
9

LD: Low-Overhead GPU Race Detection Without Access Monitoring

PENGCHENG LI, XIAOYU HU, DONG CHEN, JACOB BROCK, and HAO LUO,
University of Rochester
EDDY Z. ZHANG, Rutgers University
CHEN DING, University of Rochester

Data race detection has become an important problem in GPU programming. Previous designs of CPU race-
checking tools are mainly task parallel and incur high overhead on GPUs due to access instrumentation,
especially when monitoring many thousands of threads routinely used by GPU programs.

This article presents a novel data-parallel solution designed and optimized for the GPU architecture. It
includes compiler support and a set of runtime techniques. It uses value-based checking, which detects the
races reported in previous work, finds new races, and supports race-free deterministic GPU execution. More
important, race checking is massively data parallel and does not introduce divergent branching or atomic
synchronization. Its slowdown is less than 5× for over half of the tests and 10× on average, which is orders
of magnitude more efficient than the cuda-memcheck tool by Nvidia and the methods that use fine-grained
access instrumentation.

CCS Concepts: � Computing methodologies → Graphics processors; � Software and its
engineering → Software performance;

Additional Key Words and Phrases: GPU race detection, low overhead, value-based checking,
instrumentation-free

ACM Reference Format:
Pengcheng Li, Xiaoyu Hu, Dong Chen, Jacob Brock, Hao Luo, Eddy Z. Zhang, and Chen Ding. 2017. LD: Low-
overhead GPU race detection without access monitoring. ACM Trans. Archit. Code Optim. 14, 1, Article 9
(March 2017), 25 pages.
DOI: http://dx.doi.org/10.1145/3046678

1. INTRODUCTION

Graphics processing units (GPUs) rely heavily on the programmer to realize their high
performance potential. One pitfall that the programmer must be aware of is data races.
While this concern exists for parallel programs with a handful of threads running on
traditional single-core processors or multicore processors, a GPU programmer must
consider the interaction between thousands of threads; any two may access the same
memory cell and trigger a data race.

The research is supported in part by the National Science Foundation (Contract No. CCF-1629376, CNS-
1319617, CCF-1116104), IBM CAS Faculty Fellowship, and a grant from Huawei. Dong Chen is supported
in part by the Chinese Scholarship Council. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the funding
organizations.
Authors’ addresses: P. Li, X. Hu, D. Chen, J. Brock, H. Luo, and C. Ding, University of Rochester, P.O.Box
270226, CSB bldg, Rochester, NY, 14627; emails: pli@cs.rochester.edu, {hxy9243, jameschennerd}@gmail.com,
{jbrock, hluo, cding}@cs.rochester.edu; E. Z. Zhang, Department of Computer Science, Rutgers University,
110 Frelinghuysen Road, Piscataway, NJ 08854-8019; email: eddy.zhengzhang@cs.rutgers.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1544-3566/2017/03-ART9 $15.00
DOI: http://dx.doi.org/10.1145/3046678

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

http://dx.doi.org/10.1145/3046678
http://dx.doi.org/10.1145/3046678
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3046678&domain=pdf&date_stamp=2017-03-21

9:2 P. Li et al.

In this article, we present a low-overhead race detector called LDetector (LD). LD
analyzes a GPU program on a GPU. LD includes compiler support and a runtime library.
The main function of the compiler is privatization. When executed, each thread group
(a group of threads executing in lockstep, called a warp in CUDA) uses a private copy
of the shared data, so its writes are not visible to other warps. After execution, the
runtime detector examines shared data accesses for data races. LD is a precise dynamic
race detector, meaning that it may have false negatives but no false positives [Flanagan
and Freund 2009].
LD runs a target program twice. In the first pass, it detects the writes of a warp

by comparing its private copy with the stale values. The writes of all warps are then
compared to find write-write races. In the second pass, it reruns a warp with the new
values from other warps and compares the second-run results with those of the first
run. The first pass can be adapted to support safe parallelism, by which we mean either
race-free or deterministic parallelism.

Existing dynamic detectors rely on access monitoring. They use a compiler to in-
strument program loads and stores (that may access shared data). During execution,
the instrumented accesses are recorded in some form of metadata. The metadata may
be shared or private. Shared metadata, for example, states of variables in FastTrack
[Flanagan and Freund 2009], can detect concurrent accesses directly. However, they
require atomic access, which is costly on GPUs because of the high degree of paral-
lelism. Private metadata, for example, read/write sets in TARDIS [Lu et al. 2014],
avoid atomics but still need instrumentation of each load/store. At a minimum, it turns
every read into a read and a write, and every write into two writes. Furthermore, the
working set is larger, and the reduced locality harms performance more on GPUs than
on CPUs, because GPU device memory has less space per thread.

Unlike previous work, LD does not monitor data accesses. Instead, it redirects ac-
cesses to a private copy. Unlike access monitoring, access redirection incurs almost no
extra operation. While privatization increases total memory usage, it does not increase
in working set size of each thread.

More importantly, LD operations are data parallel and specially designed, suited,
and optimized for GPU execution. Data-parallel detection differs from task-parallel
detection. LD includes a number of novel techniques; two of the most effective are
atomic-free conflict detection and kernel fusion. On GPUs, data-parallel detection has
at least five important benefits over task-parallel techniques: massive parallelism,
maximal locality, absence of atomics, absence of read/write sets, and byte granularity
precision.

Full privatization requires memory linearly proportional to the degree of parallelism,
which may exceed the memory capacity on GPUs. We give a memory-adaptive extension
that uses multiple rounds to operate under a given memory constraint while fully
utilizing the available memory.

Our approach exploits the simplicity of the bulk-synchronous parallel (BSP) pro-
gramming model [Valiant 1990], which is used by most GPU programs. As a limitation
of BSP, LD does not handle locks and atomics. In addition, because of value-based
detection, LD has false negatives. Section 4.7 discusses these limitations.

Race detection and safe parallel execution are traditionally task parallel. This article
explores a data-parallel design for GPU programs. The main contributions are as
follows:

—Two-pass race detection (Section 4) and its optimization, especially the combination
of kernel fusion and atomic-free conflict detection (Section 4.3)

—Memory-adaptive race detection (Section 4.5)
—Deterministic GPU program execution (Section 4.6)

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:3

—Compiler transformation in GPU programs for shared-data privatization and effi-
cient access redirection (Section 5)

—Evaluation on 11 GPU benchmark programs showing low runtime overhead and
superior GPU performance of value-based detection over previous location-based
techniques and the cuda-memcheck tool (Section 6).

2. PRELIMINARIES

2.1. GPU Execution Model

The processing component of a GPU consists of a set of streaming multiprocessors
(SMs). Each SM consists of an array of in-order cores that are referred to as streaming
processors (SPs).

A kernel in GPU terminology is a function that is executed N times in parallel by N
threads [NVIDIA 2016]. The N GPU threads are divided into thread blocks. A thread
block is further divided into thread warps, each of which has 32 threads on Nvidia
GPUs. A warp is the smallest scheduling unit on an SM. The threads in a warp run in
lock-step, one instruction at a time. Therefore, a thread warp implicitly synchronizes
at every instruction. Different thread warps execute asynchronously. This mode of
parallel execution is called single-instruction multiple-thread (SIMT).

The GPU memory is hierarchical. It has L1 and L2 caches similar to those of CPUs.
It also has on-chip scratch-pad memory, called shared memory. The latency of shared
memory is close to that of an L1 cache. The shared memory is partitioned to different
thread blocks and every shared-memory partition is only visible to the thread block it is
assigned to. Global memory is visible to all the threads. Threads within a thread block
may communicate through shared memory or global memory. Threads across thread
blocks can communicate only through global memory.

The GPU provides an explicit barrier synchronization function for threads within a
thread block, named __syncthreads(). There is no built-in global barrier synchronization
function. However, a thread waits at the end of a kernel function for other threads to
finish before moving forward; that is, there is implicit barrier synchronization at the
end of a kernel function. The GPU also supports intrinsic atomics that can be used to
implement locks, mutexes, and barriers.

Our techniques are developed and implemented based on the Nvidia CUDA model.
The approach is applicable to other GPU architectures and programming models that
use the equivalent of warps (of any number of threads) and barrier synchronization,
for example, the OpenCL programming model [Stone et al. 2010].

2.2. GPU Data Race

The execution model of GPU programs follows the BSP model [Valiant 1990]. There
are three components in the BSP model: concurrent execution, communication, and
barrier synchronization. In this model, threads carry out local computation on fast local
memory asynchronously until they reach a barrier synchronization point, at which one
thread waits for all other threads. The concurrent threads communicate with each
other between each pair of adjacent barrier synchronization points. We call the code
region between two adjacent barrier synchronization points the asynchronous parallel
code region.

Definition 1 (Asynchronous Parallel Code Region). The code region of a GPU program
executed between two adjacent barrier synchronization calls is called an asynchronous
parallel (AP) code region.

AP code regions are executed sequentially, so a data race may happen only within
an AP code region and not across multiple AP code regions.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:4 P. Li et al.

Fig. 1. The five types of data races.

We categorize AP code regions into two different types: local AP regions and global
AP regions. A local AP code region is the code in between every pair of thread-block
level barrier synchronizations—for instance, the __syncthreads(). The global AP code
region is the code in between every pair of global barrier synchronization points, for
instance, the start and the end of a kernel, since a thread waits implicitly at the end
of a kernel until all other threads finish. For shared-memory variables, data races can
potentially happen only within a local AP code region, since shared-memory variables
are only visible within a thread block. A global AP region may contain multiple local
AP regions. For global-memory variables, data races can potentially happen within a
global AP code region and thus within/across local AP regions. Considering different
types of data objects, we summarize the data race scope in Figure 1.

There are two types of data races: write-write data races and read-write data races.
For every type of data race, we can further categorize them into intrawarp data race and
interwarp data race. An intrawarp race happens within a single GPU instruction (in
the same warp). An interwarp race is more complicated because it may span multiple
instructions as different warps execute asynchronously. In this article, we primarily
focus on solving interwarp race detection. Intrawarp checking is covered in Section 4.7.

3. A RUNNING EXAMPLE

We use a running example to explain the techniques to be presented in the following
sections. Figure 2(a) shows an example program, which is a simplified version of an
real benchmark (EM). The entire body of the function M_count is an AP code region.

A target variable is one that may incur a data race, that is, the variable may be
concurrently accessed in an AP code region, and the accesses are not read only. A
target variable may be a shared-memory variable or a global-memory variable. We
use a compiler to first identify a set of target variables and then privatize them by
creating a copy of them for every warp and redirecting the memory access of each warp
to its private copy. In the transformed code in Figure 2(b), the variable declarations are
changed to effect data privatization and access indirection, and new function calls are
inserted for two-pass race checking. We next describe the two-pass race checking. The
compiler support is described in Section 5.

4. TWO-PASS RACE DETECTION

We run each AP code region twice. The first pass detects write-write conflicts. If a con-
flict is found, LD terminates the program and generates a report to the user; otherwise,

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:5

Fig. 2. A simplified version of the EM program is used as a running example: (a) shows the original code,
and (b) shows the transformed code.

LD runs the second pass to detect read-write conflicts. For ease of understanding, we
first describe the checking for accesses to shared-memory variables. Then we extend
this approach for global-memory variables. Figure 3 shows the detailed algorithm, with
definitions first and then the procedure for each of the two passes.

4.1. Write-Write Race Detection

Let the state S be the set of (location, value) pairs for all target variables. Let warps
be ordered. Before the first-pass run, we create a private copy of S for every thread
warp and denote the copy for the ith warp as the private state P1

i . The privatization
is performed by replicating S (which is fully data parallel as discussed in Section 4.3).
The superscript 1 indicates the private state used in the first pass. In the first pass,
each warp executes exactly the same as in the original program except that it accesses
P1

i instead of S. The warps may run in parallel as they may in the original code.
After the execution, we create a union state U , initialize it U = S, and then check

all warps. For each warp i, we check every byte and compare its private state P1
i

against the original values in S. If they differ, there is a write by warp i. We update
the changed value in the union copy U . Before we update, we compare S and U and
see whether there is already a write to this location by another warp (already checked
earlier). Once we find that two warps modify the same byte, we record the variables
and threads involved in the write-write race. After the checking, we report all detected
write-write races and terminate the program if any race is found; otherwise, the union
copy U contains all the changes made by all warps.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:6 P. Li et al.

Fig. 3. The algorithm of two-pass race detection.

The data copying, checking, and updating operations are fully data parallel, not
only within but also across warps. They use no fine-grained synchronization and no
divergent branches (unless there is a race). We will describe their implementation in
Section 4.3.

In the running example in Figure 2(b), parallel_memcpy in line 8 shows the initial-
ization of the first pass (i.e., the creation of the private state), and ww_check in line
15 shows the checking of write-write races. The seven steps of ww_check are shown by
lines 1 through 7 in Figure 3.

4.2. Read-Write Race Detection

Before the second pass, we initialize another private state P2
i for each warp. The initial

values in P2
i include all the changes made by all the warps in the first pass except

by warp i. P2
i is created by copying the union U and erasing the changes made in P1

i
(and reverting them to the original value in S). The second pass starts from a different
private state, where each warp sees all data changes made by all other warps. The idea
is that if a warp is completely independent from others, then this change to the private
state should not affect its results.

In the second pass, each warp executes exactly the same as in the original program
except that it accesses P2

i instead of S. After the execution, we compare the modifica-
tions by the two passes by comparing the two private states P1

i , P2
i to find a difference.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:7

This is performed by comparing each byte of P2
i and U . If there is a difference, there

must be a read-write data race, because the effect of another warp must have mattered.
Otherwise, we copy the contents of the union copy U back to the original state S. The
checking of this AP region finishes, and the program proceeds to execute the next AP
code region.

Rationale for Comparing P2
i with U . Let’s use W1

i and W2
i to denote the sets of

(location, value) pairs modified by the first pass and the second pass. Each set of
(location, value) pairs maintains the invariance that in the same set, there is only one
value for each distinct location. Let W1

i = P1
i − (P1

i ∩ S), and W2
i = P2

i − (P2
i ∩ ((U −

W1
i) ∪ (S − (P1

i ∩ S)))), where U − W1
i shows the changes made by all other warps in

the first pass, and S − (P1
i ∩ S) shows reversion of the changes made by warp i. In

the reversion formula, P1
i ∩ S is the set of location-value pairs not modified by i, so

S − (P1
i ∩ S) is the set of locations modified by i but reverted to the original values.

If W1
i �= W2

i , there is a read-write race. Mathematically, W1
i = W2

i if and only if
P2

i = U , as proved next:

P2
i = U ⇒ W2

i = U − (
U ∩ ((

U − W1
i

) ∪ (
S − (

P1
i ∩ S

))))

⇒ W2
i = (

W1
i − (U ∩ S)

) ∪ (
U ∩ P1

i ∩ S
)

⇒ W2
i = (

W1
i − (U ∩ S)

) ∪ (U ∩ S)

⇒ W2
i = W1

i

W2
i = W1

i ⇒ P2
i = (

W2
I ∪ U

) − W1
I ⇒ P2

i = U.

Since we compare P2
i and U for read-write race detection, P2

i can reuse the space
of P1

i . Note that we have false negatives by comparing P2
i with U , if P2

i writes to the
locations, which are not written by P1

i , with values of U . One might suggest that we
should create a second, private copy for a warp, which is initialized with S, to record
writes in the second pass, and compare the second copy with P1

i . However, this does
not remove false negatives if P2

i writes with values of S but also consumes more space.
Actually, the false negatives are inevitable in value-based checking, which we will
discuss in Section 4.7.

In Figure 2(b), the ww_check initializes the second private state after write-write
race checking (with checking and initialization performed simultaneously through
kernel fusion as discussed in Section 4.3). The rw_check shows the read-write race
checking. After the read-write race checking, line 19 updates the original state S by
copying the changes from the union state U . These steps are shown by lines 8 through
13 in Figure 3.

Illustration of the Two-Pass Checking. Figure 4 illustrates the steps for two warps.
Initially, we have the set S of target variables and we create a copy for each warp, P1
and P2. After the first run, the writes in each private copy are identified by comparing
with the original copy. Overlapping writes are indicators of write-write races, as shown
in Figure 4. If there are no overlapping writes, the changes from both warps are
merged into one union copy, U = apply(W(P1

1) ∪ W(P1
2), S), at the top of the second

pass in Figure 4. The union copy is used to reinitialize each private copy before the
second run of the AP code region, so that each warp re-executes with its own copy of
target variables. Finally, the second-run results, P2

1 and P2
2 , are compared with U for

read-write race detection.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:8 P. Li et al.

Fig. 4. A pictorial view of race checking through two running passes: initialization of the first pass (left),
write-write race checking and initialization of the second pass (middle), and read-write race checking (right).
The symbols have the same meaning as they do in Figure 3.

4.3. The Data-Parallel Implementation

As far as we know, LD is the first dynamic value-based race detector on GPUs. The new
approach offers two important benefits: massive parallelism and locality optimization,
which are critical to overcome the high cost of race checking for thousands of threads.

First, all LD steps are data parallel, including replicating data in private copies
and comparing the private copy for changes, except for one step, the write-write race
checking, which we discuss later in this section.

Second, we fuse the three operations, write detection, conflict detection, and write
combination (for a union copy), into one kernel. These data-parallel operations are
fused because they operate on the same data. Kernel fusion maximizes the temporal
locality because a fused kernel loads data just once rather than once for each operation.
A benefit of kernel fusion is the elimination of intermediate metadata. For example,
in write-write race checking, if we were to detect writes first and then find conflicts,
we would have to record the writes of each warp in a bitmap. Kernel fusion avoids
bitmaps entirely.

In comparison, bitmaps or read/write sets are often used in previous work. For
example, a safe parallelization system called BOP used bitmaps initially [Ding et al.
2007] and addressed ranges later [Ke et al. 2011] to record read/write sets. More
recently, a deterministic parallel system, TARDIS, used intersecting sets for task-level
access race detection [Ji et al. 2013; Lu et al. 2014]. LD does not maintain any form of
access sets during program execution.

The idea of write-diffing was pioneered by Treadmarks [Amza et al. 1996] and used
extensively to implement software distributed shared memory (DSM), including the
use in race checking to distinguish between false sharing and a true race [Perkovic and
Keleher 2000]. The technique by Perkovic and Keleher relies on a software implemen-
tation of shared memory and its lazy release consistency. In addition, DSM programs
have loosely coupled MIMD parallelism. GPUs differ in that they have massive data
(SPMD) parallelism, and the memory is physically shared. The shared memory is
necessary for atomic-free checking, which we describe next.

Atomic-Free Conflict Checking. Write-write race checking requires comparing the
write sets between every pair of warps for overlap. This quadratic cost can be reduced
to linear by replaying all the writes by all the threads on a single copy of data, that is,
the union copy. However, when we replay warps in parallel, they may write to the same
location, which requires atomic operations to avoid data races (in race checking). A
common atomic operation is Compare-and-Swap (CAS) [Scott 2013]. However, atomic
operations are costly when used by thousands of threads at the same time. In addition,
CAS on GPUs (as on CPUs) is based on 32-bit or 64-bit data, not 8-bit data. The coarse
granularity is a problem for value-based checking because it cannot detect false sharing
and as a result generates false positives.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:9

LD uses a novel technique for atomic-free conflict checking. The CAS-based solution
was task parallel, where each warp checked its own accesses and updated them in the
union copy. The atomic-free solution performs the same work but converts it to data
parallel.

Instead of each warp replaying its writes over the entire space of shared data, we
partition the shared data among warps so each warp checks only the writes in its
assigned region and detects conflicts just in that region. For each data item, the writes
by all warps are replayed sequentially by a warp. In the data-parallel solution, different
warps check different data regions. They no longer share data and hence require no
atomic operations. There is no branch divergence unless there is a conflict. Last but
not least, the granularity of race checking is a byte. The byte granularity eliminates
false positives, which makes LD a precise race detector [Flanagan and Freund 2009].

Memory Access Coalescing. When we place privatized data in GPU global memory, our
algorithms are implemented so that consecutive data accesses in a warp are coalesced
into contiguous memory chunks. The GPU memory controller fetches a contiguous
chunk of memory each time. If threads in the same warp access scattered data items,
the memory controller might need to fetch multiple memory chunks before the thread
warp can start running. This effect is caused by noncoalesced memory accesses on
GPUs. In the implementation of LD, memory accesses are all coalesced.

Thread Divergence Elimination. As often reported (e.g., Zhang et al. [2011]), perfor-
mance drops if different threads in the same warp execute different code paths. It may
serialize the operations because a thread warp is issued one instruction at a time (i.e.,
the lock-step behavior discussed in Section 2). This effect is called thread divergence.
For all race-checking operations, we pad data (and add threads) to a size that can be
divided by the warp size. Although padding adds unnecessary operations, it eliminates
conditional checks and hence any thread divergence caused by different code paths.

Memory Consumption. Privatization and race checking require additional memory. If
a thread block has 512 threads in 16 warps, and the thread block uses a 1KB array, the
first pass by LD will create 17 additional copies of the array. If privatization requires
more space than available in shared memory, global memory is used. Because the
shared memory is of a bounded size (e.g., 48KB per SM on Nvidia Kepler), privatization
for shared-memory data can always be achieved in global memory if needed. We will
discuss the memory problem for global-memory data in Section 4.4.

4.4. Interblock Data Race Detection

As explained in Section 2, there is only one synchronization point at the termination
of the kernel for thread blocks. Hence, the entire kernel is one AP code region for
interblock race detection. Interblock race checking operates on two levels. First, we
apply the two-pass approach to check for races between concurrent thread blocks.
Privatization is performed at the thread-block level, and a private copy is created for
each thread block. If no race is found, we then apply the two-pass approach within each
thread block to check for interwarp races as described in the last section. Altogether,
four passes are needed to check for both interblock and interwarp races.

Interblock races may happen for only global-memory variables, while interwarp
races may happen for shared-memory variables in addition to global-memory vari-
ables. There is no procedural difference when checking for the two types of variables.
However, the memory consumption of privatization may be very different. As just dis-
cussed in Section 4.3, shared-memory variables can always be privatized in shared
memory or global memory when needed. We next solve the problems of privatization
and race checking for global-memory variables.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:10 P. Li et al.

Fig. 5. Memory-adaptive race checking by warp reshuffling, assuming N = 8, M = 2. Only the first two
rounds are shown.

4.5. Memory Adaptivity by Warp Reshuffling

In this section, we extend our race detection algorithm to overcome the problem when
the available memory is too small for full privatization. We call this memory-adaptive
race checking.

To motivate, let’s consider the memory requirement. On Nvidia GPUs, an array in
shared memory is not large due to the shared-memory size constraint, for example,
at most 48KB on Nvidia K40c. The maximal parallelism is 960 warps on the fly. The
maximal memory requirement of privatization is 48KB times 960, which is 46MB and
can easily fit in global memory. If a global-memory array is 1GB, its privatization for
960 warps would require almost 1TB of memory, which is nearly impossible even for
modern CPUs. Our memory-adaptive extension supports race checking under a given
memory constraint.

Memory-adaptive checking uses multiple rounds of checking to trade time for space.
We call each round a memory-constrained round. With infinite memory, it takes just one
round of two-pass checking, which is the solution as presented so far. With finite mem-
ory, the number of rounds is a logarithmic function of the total memory requirement
and the physical memory constraint.

We use M to denote the largest number of private copies of target variables according
to the constraint. In the first round, we divide all warps into M groups and assign every
group a private memory copy. Then we check races between groups as if each group
were a single warp, when in reality a group may consist of multiple warps.

If there is no data race between these M groups, in the subsequent rounds, we check
races within each group. For every group, we further partition the thread warps into
M subgroups and assign every subgroup a private memory copy.

For instance, in Figure 5, we have eight warps, and in Round 1 we split them into
two groups, {0, 1, 2, 3} and {4, 5, 6, 7}. Then we consider the two groups as two warps
and apply our write-write checking and read-write checking to the two groups. If a race
is found, we report it and abort. Otherwise, we go to Round 2. In Round 2, we split
each aforementioned group into two subgroups, resulting in {0, 1} and {2, 3}, {4, 5}, and
{6, 7}. Then we consider each group and apply write-write checking and read-write
checking to every two subgroups: {0, 1} and {2, 3}, {4, 5} and {6, 7}.

A naive solution would have to serialize the checking of the two 4-warp groups;
otherwise, they would require four private copies of data, one for each two-thread
group. Fortunately, such serialization is unnecessary.

After Round 1, we know there is no write-write or read-write conflict between
{0, 1, 2, 3} and {4, 5, 6, 7}. Thus, {0, 1} and {4, 5} can reuse one private copy in Round 2,
as can {2, 3} and {6, 7}. As Figure 5 shows, Round 2 uses the same amount of memory
as Round 1 but checks races for twice as many groups.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:11

In this technique, a thread warp may use different private copies in different rounds.
We call it warp reshuffling. The implementation redirects each thread warp to its pri-
vate copy between rounds. By subdividing warp groups and leveraging the conclusion
in successive rounds, warp reshuffling uses the same amount of memory in each round
and eventually is able to check races among all warps in the last round.

Memory-Adaptive Checking. For N warps and a memory limit of M private copies,
warp reshuffling takes logM N rounds. It checks for data races among M (sub)groups
at each round. For example, in Figure 5, N = 8, M = 2; we need log2 8 = 3 rounds. In
fact, in some cases we might need less than logM N rounds since the data race might
be detected in the ith round (i < logM N), at which point we would stop the checking
process and report the race.

Consider two cases where the two conflicting threads belong to the same or different
subgroups. For instance, in Figure 5, Round 1, if threads 1 and 5 have a data race,
warp reshuffling finds the race in Round 1. However, if threads 1 and 3 have a race,
warp reshuffling will have to at least be performed in Round 2.

Assuming the two racing thread warps are distributed randomly in subgroups, let’s
analyze the probability that memory reshuffling detects the race in no greater than k
rounds, where k ∈ 1 . . . logM N.

The probability of finding the race in Round 1 is the probability that the two thread
warps are not in the same subgroup, that is,

1 −
(N/M

2

) × M
(N

2

) = N × (1 − 1
M)

N − 1
.

The probability of finding the race in no greater than two rounds can be written as

1 −
(N/M2

2

) × M2

(N
2

) = N × (1 − 1
M2)

N − 1
.

Repeating this, we have the probability of finding this race in no greater than k
rounds, shown in Equation (1):

Pk = N × (1 − 1
Mk)

N − 1
. (1)

The tradeoff between efficiency and accuracy in memory-adaptive checking is com-
puted by Equation (1) as Pk, the probability of finding a race in k rounds. The equation
shows precisely how the probability depends on the memory limit M and the number
of warps N. Warp reshuffling guarantees to find a race in at most logM N rounds. As
a sanity check, we can let k = logM N and see that indeed Pk equals 1 according to
Equation (1).

Since our test programs do not exceed the memory capacity on our test platform,
there is no need for memory-adaptive checking. Here we give an analytical evaluation.
Let the number of warps be 960, the maximum number of active warps on nvidia k40c.
Table I shows the memory overhead in the number of private copies (at least two),
performance slowdown (of checking) in the number of passes (at least two for a single
round), and the detection probability when the racing thread warps are randomly
distributed. If all warps share 1GB of target variable data, we can use 6GB of memory
and finish the full detection in eight runs (four rounds). The last five rows show the
probability of finding races in k rounds with respect to different memory constraints.
With 2× memory overhead, the detection requires 20 runs for 100% probability of
finding the race, and with six runs we can find the data race with near 90% probability
(88%). Currently, memory-adaptive checking is a theoretical contribution.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:12 P. Li et al.

Table I. The Time-Space-Accuracy Tradeoff for Race
Checking Among 960 Warps (the Memory Overhead

Is the Number of Private Copies)

Warps # Passes Mem. Overhead Probability

960 2 960× 100%
960 4 31× 100%
960 6 10× 100%
960 8 6× 100%
960 10 4× 100%
960 20 2× 100%
960 10 2× 97%
960 8 2× 94%
960 6 2× 88%
960 4 2× 75%

4.6. Safe Parallel Execution on GPUs

A by-product of our approach is that our techniques can enable safe parallelism, even
for a racy program. Here safe parallelism means race-free or deterministic parallel
execution. We use the same privatization approach. At the end of the first pass, instead
of checking for write-write races, we merge the data writes from private copies. Race-
free merging is faster than deterministic merging since the latter has to follow a
pre-determined order, for example, the increasing order of warp ID. The merged copy
becomes the original copy, and the program proceeds to execute the subsequent code.
There is no need for a second pass. To extend from interwarp to interblock determinism,
we add one level to the merge process. After merging the warps of each block, we then
merge blocks in a sequential order.

Safe execution incurs half of the memory cost and needs just one pass. Since we
do not rerun a program, we cannot use the warp reshuffling to solve the problem of
memory capacity. Safety requires sufficient memory for privatization. In addition, it
cannot handle programs with atomic operations.

The principal design ideas—first privatization and then sequential merge—are the
same as those of previous work on CPUs, including process-based copy-on-write [Ding
et al. 2007; Berger et al. 2009; Raman et al. 2010; Veeraraghavan et al. 2011; Bai et al.
2015; Ding et al. 2014] and compiler or hardware data versioning [Tian et al. 2010;
Burckhardt et al. 2010; Bergan et al. 2010]. Privatization is also used in speculative
program optimization by guaranteeing safe execution in the presence of aggressive and
possibly unsafe optimization [Kelsey et al. 2009]. The novelty here is the data-parallel
design and optimization on GPUs, including atomic-free conflict checking (needed for
parallel merging), kernel fusion and other optimizations described in Section 4.3 to
provide massive parallelism, maximal locality, no read/write sets, and byte granularity
for GPU programs. Support for safety is another advantage of LD over other GPU
race-checking techniques.

4.7. Discussions

Intrawarp Race Checking. Since threads within a warp execute one instruction at
a time and implicitly synchronize at every instruction (SIMD), the AP code region
for an intrawarp race is just one instruction. Hence, no intrawarp races exist across
instructions.1 We use the approach of GRace [Zheng et al. 2011, 2014]. Every thread

1Compiler optimization may break the warp-level synchronization, leading to intrawarp races across in-
structions. Nevertheless, existing work often assumes SIMD execution and implicit synchronization at every
instruction, as does our analysis.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:13

logs its reads and writes in every instruction. Then each thread checks the logs to see
whether another thread has accessed the same location.

False Negatives by Value-Based Checking. Value-based checking has been used ex-
tensively [Amza et al. 1996; Perkovic and Keleher 1996; Ding et al. 2007]. For race
checking, however, it inevitably has false negatives, for example, the well-known ABA
problem. We categorize the types of false negatives as follows:

—In the first pass of write-write data race detection, if two warps write to the same
location but one of them restores the original value, LD cannot detect the write-write
race.

—If one warp restores the original value at a location and another warp reads this
location, there is a read-write race. LD cannot detect the read-write race. However,
this is a benign race.

—In the second pass of read-write data race detection, if a warp, after reading other
warps’ writes (read-write races), writes with values of the union copy, LD cannot
detect the read-write race.

False Negatives by Atomics and Locks. LD does not detect races on variables protected
by atomics or locks. This is a major difference between GPU race detection and CPU
race detection. GPU programs rarely use atomics or locks. For high performance, GPU
programs typically have massive parallelism and use only collective synchronization
[Valiant 1990], while multithreaded CPU programs may use atomics and locks exten-
sively. None of our GPU benchmarks, which are also tested in existing work [Zheng
et al. 2011; Boyer et al. 2008; Holey et al. 2013], uses atomics. As far as we know, the
existing GPU race-checking work [Zheng et al. 2011; Boyer et al. 2008; Leung et al.
2012; Li et al. 2012; Li and Gopalakrishnan 2010; Betts et al. 2012] either does not
check for races on atomics or locks or provides limited support [Chiang et al. 2013;
Bardsley and Donaldson 2014]. In programs that have them, atomics are rare, and
lock-based critical sections are short. It is efficient to use access monitoring (e.g., Chi-
ang et al. [2013] and Bardsley and Donaldson [2014]) or shared state tracking (e.g.,
HAccRG [Holey et al. 2013]).

5. GPU DATA PRIVATIZATION

An effective technique was developed by Yu et al. for data privatization on CPUs [Yu
et al. 2013]. This section shows how LD adapts their technique for use on GPUs, which
have a different task model and memory architecture.

5.1. Data Expansion

A target variable is one that may be concurrently accessed in an AP code region. The
target variable analysis is to identify the variables whose accesses can potentially cause
data races so that we do not have to check every variable in the program. This helps
minimize the overhead of race checking. Maximal precision would require advanced
alias and points-to analysis, and context and flow sensitivity. Not all programs are
amenable to such compiler analysis. In this work, we skip the variables that are read-
only or with affine array indices that can be easily analyzed statically.

Privatization is applied to all target variables. This is achieved by promoting the type
declaration of a variable to expand the data size. The transformation is straightforward,
as summarized in Table II. For statically allocated variables, we change the declaration
to expand them into arrays or higher-dimensional arrays. Note that static shared-
memory variables may be allocated either in shared memory or in global memory,
depending on their sizes.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:14 P. Li et al.

Table II. Data Expansion Rules. Type Denotes All Possible Shared Types.
Declaration Denotes Native Type Declaration. Expansion Denotes

Corresponding Expansions Based on Native Types. a Denotes
a Shared Variable. b Denotes a Global Variable. N Denotes

the Number of Warps in a Thread-Block

Type Declaration Expansion

shared scalar shared int a shared int a[N]
shared record shared struct S a shared struct S a[N]
shared array shared int a[M] shared int a[N]M]

global scalar int b int b[N]
global record struct S b struct S b[N]
global array int b[M] int b[N][M]
heap object v = cudaMalloc(size) v[i] = cudaMalloc(size)

Table III. Rules for Access Redirection. Type Denotes
All Possible Shared Types. Before Denotes a Memory

Reference Before Redirection. After Denotes the
Redirected Memory Reference. a Denotes a Shared

Variable. b Denotes a Global Variable. warpId
Denotes the Index of a Warp in a Thread-block

Type Before After

shared scalar a a[warpId]
shared field a.field a[warpId].field
shared array a[i] a[warpId][i]

global scalar b b[warpId]
global field b.field b[warpId].field
global array b[i] b[warpId][i]

Dynamic allocation happens only in global memory. We let each warp allocate its
own copy but record the base pointer in an array (created by the compiler). This design
makes access redirection more efficient.

In Figure 2(b), the array data is a read-only global array, and hence not a target
variable. The shared-memory array s_float is the only target variable. The declaration
of s_float_pri implements the data expansion.

5.2. Access Redirection

Table III shows the redirection rules for accessing privatized variables. For each warp,
redirection uses warpId to index the extra dimension of the expanded data.

Access redirection could increase the cost of access because of its indexing into the
extra data dimension. However, the extra cost is actually negligible. In each warp, the
index of the extra dimension is invariant, and the compiler uses a scalar variable to
store the base address of its portion in the expanded data. The only overhead comes
from the base address calculation, which is done just once at the start of a warp.
Furthermore, the access to the dynamically allocated data is redirected directly by
the way it is allocated and hence has no extra overhead from access redirection. In
Figure 2(b), a local variable s_float_new stores the base address of the private portion.
Lines 9 through 12 show the access redirection.

The two transformations, variable expansion and access redirection, are imple-
mented in Clang based on scout [Krzikalla 2011] using algorithms in Algorithm 1
and Figure 6. They are adapted from the technique by [Yu et al. 2013]. To adapt their
technique for use in GPU programs, we need the type promotion rules in Figure 6.
For example, the rule of Decl Heap is for variables dynamically allocated and passed

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:15

Fig. 6. Type promotion rules. The Decl and Ref rules are for shared-memory and global variables. � is the
typing environment that contains the original type bindings for all variables and functions. �′ is the typing
environment that contains new type bindings after data privatization for race checking. Type T represents
all primitive types and pointer types. Decl and Ref are recursive functions that define type promotion rules of
Decl and Ref uses, respectively. For Ref , we only show store operations to illustrate this idea. Load operations
are processed similarly. N denotes the number of warps. M denotes an original array dimension. v denotes
a variable. fi denotes a field of a struct or a parameter of a function. val denotes a value.

ALGORITHM 1: Type Promotions
1: procedure DECL(t)
2: switch t
3: case local:
4: return t
5: case shared or global:
6: Decl(t) based on type promotion rules in Figure 6
7: end procedure
8: procedure REF(v)
9: switch v

10: case local:
11: return v
12: case shared or global:
13: Ref(v) based on type promotion rules in Figure 6
14: end procedure

to a kernel code as parameters. These transformations apply only to target variables.
The main novelty of LD is a use of privatization, not the technique itself. For more
implementation details, please refer to Yu et al. [2013].

Program transformation has to consider more than just target variables, in particu-
lar, variables whose values have either an upward-exposed definition (i.e., assignment
before an AP code region) or downward-exposed uses (i.e., live after the AP code region).
We use standard compiler def-use analysis to identify and transform upward-exposed
loads and downward-exposed stores (e.g., the analysis used in scalar replacement)
[Allen and Kennedy 2001; Cooper and Torczon 2010; Li et al. 2014, 2015].

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:16 P. Li et al.

Table IV. GPU Platform Configurations

Configuration Parameter

SMs / GPU 15
Cores / SM 192

SIMD Width / Warp Size 8 / 32
Warp Size 32
Capability 3.5

Shared Memory per SM 48KB
L1 Data Cache per SM 16KB

L2 Cache 1.5MB
Memory Controller Out-of-Order
Constant Memory 65K

Global Memory 11,520MB
SDK 5.5

6. EVALUATION

6.1. Implementation and Experimental Setup

Implementation. We implemented the compiler support based on an open-sourced
source-to-source translator, namely, scout [Krzikalla 2011]. We extended scout to
support the translation of GPU programs. For the GPU programs that have nested
synchronizations, if-branch statements, and loops, we naively unroll the code struc-
tures and reorder their inside instructions to generate a target code region.2 The
generated code region has a set of continuous instructions. Then we clone the code
region for a two-pass race checking. The current compiler handles GPU programs with
a restricted syntax and does not support warp reshuffling, which we leave as future
work. The runtime library comprises around 800 lines of code written in CUDA.

Machine Platform. We evaluate using an Nvidia Tesla K40c GPU card with the
configuration shown in Table IV. The CPU host is Intel Xeon CPU E5-2620 2.10GHz,
running Linux OS 2.6.32.

Benchmarks. We tested 11 programs, including three real-world applications, coclus-
ter [Zheng et al. 2011], em [Zheng et al. 2014], and kmeans [Holey et al. 2013]; three
programs from the Rodinia 2.4 benchmark suite, bfs, backprop, and b+tree; and five
from the CUDA SDK 2.0 benchmark suite. We include the backprop and b+tree pro-
grams here since our work is the first to find races in them. Cocluster and kmeans are
clustering programs used in data mining, and em (expectation maximization) is used
in machine learning. These programs have been carefully optimized [Ma and Agrawal
2010]. Table V shows the input parameters and the consumption of both shared and
global memory. The current LD implementation was designed to handle these programs.
However, we believe that LD is able to detect shared-memory races for many other pro-
grams. Li et al. [2014] tested the Lonestar [Kulkarni et al. 2009] and Parboil [UIUC
2012] benchmark suites for their race checkers. We did not test those benchmarks.
Except for them and backprop and b+tree, nine of the 11 tests we have include all
available test programs gathered from all the other existing papers on GPU data race
checking. In our tests, we report the average result over 20 runs.

6.2. Effectiveness and Precision

LD reports which AP code regions have data races and which memory addresses and
which warps are involved, so that users can focus on specific statements and threads to

2A related problem is the unique worker model when used in OpenMP loops, which has been solved by Aloor
and Nandivada [2015] by transforming it into multiple work share loops.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:17

Table V. Benchmark Size, Input, and Memory Consumption. #LOC is
the Number of Program Lines. Conf. Shows the Grid and Thread-Block
Sizes Used in Evaluation. They May Be Changed from the Originals in

Order to Expose Races. Shm Shows the Shared-Memory Usage
per Thread Block. GM Shows the Global-Memory Usage

Programs #LOC Conf. Shm(KB) GM(MB)

scan 694 256,512 4.22 0.002
histogram64 482 2,067,192 11 4.11
bisect small 8,162 1,512 10 0.008
nbody 2,365 60,256 4 0.96
radix sort 2,368 1,32 0.26 0.13
bfs 282 16,256 0 0.14
backprop 898 8,256 0 2.19
b+tree 3,717 8,1024 0 15.58
kmeans 2,688 139,128 4.63 0.70
cocluster 10,878 8,256 15.57 32.02
em 3,983 8,320 15.10 63.35

Table VI. Detection Results. The Type Column Uses Rw/Ww to Denote Interwarp
Read-Write/Write-Write Races. Scope Shows Shared Memory Races or Global-Memory

Races. #Ana,#Race Are the Number of Code Regions Analyzed and the Number with
Races. #Wps and #Mem Are the Number of Warps and Memory Addresses That

Harbor Races. Note that Scan, Kmeans Have Injected Races

Program Race? Type Scope #Wps #ana, #race #Mem

scan yes * rw shared 13 1, 1 2,880
histogram64 no - - - 1, 0 -
bisect small no - - - 2, 0 -
nbody yes ww global 8 1, 1 128
radix sort no - - - 1, 0 -
bfs yes rw,ww global 128 1, 1 4,012
backdrop yes ww global 5 4, 2 2,446
b+tree yes ww global 6 2, 1 14
kmeans yes * rw shared 2 2, 1 32
cocluster yes rw shared 8 1, 1 896
em yes ww shared 10 1, 1 1,536

debug and remove the races. Table VI summarizes the detection results of LD. It shows
which program has what type of data races in which warps, code blocks, and memory
addresses. For instance, in one code block of cocluster, eight warps and 896 memory
addresses have interwarp read-write data races in shared memory. Note that scan and
kmeans have no data races in the original version. For comparison, we injected the
same races that prior work did [Zheng et al. 2011, 2014; Holey et al. 2013].

Comparison with Other Methods. GPU race checking has been extensively studied
in recent years [Zheng et al. 2011, 2014; Holey et al. 2013; Li et al. 2012; Jooybar et al.
2013; NVIDIA 2014]. The result of LD has not just verified these, but also identified two
data races in backprop and b+tree, which were not reported in prior work.

Much previous work [Zheng et al. 2011, 2014; Betts et al. 2012; Boyer et al. 2008]
heavily relied on compile-time analysis or symbolic analysis. However, static analysis
and symbolic analysis report false alarms. These include two races reported by Li et al.
[2012] in bisect small and radix sort programs. In bisect small, the race appears only
when the thread-block size is greater than 32. However, the code path that incurs the
race is executed when the thread-block size equals 32. This is a drawback of static or
symbolic analysis due to lack of flow sensitivity. In radix sort, their analysis does not

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:18 P. Li et al.

consider that threads within a warp respect SIMD execution. Other static techniques,
B-tool [Boyer et al. 2008] and GPUVerify [Betts et al. 2012], also report false alarms.
GKLEE [Li et al. 2012] used dynamic symbolic analysis. They found an intrawarp
write-write race in histogram64 (with thread-block size of 32), which the current LD
can detect with the extension of intrawarp race checking (Section 4.7).

Zheng et al. [2011, 2014] developed four runtime techniques: GRace-stmt (GRS),
GRace-addr (GRA), GMRace-stmt (GMS), and GMRace-flag (GMF). They all record
and compare read-write sets for race checking. GMS and GRS record read-write sets
for every statement in an AP region, while GRA and GMF do so collectively for an
AP region. GMF uses an address bitmap, while GRA uses a counter-map. A common
trait is that the runtime checking is address based and requires instrumenting mem-
ory references. For efficiency, they rely on compiler analysis to prune the amount of
instrumentation. Not all programs are amenable to compiler analysis. In this section,
we compare the performance of GRace and GMRace with a manual implementation
and without compiler optimization. GRS and GMS could identify the exact pairs of
statements causing races with per-statement instrumentation, but the cost was high.
To improve speed, they were simplified to record less information. GMS utilizes more
parallelism than GRS does. LD can provide precise statement-level information but will
require rerunning a warp after a race is detected on a memory address. The techniques
of GRS and GMS are sufficient for rerun. In LD, the cost of instrumentation is incurred
only after a race is detected. Since the four tools are not publicly available, we made our
best effort to implement their runtime systems. We manually instrument the accesses
of shared variables to record the accessed locations for runtime checking. We made the
four tools as efficient as we could, for example, by placing as many shared variables
as possible in GPU shared memory and instrumenting a minimal number of program
statements.

Cuda-memcheck [NVIDIA 2014] (version 5.5) is a vendor-provided tool in Nvidia’s
CUDA development kit. It only detects race conditions in shared memory. As tested, it
could find some of the races found by LD, in scan, bisect small, kmeans, and cocluster.
Cuda-memcheck provides detailed diagnostic information about detected races, but at
a higher cost both on the CPU side and on the GPU side. We will show its overhead
later.
LD detects races on both shared memory and global memory. All the other tools,

including cuda-memcheck, do not detect races in global memory. Three programs in our
test suite, bfs, backprop, and b+tree, use only global memory and have races. HAccRG
[Holey et al. 2013] uses hardware support for detecting data races in all levels of the
memory system on GPUs, and its overhead is only 1% for shared memory and 27% for
global memory. However, we cannot conduct a comparison, because HAccRG requires
special hardware support.

6.3. Performance Overhead

For evaluation, we measure and compare only the cost of interwarp race detection.
Figure 7 shows the time comparison. Compared to the four instrumentation-based
tools and cuda-memcheck, LD is more than an order of magnitude faster. On average, LD
has 10× slowdown, while GMS, GMF, GRS, GRA, and cuda-memcheck have 6.89e+3×,
3.59e+3×, 1.40e+4×, 1.00e+3×, and 3.96e+3× respectively. For example, scan runs in
0.04 second. The cost is 1.16 seconds for LD, which is 29× slower. The 14× slowdown
for bfs is similarly tolerable; so are those of backprop and b+tree. Excluding these four
and histogram64 (discussed next), the average slowdown is under 3× on average for
the other six programs. Cuda-memcheck does not add much overhead to the programs
that have no shared memory accesses, such as bfs, b+tree, and backprop, because it
only checks the races in shared memory.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:19

Fig. 7. The comparison of performance slowdowns among LD, GMS, GMF, GRS, GRA, and CM (cuda-
memcheck). For scan, bisect small, and nbody programs, cuda-memcheck did not finish within 10 minutes,
so we omit these running times.

Fig. 8. Performance breakdowns of benchmark programs. 1init denotes initialization of the first pass. 2init
denotes initialization of the second pass. copyback denotes copying the union copy to original copy after race
checking.

Figure 8 shows breakdowns of the running time of LD. While the race-checking
operations have significant costs, they do not far outweigh the cost of running the
kernel itself (twice). The 27× slowdown incurred in histogram64 is caused in part
by its shared-memory data being privatized in global memory. All programs that use
shared memory are impacted by this in some degree. For bisect small and radix sort,
although their native running times are short, the AP code regions chosen by our static
analysis are also short. Except for the two, race checking happens on almost the entire
kernel code. In nbody, kmeans, cocluster, and em, the relative slowdown is low because
some of the data are privatized in shared memory, and the checking is very fast (less
than 3ms, see Section 6.5). Figure 8 divides the runtime of a target AP code region into
seven parts. Each part is measured separately in different runs to reduce the noise
of the time measurement and measured over 10 times to take the average. We use
the first thread of each thread block to record the start and end times of each part
by calling the “clock()” function. Then we compute the average cost across all thread
blocks. Before reading the start and end times, we synchronize all threads in a thread
block by calling “__syncthreads()”.

6.4. Memory Overhead

LD uses additional memory for private copies and the union copy. The other four tech-
niques use extra space primarily for two types of metadata tables, warp tables and
thread-block tables [Zheng et al. 2011, 2014], which record instrumented memory

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:20 P. Li et al.

Table VII. Memory Overhead of Benchmark Programs. Shm Denotes Shared-Memory
Usage. GM Denotes Global-Memory Usage. In Nbody, a Race Happens
on Global Memory, but for Fairness We Measure the Overhead of LD Only

on the AP Code Regions That Have Only Shared-Memory Accesses

LD GMS/GRS GMF GRA
Prog. Shm GM Shm GM GM GM
scan 1.1M 17.4M 2.1M 71M >1G >1G
histogram 25.3M 145.5M 6.34M >1G >1G >1G
bisect 2K 34K 8.4K 1.59K 6M 6.4M
nbody 240K 1.9M 251K 251M 160M 202M
radix 0.6K 0K 0.54K 82K 384K 768K
kmeans 653K 2.6M 291K 1.2M 208M 260M
cocluster 16K 1M 33.5K >1G 24M 27M
em 16K 1.3M 41.8K >1G 30M 33M

access logs. Each warp table or thread-block table has a read table and a write table.
When implementing these techniques, we made the tables as small as possible, for
example, by using shared memory.

Table VII reports the memory overhead. The memory overhead is the same for GMS
and GRS. The shared memory part is identical for all GRace and GMRace techniques.
LD uses much less memory in most programs, both in shared and in global memory. The
memory overhead of LD is proportional to the number of warps and thread blocks and
the size of target variables. The memory overhead of GMF or GRA is proportional to
the number of both warps and thread blocks. But instead of the target data size, their
overhead is proportional to the capacity of shared memory. LD outperforms GMF and
GRA for two reasons. One is that the target data size is always smaller than shared
memory capacity. The other is that every warp table or thread-block table in GMF and
GRA has a read table and a write table, while in LD, each warp has one private copy.
GRA costs more than GMF due to the overhead of an additional thread-block table.
The memory overhead of GMS and GRS is proportional to the number of warps, thread
blocks, and memory references. Programs that have few memory references use less
memory than LD, for example, bisect small and kmeans. Not reported in Table VII,
bfs, backprop, and b+tree have only global-memory accesses, and their global-memory
usages are 4.4MB, 10.4MB, and 19.8MB and shared-memory usages are all zero.
LD adds shared-memory consumption for two reasons. One is privatization. The sec-

ond is the union copy, which is stored in the shared memory whenever possible. Us-
ing shared memory helps performance enhancement, and thus we use it as much as
possible.

6.5. Scalability and Optimization

Figure 9 shows how the cost of race checking increases with the data size and the
number of threads. All checking operations are fully parallel and scale linearly. In
Figure 9(a), for data sizes no greater than 1MB and thread-block size of 256, the
overhead is below 10ms. 2Init’s cost is 12ms when data size is 256KB, but we show it
to compare with opt2Init. We use opt2Init in our race checking. In Figure 9(c), when
data size is 48KB, the maximal size allowed in shared memory, all operations take
less than 3ms. This shows that LD has a negligible cost when checking races in shared
memory. Figure 9(a) and Figure 9(b) show the effect of kernel fusion. By comparing
2init and opt2init at 256 threads at the largest data size, 32MB, we see that kernel
fusion reduces the time cost by 42% and increases the speed by 72%.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:21

Fig. 9. The cost of checking operations as a function of the data size and thread count. The y-axis is
time measured in milliseconds. 1init, 2init, copyback have the same meanings as in Figure 8. Note that
2init denotes the nonoptimized version of the second-pass initialization, and opt2init is optimized by kernel
fusion. In (a) and (b), only 2init and opt2init use the y-axis on the right-hand side.

7. RELATED WORK

Dynamic Race Detection on GPUs. Prior techniques used instrumentation to record
all runtime memory accesses from different threads and different warps to detect
data races [Boyer et al. 2008; Hou et al. 2009; Zheng et al. 2011, 2014]. The instru-
mentation could cause orders of magnitude performance degradation compared with
un-instrumented versions. Grace [Zheng et al. 2011] and GMRace [Zheng et al. 2014]
reduced the instrumentation overhead drastically using static analysis. However, static
analysis is not always effective in all programs. LD does not use instrumentation. In
addition, some of the previous techniques were limited to shared-memory data to en-
sure memory efficiency. The space overhead in the metadata tables in GMS/GRS and
the read/write bitmaps in GMF and GRA would have become significant if global mem-
ory were considered. LD provides a memory-adaptive solution that can handle limited
memory capacity.

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

9:22 P. Li et al.

The technique of Hardware-Accelerated data Race detection for GPU (HAccRG) uses
(shared) shadow states to monitor data races in not only BSP-style computations but
also programs with fences and atomics [Holey et al. 2013]. The memory overhead is
linear to the size of data and independent of the number of warps. The tradeoff is
time—the access to shared states requires serialization, which is efficient in HAccRG
with special hardware support. Its overhead is 1% for shared memory and 27% for
global memory. For the same amount of memory overhead (2× to 3×), For the same
memory overhead, LD requires 10 to 20 passes in memory-adaptive checking to achieve
100% coverage (when a program has 960 warps).

Static and Hybrid Race Checking on GPUs. GPUVerify [Betts et al. 2012; Chong
et al. 2014] develops new programming semantics on GPUs, under which data races
can be detected while programming. PUG uses Satisfiability Modulo Theories [Li and
Gopalakrishnan 2010]. GKLEE extends symbolic analysis for correctness checking [Li
et al. 2012]. In GKLEEp, Li et al. [2012] developed the concept of parametric flows,
which divide threads into equivalence classes by their control flow, and race checking
was performed on a pair of threads per parametric flow. It uses thread symmetry to
analyze GPU kernels with a large number of threads more efficiently than the original
GKLEE [Li et al. 2012]. GKLEEp suffers from search-space explosion in the worst case,
that is, 2n flows from n branches in one thread. Li et al. [2014] drew support from static
analysis and built a practical symbolic race checker. All these techniques use symbolic
analysis and have false alarms. An example was given in Section 6.2 where a false
alarm was raised in GKLEE.

Dynamic checking complements static checking in mainly two ways. First, dynamic
checking has no false alarms. Second, it is applicable to all programs including those
that are not amenable to static analysis. Section 6.2 gives a more detailed comparison
based on our test suite. Leung et al. [2012] proposed a combination of static and dy-
namic analysis based on information flow. Their performance and memory overhead is
excellent, but it relies on program analysis. They used program analysis to reduce per-
formance and memory overhead and showed on average 18× slowdown. Our approach
is entirely dynamic and has 10× slowdown on average for our test programs.

Data Privatization Techniques. Prior privatization techniques [Gu et al. 1997; Li
1992] were developed for automatic parallelization of scientific code on CPUs. Re-
cently, Yu et al. [2013] gave a general technique for data structure expansion for loop
parallelization on CPUs. Our solution is for GPUs and has several differences. First, Yu
et al. uses dynamic memory allocation to expand global variables. Earlier, Ding et al.
[2007] also allocated global variables dynamically in behavior-oriented parallelization
(BOP). Our privatization uses static allocation for static variables. The reason for the
difference is partly architectural. On CPUs, dynamic allocation is used because it is
not always possible to statically allocate a very large array, but it can always be done
in global memory on GPUs. For access redirection after type promotion, our technique
avoids shadow variables recording original data sizes and offset calculation. LD shows
the significant benefit of privatization in race checking for GPU programs, which have
more threads than CPU programs do.

Race Checking on CPUs. As a comparison, we study the existing race detectors on
CPUs. Much existing work tracks the happens-before relationship by looking for un-
ordered conflicting accesses [Devietti et al. 2012; Effinger-Dean et al. 2012; Flanagan
and Freund 2009]. Radish [Devietti et al. 2012] provides a sound, complete, and always-
on race detector accelerated by the hardware. Its overhead is no more than 2×. Eraser
[Savage et al. 1997] detects lock-set violation by looking for conflicting accesses not pro-
tected by a common lock. HARD [Zhou et al. 2007] is a hardware-based implementation

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:23

of the lock-set algorithm. A collection of work explores race checking for structured pro-
grams [Raman et al. 2012; Lu et al. 2014]. CPU programs extensively use locks, while
GPU programs use bulk synchronizations [Valiant 1990]. The problem of GPU and
CPU race detection differs because of the difference in their parallel programming
model. Access monitoring is effective in CPU race detectors; LD demonstrates that on
GPUs, value-based checking is orders of magnitude faster than access monitoring.

8. SUMMARY

Race checking on GPUs is conventionally task parallel. In this study, we have devel-
oped a novel data-parallel detector called LD. We have designed a two-pass detection
algorithm that is atomic free and a memory-adaptive solution to reduce the mem-
ory overhead. To our knowledge, this is the first value-based race checking on GPUs.
Our prototype checker has on average 10× overhead, which shows at least an order
of magnitude improvement over fine-grained access monitoring and a state-of-the-art
industry tool.

ACKNOWLEDGMENT

The idea was first presented at the 5th Workshop on Determinism and Correctness in Parallel Programming
[Li et al. 2014]. The authors wish to thank Sandhya Dwarkardas, Michael Gage, Rahman Lavaee, and TACO
reviewers for their comments, which have helped the presentation of the article.

REFERENCES

John R. Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architectures: A Dependence-Based
Approach. Morgan Kaufmann Publishers.

Raghesh Aloor and V. Krishna Nandivada. 2015. Unique worker model for OpenMP. In Proceedings of the
International Conference on Supercomputing. 47–56. DOI:http://dx.doi.org/10.1145/2751205.2751238

Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Peter J. Keleher, Honghui Lu, Ramakrishnan Raja-
mony, Weimin Yu, and Willy Zwaenepoel. 1996. TreadMarks: Shared memory computing on networks
of workstations. IEEE Computer 29, 2 (1996), 18–28.

Tongxin Bai, Chen Ding, and Pengcheng Li. 2015. Assessing safe task parallelism in SPEC 2006 INT.
In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing.

Ethel Bardsley and Alastair F. Donaldson. 2014. Warps and atomics: Beyond barrier synchronization in
the verification of GPU kernels. In Proceedings of the 6th International Symposium on NASA Formal
Methods (NFM’14).

Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. 2010. CoreDet: A compiler
and runtime system for deterministic multithreaded execution. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems. 53–64.

Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace: Safe multithreaded programming
for C/C++. In Proceedings of the International Conference on Object Oriented Programming, Systems,
Languages and Applications. 81–96.

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul Thomson. 2012. GPUVerify: A
verifier for GPU kernels. In Proceedings of the International Conference on Object Oriented Programming,
Systems, Languages and Applications. 113–132.

Michael Boyer, Kevin Skadron, and Westley Weimer. 2008. Automated dynamic analysis of CUDA programs.
In Proceedings of the 3rd Workshop on Software Tools for MultiCore Systems.

Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. 2010. Concurrent programming with revi-
sions and isolation types. In Proceedings of the International Conference on Object Oriented Program-
ming, Systems, Languages and Applications. 691–707.

Wei-Fan Chiang, Ganesh Gopalakrishnan, Guodong Li, and Zvonimir Rakamaric. 2013. Formal analysis
of GPU programs with atomics via conflict-directed delay-bounding. In Proceedings of NASA Formal
Methods, 5th International Symposium (NFM’13).

Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. 2014. A sound and complete abstraction for
reasoning about parallel prefix sums. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’14).

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

http://dx.doi.org/10.1145/2751205.2751238

9:24 P. Li et al.

Keith Cooper and Linda Torczon. 2010. Engineering a Compiler (2nd ed.). Morgan Kaufmann.
Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and Shaz Qadeer. 2012.

RADISH: Always-on sound and complete ra detection in software and hardware. In Proceedings of the
39th Annual International Symposium on Computer Architecture.

Chen Ding, Brian Gernhart, Pengcheng Li, and Matthew Hertz. 2014. Safe Parallel Programming in An
Interpreted Language. Technical Report URCS #991. Department of Computer Science, University of
Rochester.

Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang. 2007. Software
behavior oriented parallelization. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. 223–234.

Laura Effinger-Dean, Brandon Lucia, Luis Ceze, Dan Grossman, and Hans-J. Boehm. 2012. IFRit:
Interference-free regions for dynamic data-race detection. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications.

Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and precise dynamic race detection. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
121–133.

Junjie Gu, Zhiyuan Li, and Gyungho Lee. 1997. Experience with efficient array data-flow analysis for array
privatization. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. 157–167.

Anup Holey, Vineeth Mekkat, and Antonia Zhai. 2013. HAccRG: Hardware-accelerated data race detection
in GPUs. In ICPP.

Qiming Hou, Kun Zhou, and Baining Guo. 2009. Debugging GPU stream programs through automatic
dataflow recording and visualization. In ACM SIGGRAPH Asia 2009 Papers.

Weixing Ji, Li Lu, and Michael L. Scott. 2013. TARDIS: Task-level access race detection by intersecting sets.
In Proceedings of the Workshop on Determinism and Correctness in Parallel Programming.

Hadi Jooybar, Wilson W. L. Fung, Mike O’Connor, Joseph Devietti, and Tor M. Aamodt. 2013. GPUDet: A
deterministic GPU architecture. In ASPLOS.

Chuanle Ke, Lei Liu, Chao Zhang, Tongxin Bai, Bryan Jacobs, and Chen Ding. 2011. Safe parallel program-
ming using dynamic dependence hints. In Proceedings of the International Conference on Object Oriented
Programming, Systems, Languages and Applications. 243–258.

Kirk Kelsey, Tongxin Bai, and Chen Ding. 2009. Fast track: A software system for speculative optimiza-
tion. In Proceedings of the International Symposium on Code Generation and Optimization. 157–168.
DOI:http://dx.doi.org/10.1109/CGO.2009.18

Olaf Krzikalla. 2011. Scout: A Source-to-Source Translator for SIMD-Optimizations. Proceedings of the
https://tu-dresden.de/zih/forschung/projekte/scout/.

Milind Kulkarni, Martin Burtscher, Calin Casçaval, and Keshav Pingali. 2009. Lonestar: A suite of parallel
irregular programs. In Proceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’09).

Alan Leung, Manish Gupta, Yuvraj Agarwal, Rajesh Gupta, Ranjit Jhala, and Sorin Lerner. 2012. Verifying
GPU kernels by test amplification. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. 383–394.

Guodong Li and Ganesh Gopalakrishnan. 2010. Scalable SMT-based verification of GPU kernel functions.
In Proceedings of the 18th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering. 187–196.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh, and Sreeranga P. Rajan.
2012. GKLEE: Concolic verification and test generation for GPUs. In Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 215–224.

Pengcheng Li, Chen Ding, Xiaoyu Hu, and Tolga Soyata. 2014. LDetector: A low overhead race detector
for GPU programs. In Proceedings of the 5th Workshop on Determinism and Correctness in Parallel
Programming.

Pengcheng Li, Ziang Hu, and Handong Ye. 2015. Compiler and Method for Global-Scope Basic-Block Re-
ordering. https://www.google.com/patents/US20150040106 US Patent App. 14/445,983.

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2012. Parametric flows: Automated behavior equivalenc-
ing for symbolic analysis of races in CUDA programs. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis.

Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2014. Practical symbolic race checking of GPU programs.
In International Conference for High Performance Computing, Networking, Storage and Analysis (SC’14).

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

http://dx.doi.org/10.1109/CGO.2009.18
https://tu-dresden.de/zih/forschung/projekte/scout/
https://www.google.com/patents/US20150040106

LD: Low-Overhead GPU Race Detection Without Access Monitoring 9:25

Pengcheng Li, Hao Luo, Chen Ding, Ziang Hu, and Handong Ye. 2014. Code layout optimization for defen-
siveness and politeness in shared cache. In Proceedings of the 2014 43rd International Conference on
Parallel Processing. 151–161.

Zhiyuan Li. 1992. Array privatization for parallel execution of loops. In Proceedings of the International
Conference on Supercomputing. 313–322.

Li Lu, Weixing Ji, and Michael L. Scott. 2014. Dynamic enforcement of determinism in a parallel scripting
language. In PLDI.

Wenjing Ma and Gagan Agrawal. 2010. An integer programming framework for optimizing shared memory
use on GPUs. In PACT.

NVIDIA. 2014. Cuda Memcheck Tool. Retrieved from https://developer.nvidia.com/CUDA-MEMCHECK.
NVIDIA. 2016. CUDA C Programming Guide. Retrieved from http://docs.nvidia.com/cuda/cuda-c-

programming-guide/.
Dejan Perkovic and Peter J. Keleher. 1996. Online data-race detection via coherency guarantees. In Proceed-

ings of the 2nd USENIX Symposium on Operating Systems Design and Implementation.
Dejan Perkovic and Peter J. Keleher. 2000. A protocol-centric approach to on-the-fly race detection. IEEE

Transactions on Parallel and Distributed Systems 11, 10 (2000), 1058–1072.
Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. August. 2010. Speculative par-

allelization using software multi-threaded transactions. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems. 65–76.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin T. Vechev, and Eran Yahav. 2012. Scalable and precise
dynamic datarace detection for structured parallelism. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A
dynamic data race detector for multi-threaded programs. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles.

Michael L. Scott. 2013. Shared-Memory Synchronization. Morgan & Claypool Publishers.
John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel programming standard for

heterogeneous computing systems. IEEE Design Test 12, 3 (2010), 66–72.
Chen Tian, Min Feng, and Rajiv Gupta. 2010. Supporting speculative parallelization in the presence of

dynamic data structures. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. 62–73.

UIUC. 2012. The Parboil Benchmark Suite. Retrieved from http://impact.crhc.illinois.edu/parboil/parboil.
aspx.

Leslie G. Valiant. 1990. A bridging model for parallel computation. Communications of the ACM 33, 8 (Aug.
1990), 103–111. DOI:http://dx.doi.org/10.1145/79173.79181

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M. Chen, Jason Flinn, and
Satish Narayanasamy. 2011. DoublePlay: Parallelizing sequential logging and replay. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Operating
Systems. 15–26.

Hongtao Yu, Hou-Jen Ko, and Zhiyuan Li. 2013. General data structure expansion for multi-threading. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
243–252.

Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-the-fly elimination of dy-
namic irregularities for GPU computing. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems. 369–380.

Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2011. GRace: A low-overhead mechanism for
detecting data races in GPU programs. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 135–146. DOI:http://dx.doi.org/10.1145/1941553.1941574

Mai Zheng, Vignesh T. Ravi, Feng Qin, and Gagan Agrawal. 2014. GMRace: Detecting data races in GPU
programs via a low-overhead scheme. IEEE Transactions on Parallel and Distributed Systems 25 (2014),
104–115.

Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. 2007. HARD: Hardware-assisted lockset-based race detec-
tion. In Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer
Architecture.

Received May 2016; revised December 2016; accepted January 2017

ACM Transactions on Architecture and Code Optimization, Vol. 14, No. 1, Article 9, Publication date: March 2017.

https://developer.nvidia.com/CUDA-MEMCHECK
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://dx.doi.org/10.1145/79173.79181
http://dx.doi.org/10.1145/1941553.1941574

