage (gc, r=i) - Coverage (gc, r=1), (i=2,4,8),
where, gc is the top garbage collector when r=1.

dictability in this section. We formulate the prediction problem as
a regression problem, and select the Regression Trees [13] as the
method. Regression Trees separate the input feature space into sub-
spaces based on entropy theory. We use Least Mean Squares (LMS)
to produce a linear model that fits the data in each subspace. For ev-
ery program, we use all its training runs, {< I1, mhs1 >, · · · , <
Ik, mhsk >} (I for the feature vector of an input, mhs for min-
imum possible heap size), to construct such a regression tree. For
a new input to the program, its mhs can be predicted using the
linear model inside the subspace where this new input falls. This
regression method is simple and efficient, and handles both linear
and nonlinear relations.

A complexity in the regression process is the attainment of
the feature vector of each input. We use an XICL-based scheme,
described by Mao and Shen in recent work [14]. From a given
input, it extracts some raw features based on XICL specifications
and then refines the features into a concise feature vector. Table 2
shows the numbers of raw features and refined features we obtain
in our experiment.

Table 4 contains the prediction accuracy of minimum possible
heap sizes using the Regression Trees method. Different GC algo-
rithms have different heap requirement. The table lists the predic-
tion accuracy of each of the 6 GC algorithms. In the selection of GC
algorithms, it is useful to know the maximum of the minimum pos-
sible heap sizes of all garbage collectors. The right-most column in
Table 4 corresponds to the prediction on such maximum values.

For most of the programs, the prediction accuracy is larger than
95%. Program Mtrt and Euler have the lowest prediction accura-
cies: 86-91% for Mtrt, and 90-95% for Euler. The numbers of in-
puts to those two programs are relatively small. Mtrt has 100 but
its input feature vectors have two dimensions; Euler has 14 inputs

only. With more inputs, the prediction accuracy may become better.
We note that program Search has even fewer inputs than those two
programs, but its minimum possible heap size is a constant across
inputs, which accounts for its high prediction accuracies. Overall,
this experiment demonstrates that minimum possible heap size has
good cross-input predictability, and Regression Trees method is an
approach suitable for the prediction. It shows the potential feasibil-
ity of input-specific selection of garbage collectors.

5. Related Work
We are not aware of any previous work that has systematically
studied the influence of inputs on GC selection with a large set of
inputs. Neither have we found any work on cross-input prediction
of minimum possible heap sizes.

In this section, we first compare this work with previous studies
on the selection of garbage collectors, and then review the prior
explorations on handling the influence of program inputs on other
program optimizations.

Selection of Garbage Collectors A number of previous stud-
ies have shown that for different applications, the best performer
among a set of garbage collectors are different [7]. As early as a
decade ago, researchers have started the comparison of the per-
formance of different GC algorithms on different applications.
Examples include the comparison between mark-and-sweep and
copying-based GC algorithms from Zorn [22] and Smith and Mor-
risett [19].

More recent studies fall into two categories based on whether
the technique allows static or dynamic selection of GC. Fitzgerald
and Tarditi [11] propose a profiling-based approach for static GC
selection. In their approach, the best GC for an application is

98

Table 4. Prediction accuracy of minimum possible heap size under each garbage collection algorithm and the overall maximum
Benchmarks GC1 GC2 GC3 GC4 GC5 Max
Compress 99.8 99.8 100 100 99.9 99.9
Db 98.1 97.4 98.2 97.0 97.8 98.2
Mpegaudio 100 98.1 96.3 96.0 99.6 96.8
Mtrt 86.1 90.5 87.4 90.5 89.7 90.7
Bloat 99.9 100 99.7 99.4 99.9 99.9
Fop 98.2 97.2 96.6 98.3 97.7 98.3
Euler 91.3 92.7 91.4 95.2 90.4 93.9
MolDyn 98.6 99.0 98.1 98.8 99.3 98.6
MonteCarlo 98.9 99.1 99.4 99.3 99.5 99.3
Search 100 100 100 100 100 100
Average 97.1 97.4 96.7 97.4 97.4 97.5

selected during compile time, based on the profiling results of
multiple runs of the application on a sample input with different
GC algorithms enabled. Singer et al. [18] use machine learning
techniques to predict the best GC for an application.

Some other research conducts finer-grained GC selection by
allowing the switch of GC algorithms in the middle of an execution.
Printezis [15] proposes a scheme to enable the dynamic selection
between mark-and-sweep and mark-and-compact GC algorithms to
manage the mature space in a generational scheme. The technique
relies on a simple heuristic on heap space fragmentation. Soman
et al. [20] develop a scheme on Jikes RVM to select and switch
GC algorithms dynamically, based on annotations inserted into
the bytecode of class files. The annotations include the minimum
possible heap size of the switching points for each application,
determined by some profiling runs. The studies conducted in our
work has the potential to compliment the dynamic selection by
offering cross-input prediction of the minimum possible heap size
and possibly switching points.

Cross-Run Program Optimization There have been some explo-
rations on cross-input program behavior prediction, mostly in the
areas of locality studies on application written in traditional C/C++
languages.

In 1991, Wall [21] conducts a study to measure how well a pro-
file from one run describe the behavior of a different run. Some of
more recent studies measure the influence of data sets on program
behavior for benchmark design [5,10]. Ding and Zhong [9] describe
an approach to predict program data locality across inputs. Arnold
et al. [4] have proposed the repository-based approach for adaptive
optimizations in JVM. Shen et al. show the cross-input predictabil-
ity of locality phase sequence by representing a phase sequence in
a regular expression [17]. Shen and Mao show the cross-input pre-
dictability of program basic block frequencies on some C/C++ pro-
grams [16]. They have recently proposed an evolvable scheme to
tailor the optimizations in JVM to each input of an application [14].

Finally, the statistical analysis conducted in this paper is enlight-
ened by Georges et al. [12]. The analysis has proved to be vital: It
has corrected some conclusions we obtained merely from the aver-
age values of the running times.

6. Conclusions
This paper presents a set of experiments and analyses on uncov-
ering the influence of program inputs on the selection of garbage
collectors. The study draws the following conclusions:

• Inputs influence the relative performance of garbage collectors
significantly, causing large variations of the top set of garbage
collectors across inputs. Profiling one or few runs is typically
insufficient for selecting the garbage collector that works for
most inputs.

• But for most programs, when the heap size ratio is fixed, one
top garbage collector may work best for over 80% inputs, and
two would cover more than 96% inputs for all of the programs.
In that scenario, profiling many runs on a sequence of different
inputs and picking the best one can work reasonably well.

• The heap size ratio may affect the relative performance of
garbage collectors significantly for some programs. It is there-
fore important to distinguish between heap-size-sensitive pro-
grams from the insensitive ones. For the former, profiling on
one heap size should be enough; but for the latter, it is nec-
essary to have a cross-input predictive model that predicts the
minimum possible heap size of the execution on an arbitrary
input.

• Through regression techniques, it is possible to accurately pre-
dict minimum possible heap sizes across program inputs. The
predictability suggests the promise of input-specific selection
of garbage collectors.

Acknowledgments
We are especially grateful to Steve Blackburn for his insightful
suggestions and great help to the final version of this paper. We
thank the anonymous reviewers of VEE’09 for their invaluable
comments. This material is based upon work supported by the
National Science Foundation under Grant No. CSR-0720499 and
CCF-0811791. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of our sponsors.

References
[1] Java Grande benchmark. http://www2.epcc.ed.ac.uk/javagrande/.

[2] Spec jvm98. http://www.spec.org/jvm98/.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney. Adaptive
optimization in the Jalapeno JVM. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications, Minneapolis, MN, October 2000.

[4] M. Arnold, A. Welc, and V.T. Rajan. Improving virtual machine
performance using a cross-run profile repository. In the Conference
on Object-Oriented Systems, Languages, and Applications, 2005.

[5] P. Berube and J. N. Amaral. Benchmark design for robust
profile-directed optimization. In Standard Performance Evaluation
Corporation (SPEC) Workshop, 2007.

[6] S. M. Blackburn, P. Cheng, and K. McKinley. Oil and water: High
performance garbage collection in Java with MMTk. In Proceedings
of the 26th International Conference on Software Engineering, 2004.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: the performance impact of garbage collection. SIGMETRICS
Perform. Eval. Rev., 32(1), 2004.

99

[8] S. M. Blackburn et al. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications, October 2006.

[9] C. Ding and Y. Zhong. Predicting whole-program locality with reuse
distance analysis. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego, CA,
June 2003.

[10] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Quantifying
the impact of input data sets on program behavior and its applications.
Journal of Instruction-Level Parallelism, pages 1–33, 2003.

[11] R. Fitzgerald and D. Tarditi. The case for profile-directed selection of
garbage collection. In Proceedings of the International Symposium
on Memory Management, 2000.

[12] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous
Java performance evaluation. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications, 2007.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. Springer, 2001.

[14] F. Mao and X. Shen. Cross-input learning and discriminative
prediction in evolvable virtual machine. In Proceedings of the
International Symposium on Code Generation and Optimization
(CGO), 2009.

[15] T. Printezis. Hot-swapping between a mark&sweep and a
mark&compact garbage collector in a generational environment.
In Proceedings of the 1st Java Virtual Machine Research and Tech-
nology Symposium, 2001.

[16] X. Shen and F. Mao. Modeling relations between inputs and dynamic
behavior for general programs. In Proceedings of the Workshop on
Languages and Compilers for Parallel Computing, 2007.

[17] X. Shen, Y. Zhong, and C. Ding. Predicting locality phases for
dynamic memory optimization. Journal of Parallel and Distributed
Computing, 67(7), 2007.

[18] J. Singer, G. Brown, I. Watson, and J. Cavazos. Intelligent selection
of application-specific garbage collectors. In Proceedings of the
International Symposium on Memory Management, 2007.

[19] F. Smith and G. Morrisett. Comparing mostly-copying and mark-
sweep conservative collection. In Proceedings of the International
Symposium on Memory Management, 1998.

[20] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection of
application-specific garbage collectors. In Proceedings of the
International Symposium on Memory Management, 2004.

[21] D. Wall. Predicting program behavior using real or estimated profiles.
In Proceedings of PLDI, Toronto,Canada, June 1991.

[22] B. Zorn. Comparing mark-and-sweep and stop-and-copy garbage
collection. In Proceedings of ACM Conference on Lisp and
Functional Programming, 1990.

100

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

