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Abstract—Cache sharing on modern Chip Multiprocessors (CMPs) reduces communication latency among corunning threads, and

also causes interthread cache contention. Most previous studies on the influence of cache sharing have concentrated on the design or

management of shared cache. The observed influence is often constrained by the reliance on simulators, the use of out-of-date

benchmarks, or the limited coverage of deciding factors. This paper describes a systematic measurement of the influence with most of

the potentially important factors covered. The measurement shows some surprising results. Contrary to commonly perceived

importance of cache sharing, neither positive nor negative effects from the cache sharing are significant for most of the program

executions in the PARSEC benchmark suite, regardless of the types of parallelism, input data sets, architectures, numbers of threads,

and assignments of threads to cores. After a detailed analysis, we find that the main reason is the mismatch between the software

design (and compilation) of multithreaded applications and CMP architectures. By performing source code transformations on the

programs in a cache-sharing-aware manner, we observe up to 53 percent performance increase when the threads are placed on cores

appropriately, confirming the software-hardware mismatch as a main reason for the observed insignificance of the influence from

cache sharing, and indicating the important role of cache-sharing-aware transformations—a topic only sporadically studied so far—for

exerting the power of shared cache.

Index Terms—Shared cache, thread scheduling, parallel program optimizations, chip multiprocessors.

Ç

1 INTRODUCTION

MOST modern Chip Multiprocessors (CMPs) feature on-
chip cache sharing. On a system with multiple chips,

the sharing further shows nonuniformity: cores on different
chips typically do not share cache as the cores in a chip do.

The sharing is a double-edged sword. It may cause
destructive cache contention: data accesses by corunners
(processes or threads running on sibling cores) may conflict
in the shared cache, causing cache thrashing. On the other
hand, it may be constructive: corunners may directly
communicate through shared cache with lower latency than
cross-chip communications, and one thread may access the
data that other threads have brought into the shared cache,
forming synergistic prefetching.

The importance of using shared cache effectively has
recently drawn much attention. For example, cache-shar-
ing-aware scheduling in operating systems (OS) research
has shown that a suitable assignment of corunning
processes to cores may alleviate the cache contention
among corunners. Considerable performance improve-
ments have been observed on sets of independent jobs
[10], [11], [25], [29] as well as parallel threads inside certain
classes of single applications [28].

However, in this work (Sections 2 and 3), through a
systematic measurement, we find that contrary to the
commonly perceived significant effects, cache sharing has

very limited influence, neither positive nor negative, on the
performance of the applications in PARSEC—a modern
benchmark suite that “focuses on emerging workloads and
was designed to be representative of next-generation
shared-memory programs for chip multiprocessors” [3].
Our experiments show that for those programs, no matter
how the threads are placed on cores (they may share the
cache in various ways or do not share cache at all), the
performance of the programs remains almost the same.

This surprising finding comes from a systematic mea-
surement that consists of thousands of runs and covers
various potentially important factors of programs (number
of threads, parallel models, phases, and input data sets), OS
(thread binding and placement), and architecture (types of
CMP and number of cores). It is derived from the measured
running times, and confirmed by the low-level performance
reported by hardware performance counters.

A detailed analysis uncovers the fundamental reason for
the observed insignificance: the development and the
currently standard compilation of the programs are obliv-
ious to cache sharing, hence causing a mismatch between
the generated programs and the CMP cache architecture.
The mismatch exhibits in three aspects. First, the data
sharing among threads in those programs is typically
uniform, that is, the amount of data a thread shares with
one thread is typically similar to the amount it shares with
any other thread. The uniformity mismatches with the
nonuniform cache sharing on CMPs, explaining the
insensitivity of the program performance to the placement
of threads. Second, the accesses to shared-cache lines are
limited for most of the programs because of the uniform
partition of computation and data among threads, explain-
ing the small constructive effects from shared cache. Finally,
the working sets of the programs are typically much larger
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than the shared cache. The difference between the sharing
and nonsharing cases in terms of cache size per thread is
not enough to make significant changes in cache misses.
Hence, cache contention shows no obvious effects either.

The second part of this paper (Section 4) explores the
implications of the observed insignificance. At the first
glance, it seems to suggest that exploitation of cache sharing
is unimportant for the executions of the multithreaded
applications, but a set of experiments demonstrates the
exact opposite conclusion. Exploiting cache sharing has
significant potential, but to realize the potential, it is critical
to apply cache-sharing-aware transformations.

In the experiments, we increase the amount of shared data
among sibling threads (the threads sharing the same cache)
through certain code transformations. The transformations
yield nonuniform data sharing among threads, matching
with the nonuniform cache sharing on the architecture. The
influence of cache sharing becomes much more significant
than on the original programs. Appropriate placement of
threads on cores reduces cache misses by over 50 percent and
improves performance by up to 53 percent, compared to
other placements and the original programs.

In the third part of this paper (Appendix D, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.130), based on
a careful examination of an example program, streamcluster,
we investigate issues related to the automation of cache-
sharing-aware transformations. This includes the principles,
challenges of optimizing cache performance, as well as the
capabilities the automatic optimizers ought to have, and the
possible roles of programmers for the optimization.

To the best of our knowledge, this work is the first that
systematically examines the influence of cache sharing in
modern CMP on the performance of contemporary multi-
threaded applications. Many previous explorations [10], [11],
[12], [25], [29] are concentrated on coruns of independent
programs, on which, cache contention is the single main
influence by shared cache. The studies on multithreaded
programs have been focused on certain aspects of CMP,
rather than a systematic measurement of the influence from
cache sharing. For instance, many of them have used
simulators rather than real machines; some [30] have used
old benchmark suites (e.g., SPLASH-2 [31]), or have
concentrated on a specific class of applications, such as
server programs [28]; some [16] have used old CMP
machines with no shared cache equipped. These limitations
may not be critical for the particular focus of the previous
research—in fact, sometimes they are unavoidable (e.g.,
using simulators for cache design). However, they may
cause biases to a comprehensive understanding of the
influence of cache sharing on program performance—the
plausible reason for the departure between the observations
made in this work and the previous.

Similar to the observation made by Sarkar and Tullsen
[20], we have found only a small number of studies [15], [17],
[20] on exploiting program transformations for the improve-
ment of shared-cache usage (a clear contrast to the large body
of work in OS and architecture areas). The importance of
program transformations demonstrated in this work will
hopefully spur more research efforts in this direction.

2 EXPERIMENT DESIGN

This section introduces the benchmark suite, the factors we
study and the rationales, the measurement schemes, and
the statistic techniques for data analysis.

2.1 Benchmarks

The selected benchmark suite is PARSEC v1.0, a suite
released in 2007 for CMP research [3]. It includes emerging
applications in recognition, mining and synthesis, as well as
systems applications that mimic large-scale multithreaded
commercial programs. Studies [2], [3] have shown that the
suite covers a wide range of working set sizes, and a variety
of locality patterns, data sharing, synchronization, and off-
chip traffic, making it appealing over some old parallel
benchmark suites such as SPLASH-2 [31]. Table 1 lists the 10
programs we use and their working set sizes (on simlarge
inputs). Programs dedup and ferret are both pipelining
applications with a dedicated pool of threads for each
pipeline stage. Programs facesim, fluidanimate, and streamclus-
ter have streaming behaviors. Other programs are data-level
parallel programs with various synchronizations and inter-
thread communications. All the programs use Pthreads API,
and employ standard Pthreads schemes (locks and barriers)
for synchronizations. An exception is canneal, which uses an
aggressive synchronization strategy based on data race
recovery. We exclude two other programs, vips and freqmine,
because their non-Pthread implementations cause difficul-
ties for our tool to bind their threads with processors.

2.2 Factors

To achieve a comprehensive understanding on how much
cache sharing influences the performance of multithreaded
applications, our experiments include a number of factors
that are potentially important for the influence. This section
briefly introduces these factors and the rationale for
selecting them. The next section elaborates on the treatment
of these factors in the systematic measurement.

As shown in Table 2, the considered factors come from
the program, OS, and architecture levels. (The boldface
words correspond to the dimensions in Table 2.)

. Program level. The major factors in this level include
the input data sets to the program, the number of
threads, and the parallel models. The first two factors
determine the working set of a thread and the intensity
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of cache contention. We use four input data sets
coming with PARSEC. Table 2 lists them in increasing
order of size. The number of threads varies from 1 to 8.
The third factor, parallel models, determines the
patterns of data sharing and computation.

. OS level. The main effect from the OS is thread
scheduling, which determines the corunners on a
chip. To examine the potential of the scheduling, we
avoid using any particular scheduling algorithms.
Instead, we experiment with different thread-core
assignments to cover various corunning scenarios,
as detailed in Section 3. Because the experiment
needs binding threads to cores, we examine the
effects of binding by comparing to nonbinding cases
(Appendix B.4, which can be found on the Computer
Society Digital Library).

. Architecture level. The types of machines we use
include a Dell PowerEdge 2950 server hosting two
quad-core Intel Xeon E5310 processors, and a Dell
PowerEdge R80 hosting two AMD Opteron 2352
processors. They represent two typical CMP archi-
tectures on the market. The Intel machine is based
on Front-Side-Bus (FSB) with an inclusive cache
hierarchy; the AMD machine is a Cache Coherent
Nonuniform Memory Access (ccNUMA) CMP with
HyperTransport links and an exclusive cache hier-
archy.1 Both machines run Linux 2.6.22 with
GCC4.2.1 installed. Table 3 reports their details.

When the number of threads is smaller than the
total number of cores in a machine (8 in our
experiments), the threads may be assigned to differ-
ent subsets of cores. We experiment with up to seven
(depending on the number of threads) different sets
to cover most representative sharing scenarios. In the
case of two threads on the Intel machine, for instance,
the sets of cores we use include two sibling cores that
share cache, two nonsibling cores on a single chip
which share the same memory-processor bus, and
two cores residing on different chips. The 4-thread
case has three corresponding sets. The 8-thread case
has only one set, the set of all cores.

Program phase changes may affect the measurement

results, especially on the measured potential of thread

scheduling. Appendix B.2, which can be found on the

Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.130, will
show how this factor is examined in our experiments.

2.3 Measurement Schemes

Our measurement concentrates on running times, cache miss
rates, and shared-data accesses. We use the built-in utility
HOOKS in the PARSEC suite to measure running times, and
employ the Performance Application Programming Inter-
face (PAPI) library [4] to read memory-related hardware
performance counters, including cache miss rates, memory
bus transactions, and the reads to cache lines in a “shared”
state for every thread. (As required by PAPI for thread-level
measurement, we set the pthread scheduling scope to
“system” in the hardware performance monitoring.)

Each instance of the set of factors listed in Table 2
determines a setting of a run. We call such an instance a
configuration. For each configuration, we conduct 5 to 10
repetitive runs. Besides using the average performance of the
repetitive runs, we employ the statistical analysis (described
in Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.130) to prevent measurement noise from
causing possibly biased conclusions.

3 MEASUREMENT AND FINDINGS

In this section, we summarize some major findings of our
systematic measurements. Appendix B contains the details,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.130.

We find that, contrary to commonly perceptions, cache
sharing has insignificant (neither constructive or destructive)
influence on the performance of the programs. The main
reasons are the large working sets and the limited interthread
data sharing of the multithreaded programs. Furthermore,
we reveal that adjusting the placement of threads on cores
has limited potential for performance enhancement of the
programs. It is because of the uniform relations among
parallel threads, which mismatches with the nonuniform
cache sharing on CMP machines. These conclusions, drawn
from the extensive measurements, appear to hold across
inputs, number of threads, sets of cores, and architectures.

4 PROGRAM-LEVEL TRANSFORMATION

Although the previous section reports insignificant influ-
ence of cache sharing for the performance of PARSEC
programs, we maintain that the results do not suggest that
cache sharing is a factor ignorable in the optimization of the
execution of those programs. The implication is actually the
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TABLE 3
Machine Configurations

TABLE 2
Dimensions Covered in the Measurement

�: Dedup and Ferret have more threads and assignments (see Appendix
B.3, which can be found on the Computer Society Digital Library).

1. The latest Intel CMP, Nehalem, resembles this AMD architecture but
with an inclusive cache hierarchy.
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opposite: cache sharing deserves more attention especially
in program transformations.

The conclusion comes from a set of experiments, in
which, we transform several programs to make them better
match the nonuniform cache sharing on CMPs. The
transformations are manual; Appendix D discusses the
automation of such transformations, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.130.

Our experiments concentrate on four representative
programs. The transformations on them share a single
theme: to increase the data sharing among sibling threads
but not other threads. This section uses streamcluster as an
example to explain the transformations in detail, and then
reports the results on other programs.

4.1 Streamcluster

The program, streamcluster, is a data-mining program that
clusters a stream of data points. One part of the program
takes a chunk of array points and calculates their distances
to a center point. This calculation occurs many times and
accounts for a major part of the program’s running time.

4.1.1 Transformation

To highlight the transformation, we use the simplified
pseudocode in Fig. 1 for the explanation, and assume there
are two cores per chip.

The original version of the program is outlined in Fig. 1a.
Each of the threads computes the distances of a chunk of
data to the center points. The variables T1_start, T1_end
represent the start and end of the data chunk assigned for
Thread 1, T2_start, T2_end for Thread 2. The outer loop iterates
over every candidate cluster center, and the inner loop
iterates over every data point in a chunk. The function
cal_dist computes the distance between a point and a
candidate center.

Fig. 1b illustrates a transformation for improving the

matching between the program and CMP shared cache. It

tries to enhance the data sharing among sibling threads by

letting them compute the distances from the same chunk of

data points (e.g., threads 1 and 2 on data from T1_start to

T2_end) to two different center points. The chunk size

becomes twice as large as before. The computed distances

are stored into two temporary arrays for later uses. (The use

of temporary arrays is necessary to circumvent some loop-

carried dependencies.2) With this transformation, the data

sharing among threads becomes nonuniform: for instance,

thread 2 shares substantially more data with thread 1 than

with thread 3. When sibling threads corun on a CMP

processor, they would form synergistic prefetching with

one another. One thread can use the data point brought into

the shared cache by the other thread.
We notice that one may improve data locality inside a

thread using traditional unroll-and-jam transformation [1].

The transformed code is shown in Fig. 1c. (In our implemen-

tation, the inner loop is staged to circumvent loop-carried

dependencies.) In one iteration of the inner loop, each thread

computes the distances between a point and two centers,

increasing the reuse of the loaded data points. The increase of

data reuse is similar to the previous transformation, except

that it is inside a thread rather than between threads. The

intrathread and interthread transformations are complemen-

tary to each other. They can be applied to a program at the

same time. In the next section, we report how the interthread

transformation benefits the program both without and with

the intrathread optimizations.
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Fig. 1. Simplified pseudocode illustrating the original and optimized versions of the function pgain() in streamcluster. It is assumed that two threads
constitute a sibling group that share cache.

2. Inside the inner loop, after cal_dist, there is an update to a data
structure corresponding to the point P[j], which is then used in the
computation following the inner loop, causing loop-carried dependencies.
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4.1.2 Performance

Fig. 2 shows the speedup brought by the transformations on
the Intel machine. In all these runs, we assign sibling
threads to adjacent cores with L2 cache shared. Even though
both the interthread and intrathread transformations add
extra store operations to the temporary arrays, the results
show that their benefits outweigh the overhead substan-
tially. An examination of the source code shows the reason.
Each point involved in the distance calculation is of 128
dimensions. As a result, the temporary arrays weight only a
small portion of the entire working set.

One may notice that the benefits from the interthread
transformation are not as significant as those from the
intrathread transformation.3 It is because the intrathread
transformation increases the hits in L1 cache, while the
interthread transformation only benefits L2 usage. However,
it is important to note that these two transformations are not
competitors. As the “both-share” bars in Fig. 2 show, based
on the code optimized through the intrathread transforma-
tion, the interthread transformation further improves the
performance by 23 percent, demonstrating the complemen-
tary relations between these two kinds of transformation.

Fig. 3 reports the normalized L2 cache miss rates and the
numbers of memory bus transactions. The performance of
the original program is the baseline. In each group of bars,
the “intershare” and “both-share” bars correspond to the
cases when the interthread transformation is applied
without and with the intrathread transformations, respec-
tively. In both cases, the transformation reduces L2 cache
miss rates and memory bus transactions substantially,
confirming the benefits of the transformation for data
locality enhancement despite whether intrathread optimi-
zations are applied. We stress that the application of the
transformations requires the cooperation from thread
schedulers. The “inter-noshare” and “both-noshare” bars
in Fig. 3 show the result when sibling threads are placed on
nonsibling cores. The clear contrast with the other bars
demonstrates that the shared-cache-aware program trans-
formation creates opportunities to better exert the power of
thread coscheduling or clustering.

The better performance by the combined transformation
comes from the extra data reuses it creates in the shared L2

cache. It is tempting to think that the intrathread transforma-

tion of a factor of 4 yields the same amount of data reuse, and

hence may produce similar performance as the combined

transformation. Experiments show that the two transforma-

tions indeed produce similar performance on some inputs,

but the combined transformation still excels on some other

inputs, as exemplified in the second column of Table 4. In

fact, on all reuse levels listed in Table 4, the combined

transformation all outperforms the intrathread optimization.

Hardware performance counters show that the code from

combined transformations yields 27-50 percent fewer L1

cache misses and 8-32 percent fewer L2 cache misses than

that from the corresponding intrathread transformations

does. Source code analysis reveals that in the processing of

one data point, the intrathread transformations entail

references to as much as twice of data centers and temporary

arrays over the corresponding combined case, hence the

significantly more L1 cache conflicts (note, each data point is

a 128-dimensional vector).
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Fig. 2. Speedup by interthread, intrathread, and combined transforma-
tions on the Intel machine. Sibling threads share L2 cache.

Fig. 3. The reduction of L2 cache miss rates and memory bus contention
on the Intel machine. In each bar group, the first two correspond to
interthread transformations, and the next two for the combined
transformation. In each pair, the two bars correspond to the cases
when sibling threads share L2 cache or not.

TABLE 4
Streamcluster Running Times

3. This result differs from our previous observations [32] because we
reimplement the transformation, during which, we manage to remove some
inefficiency in the intrathread transformed code, including the elimination
of stores of some intermediate results and some references to assistant data
structures.
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4.2 Blackscholes

The program, blackscholes, is a financial application. It
calculates the prices for a portfolio of European options
analytically with the Black-Scholes partial differential equa-
tion. Because there is no closed-form expression for the
equation, the program uses numerical computation [3].

The input data file of this benchmark includes an array of
options. The program computes the price for each of the
options based on the five input parameters in the data set
file. The upper bound of the outermost loop in the program
controls the number of times the options need to be priced.
There are no inherent dependencies between two iterations
of the loop. In the original program, the parallelization
occurs inside the loop. In each iteration, the options are first
evenly partitioned into n (n for the number of threads)
chunks. Each chunk is then processed by one thread, which
prices the options in the chunk one after one by solving the
Black-Scholes equation.

The transformation we apply is similar to the one on
streamcluster. After the transformation, sibling threads
process the same chunk at the same time; their executions
correspond to a number of adjacent iterations of the
outermost loop.

We observe that the transformation significantly reduces
the number of misses on the shared cache on the native input,
as shown in the left part of Fig. 4. However, the program
running times have no considerable changes. The document
of the benchmark (the README file in the package)
mentions that “the limiting factor lies with the amount of
floating-point calculation a processor can perform.” Through
reading the program, we confirm that the program is a
compute-bounded application—after reading option data,
the program conducts a significant amount of computation
to solve the Black-Scholes equation with only local variables
referenced. For further confirmation, we artificially reduce
the amount of computation of the kernel in both the original
and optimized programs. The optimized program starts
showing clear speedup.

4.3 Bodytrack

The program, bodytrack, tracks the 3D pose of a human
body through an image sequence using multiple cameras.
The algorithm uses an annealed particle filter to track the
body pose using edges and foreground segmentation as
image features, based on a 10 segment 3D kinematic tree
body model.

The program processes frame by frame, and every frame
consists of multiple camera images. The program has mainly
two parallelized kernels CreateEdgeMap and CalcWeights. We
make sibling cores share workload of the same image and

nonsibling cores on different images in the procedure
CreateEdgeMap, resulting in a 15 percent speedup with eight
threads processing the native input on the Intel machine. We
also increase the chance of true data sharing for the Calc-
Weights by redistributing the comparison workload for edge
maps and foreground segment maps, resulting in a 5 percent
speedup with eight threads on the Intel machine. The last
level cache misses are significantly reduced. We provide the
normalized last level cache miss reduction in the middle part
of Fig. 4.

4.4 Ferret

The program, ferret, is a pipeline program, implementing a
search engine for image searching. Our transformation
concentrates on the most memory intensive stage, the
fourth stage. Appendix C describes a two-step transforma-
tion we apply, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.130. This transformation creates a non-
uniform relation among threads: sibling threads share
similar data accesses in the same database section, but
nonsibling ones do not. As shown in the right part of Fig. 4,
the transformation eliminates most shared-cache misses,
and yields a speedup of as much as 1.53.

Overall, the experiments demonstrate that after the
transformations, cache sharing starts to show its influence,
and the placement of threads on cores becomes important
for the programs performance. The observations suggest the
importance of program-level transformations for improving
the usage of shared cache. They further confirm that the
uniform relation among threads in the original programs is
one of the main causes for the limited influence of cache
sharing on performance.

In the experiments, all transformations are manual.
Appendix D provides a discussion on the challenges and
potential solutions for automating the transformations,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2011.130.

5 RELATED WORK

Cache sharing exists in both Simultaneous Multithreading
(SMT ) and CMP architectures. Its presence has drawn lots
of research interest, especially in architecture design and
process/thread scheduling in OS.

In architecture research, many studies (e.g., [6], [18], [19],
[22], [27]) have proposed different ways to design shared
cache to strike a good trade-off between the destructive and
constructive effects of cache sharing. These studies,
although containing some examination of the influence of
shared cache, mainly focus on the hardware design. Their
measurements are on simulators and cover limited factors
on the program or OS levels.

In OS research, the main focus on shared cache has been
job coscheduling and thread clustering. Many job cosche-
duling studies [7], [10], [11], [12], [25], [26], [29], [33], [34]
are on multiprogramming environments, attempting to
alleviate shared-cache contention by placing independent
jobs appropriately. Some of them include parallel programs
in the job set, but the main focus is on interprogram cache
contention rather than the influence of shared cache on
parallel threads. Tam et al. [28] propose thread clustering to
group threads of server programs through runtime hard-
ware performance monitoring. Ding et al. [9] have proposed
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Fig. 4. The reduction of L2 cache misses due to cache-sharing-aware
transformation. The Intel machine is used.
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the use of OS support for cache partitioning to alleviate the
contention in shared cache.

Some studies on workload characterization and perfor-
mance measurement are relevant to this current work.
Bienia et al. [2], [3] have shown a detailed exploration of the
characterization of the PARSEC benchmark suite on CMP.
Because their goal is to expose architecture independent,
inherent characteristics of the benchmarks, their measure-
ment runs on simlarge input only, and uses a CMP simulator
rather than actual machines. Liao et al. [16] examine the
performance of OpenMP applications on a machine with
private cache only. Tuck and Tullsen [30] have measured
the performance of SPLASH-2 when two threads corun on
an SMT processor.

Our work is distinctive in that it examines the influence
of cache sharing in CMP on multithreaded programs in a
comprehensive manner by exploring the manifold factors
and employing modern machines and contemporary multi-
threaded benchmarks. The systematic examination of the
various facets of the problem is vital for avoiding biases.

There are only a few studies that exploit program
transformations for improving shared-cache usage. Tullsen
et al. [15], [20] have proposed compiler techniques based on
traditional cache-conscious data placement [5] to reduce
cache conflicts among independent programs. Nikolopoulos
[17] has examined a set of manual code and data transforma-
tions for improving shared-cache performance on SMT
processors. We recently investigate the benefits of cross-
thread array regrouping for locality enhancement in CMP
[13]. Some recent studies [8], [14], [21] start to extend
traditional locality models—such as reuse distance—to
characterize data references in CMP platforms.

6 CONCLUSION

In this work, we conduct a series of experiments to
systematically examine the influence of cache sharing on
the performance of modern multithreaded programs. The
experiments cover a series of factors related to shared-cache
performance on various levels. The multidimensional
measurement shows that on two representative CMP
architectures and for all the thread numbers and inputs
we use, shared cache on CMP has insignificant influence on
the performance of most multithreaded applications in the
benchmark suite. The implication, however, is not that cache
sharing has no potential to be explored for the execution of
such multithreaded programs, but that the current devel-
opment and compilation of parallel programs must evolve
to be cache-sharing-aware. The point is reinforced by three
case studies, showing that significant potential exists for
program-level transformations to enhance the matching
between multithreaded applications and CMP architectures,
suggesting the need for further studies on cache-sharing-
aware program development and transformations.
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This paper is an extended version of a paper that received

the Best Paper Award in the 15th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Program-

ming (PPoPP ’10). The extensions are mainly in three aspects.

First, we introduce a set of statistical techniques into the
analysis of the performance measurement (Appendix A, and

part of Appendices B.1 and B.2 including Figs. 3 and 8 in
Appendix, which can be found on the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2011.130). By addressing the sometimes large

fluctuations of the measured running times, these techniques
filter out most random factors in the measurement, offering

more conclusive results than before. Meanwhile, the results
suggest that using average running times, as most existing

studies do, is not rigorous enough for many parallel program

performance analyses—the statistic analysis should be
adopted, especially when the performance varies consider-

ably across repetitive executions. Second, we extend the
evaluation of the cache-sharing-aware transformations with a

further investigation in the relation between intrathread
optimizations andinterthread transformations (Section 4.1.2),

and the application of the transformation to a new benchmark
(Section 4.4). Third, we add Appendix D, which can be found

on the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPDS.2011.130, which, based

on a careful examination of an example program, streamclus-

ter, investigates issues related to the automation of cache-
sharing-aware transformations, including the principles,

challenges, the capabilities the automatic optimizers ought
to have, and the possible roles of programmers for the

optimization. In addition, we add some extra results (e.g.,
Appendix B.2, which can be found on the Computer Society

Digital Library, Table 1, Figs. 10c and 10d) and enhance the
presentation throughout the paper.
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