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Abstract
Many studies have shown that the best performer among
a set of garbage collectors tends to be different for dif-
ferent applications. Researchers have proposed application-
specific selection of garbage collectors. In this work, we con-
centrate on a second dimension of the problem: the influence
of program inputs on the selection of garbage collectors.

We collect tens to hundreds of inputs for a set of Java
benchmarks, and measure their performance on Jikes RVM
with different heap sizes and garbage collectors. A rigor-
ous statistical analysis produces four-fold insights. First, in-
puts influence the relative performance of garbage collec-
tors significantly, causing large variations to the top set of
garbage collectors across inputs. Profiling one or few runs
is thus inadequate for selecting the garbage collector that
works well for most inputs. Second, when the heap size ratio
is fixed, one or two types of garbage collectors are enough
to stimulate the top performance of the program on all in-
puts. Third, for some programs, the heap size ratio signifi-
cantly affects the relative performance of different types of
garbage collectors. For the selection of garbage collectors
on those programs, it is necessary to have a cross-input pre-
dictive model that predicts the minimum possible heap size
of the execution on an arbitrary input. Finally, by adopting
statistical learning techniques, we investigate the cross-input
predictability of the influence. Experimental results demon-
strate that with regression and classification techniques, it
is possible to predict the best garbage collector (along with

∗ This work is based on an earlier work: Influence of Program
Inputs on the Selection of Garbage Collectors, in the Proceed-
ings of the 2009 ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (March 11–13)c© ACM, 2009.
http://doi.acm.org/10.1145/1508293.1508307.
Major extentions are on cross-input prediction (from half of an page to 4
pages). The extensions include the use of two statistical learning techniques
(Classification Trees and Nearest Neighbor) for the prediction of the best
garbage collector on each heap size, the demonstration of the performance
benefits brought by the input-specific garbage collector selection through a
systematic comparison, and the discussions on the application of the tech-
niques for actual uses.

the minimum possible heap size) with reasonable accuracy
given an arbitrary input to an application. The exploration
opens the opportunities for tailoring the selection of garbage
collectors to not only applications but also their inputs.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Memory Management (Garbage
Collection)

General Terms Performance, Experimentation

Keywords Cross-Input Program Analysis, Input-Specific
Selection, Selection of Garbage Collectors, Profiling, Min-
imum Possible Heap Size

1. Introduction
Garbage collection (GC), as one of the major tasks in man-
aged runtime environments, critically determines the effi-
ciency of memory management and the resulted data local-
ity. Consequently, a large body of research has proposed var-
ious types of GC techniques. Many studies have shown that
the optimal garbage collector differs in different scenarios
for different applications [7,11,15,18–20,22].

Based on those observations, researchers have proposed
application-specific garbage collection, in which, a special-
ized GC algorithm is selected for each program. Exam-
ple work includes static selection during compile time by
Fitzgerald and Tarditi [11], dynamic switching of GC al-
gorithms by Soman and others [20], and machine learning
based selection by Singer and others [18]. Most of these
techniques require the profiling of some typical runs of the
application to attain either some application-specific infor-
mation (such as, the minimum possible heap size), or more
directly, the best GC algorithms. They have shown consider-
able performance improvement for applications running on
Java Virtual Machines (JVM) or Common Language Run-
time (CLR).

In this work, we concentrate on a different dimension
of GC selection: the influence from program inputs. Given
that most application-specific selections of garbage collec-
tors depend on profiling results, a good understanding of
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the input influence is essential: If the influence is negligi-
ble, profiling one run would suffice; otherwise, cross input
adaptivity would be important for the selection of garbage
collectors.

While most previous work has been focused on applica-
tions, the influence of inputs remains preliminarily explored.
Some studies have briefly explored the influence, using few
(typically two) inputs per application. The limited explo-
rations have led to an unclear picture: Depending on the
settings, some work has seen negligible influence from in-
puts [20], but some have shown more significant effects [18].

The objective of this work is to offer a more comprehen-
sive understanding of the influence of inputs on the selec-
tion of garbage collectors. We conduct a series of systematic
measurement of the effects of program inputs on the perfor-
mance of GC. For 10 programs from 3 benchmark suites,
we collect and create hundreds of different inputs. We mea-
sure the performance of totally 316,000 executions of those
programs with 5 types of garbage collectors, 1580 different
inputs, and 4 heap size ratios (the ratio between the used
heap size and the minimum possible heap size.) In a rigor-
ous manner, we analyze the influence of program inputs on
the top set of garbage collectors and the combined effects
with heap sizes. The analysis reveals the following findings.

First, inputs influence the relative performance of garbage
collectors significantly. For most programs, the top set of
garbage collectors varies significantly across inputs. So, in
general, profiling one or few runs is inadequate for select-
ing the garbage collector that works well for most inputs.
Second, despite that influence, certain consistency does ex-
ist across inputs for all the programs in our test set: When
the heap size ratio is fixed, one or two types of garbage
collectors are enough to stimulate the top performance of a
program on all inputs. This consistency seems to suggest a
potential solution to the input-sensitivity problem: profiling
a number of different inputs and selecting the most popular
top garbage collector for an application.However, the heap
size factor complicates the problem further. On some pro-
grams, the heap size ratio shows significant influence on the
relative performance of different types of garbage collectors.
Therefore, for the selection of garbage collectors on those
programs, it is necessary to have a cross-input predictive
model that forecasts the minimum possible heap size of the
execution on an arbitrary input. Finally, through statistical
learning techniques (Classification Trees, Nearest Neighbor
and Regression techniques), we verify the predictability of
the minimum possible heap size and the best garbage col-
lectors across inputs, showing the potential feasibility of the
input-specific selection of garbage collectors.

In the rest of this paper, Section 2 describes the method-
ology of the experiments. Section 3 reports the measurement
results and exposes three-fold findings. Section 4 describes
the construction of predictive models and presents the re-
sults. Section 5 discusses the exploitation of the cross-input

Table 1. Garbagecollectors used in this work
Garbage collector Description

GC1: GenCopy a classic copying generational
collector with a copying higher
generation.

GC2: GenMS∗ a copying generational collec-
tor with a non-copying mark-
and-sweep mature space.

GC3: MarkSweep a mark-and-sweep (non copy-
ing) collector.

GC4: RefCount a reference counting collec-
tor with synchronous (non-
concurrent) cycle collection.

GC5: SemiSpace.SS a copying semi-space collector.
* : The default Jikes RVM configuration for the production distribution.

predictability. Section 6 reviews some related work. Sec-
tion 7 concludes the paper with a short summary.

2. Methodology
To uncover the effects of program inputs on the selection
of GC algorithms, we measure the running time of a se-
quence of executions of Java programs on different inputs,
heap sizes, and garbage collectors. This section presents the
experimental settings, describes the performance measure-
ment scheme, and introduces the statistical approach used
for data analysis.

2.1 Experimental Settings

The machine we use is equipped with Intel Xeon E5310 pro-
cessors running Redhat Linux 2.6.9 at 1.6GHz. We use Jikes
RVM [3] version 2.9.1 as our Java virtual machine. Among
the various garbage collectors included in the memory man-
agement toolkit (MMTK) [6] coming with Jikes RVM, we
select five of them that are stable for all the executions. Ta-
ble 1 lists those garbage collectors.

We select 10 programs from 3 benchmark suites to form
a mix of different types of applications, as shown in Table 2.
Using part rather than all of the content in the suites is
because of the difficulty in the creation and collection of
inputs. We do not choose a benchmark if its input is too
difficult to collect or create. Furthermore, it is common in
the construction of a benchmark suite that some benchmarks
are obtained by simplifying the original applications. Many
input options of the original applications are disabled to
make the benchmark interface simple. Given that input is
the focus of this work, we select the 10 programs that are
close to the original application in terms of the usage and
interface.

2.2 Input Collection

In the benchmark suites, most programs come with only one
or two inputs, which are insufficient for a systematic study of
input influence. We collect more inputs as shown in the sec-
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Table 2. Benchmarks
Benchmark Num of Min heap Input features

inputs size (MB) Total Used
Compressj 18 20–98 3 1

Dbj 100 16–31 11 2
Mpegaudioj 30 16–20 3 1

Mtrtj 100 15–49 2 2
Bloatd 976 22–23 23 4

Fopd 224 72–86 27 3
Eulerg 14 16–55 1 1

MolDyng 15 18–21 1 1
MonteCarlog 30 39–74 1 1

Searchg 8 21–21 2 1
j: JVM98 [2]; d: DaCapo [8]; g: Grande [1]

ondcolumn of Table 2. For some programs, such asSearch,
we have a small number of inputs due to the special require-
ments on their inputs. During the collection, we try to ensure
that the inputs are typical in the normal executions of the
benchmarks. More specifically, we either collect the inputs
by searching the real uses of the corresponding applications,
or derive the inputs after getting a thorough understanding
of the benchmark through reading its source code and ex-
ample inputs. To make the benchmarks close to real applica-
tions, for some programs (Bloat, Fop andMtrt), we enable
some of their command-line options that were disabled by
the benchmark suite interface.

2.3 Performance Measurement

In this work, we use the running time of an application as the
performance metric. Because we are interested in the influ-
ence of the garbage collector selection on the entire execu-
tion, we did not use replay mode. The measured performance
is not stead-state performance, but start-up performance. The
running time is simply end-to-end execution time, consisting
of all the time spent in both the application and the JVM.

In the experiments, we use 4 different heap size ratios.
The heap sizes are multiples (1,2,4,8) of the minimum pos-
sible heap size for an application to run on an input. We mea-
sure the minimum possible heap size by conducting a binary
search in a similar manner as Singer et al. do [18]. During
the binary search, for a given input, we run the application
on that input several times using a range of heap sizes (from
16MB to 500MB) to find the smallest size, on which the
application can finish successfully. The granularity is 1MB.
Note that some applications have different minimum possi-
ble heap sizes on different inputs. The third column in Ta-
ble 2 shows the range of minimum possible heap sizes for
every benchmark.

2.4 Statistical Performance Analysis

The goal of garbage collector selection is to select the best
garbage collector—that is, to minimize the execution time of
a Java application in our setting. However, as previous work

suggests [12], it requires statistical analyses to compare run-
ning times of Java applications to eliminate the effects of
random noises in Java virtual machines.

In this work, we adopt the approach that Georges et al.
has described [12]. For every combination of(program, in-
put, heap size ratio, garbage collector), we execute it for 10
times. We then use theStudent’s t-distribution to compute
the statisticalconfidence intervalof the average execution
time from the 10 runs. We use 90% as the confidence level
(the significance level,α, is hence 0.1.) A confidence inter-
val computed in this way shows the range that contains the
true running time (i.e. the running time in a no-noise set-
ting) with 90% probability. The key guideline of the rigorous
analysis is that if the confidence intervals of two sets of runs
overlap, the two sets are regarded as having no significant
difference. In the context of garbage collector selection, two
garbage selectors have similar performance for a program
if there is an overlap between the two confidence intervals
corresponding to the two garbage collectors.

This statistical analysis turns out to be vital for this work.
The 10 measurements of a single combination often exhibit
considerable variations in the experimental results. Those
variations suggest that it would be difficult to draw reliable
conclusions based on the comparison of average or mini-
mum running times. The confidence intervals remove the ef-
fects of the variations in a large degree.

As an example, suppose for a given combination of(pro-
gram, heap size ratio, input), we measure its execution 5
times with GC1 used; the running times areS1 ={22s,
22.1s, 21.9s, 22.2s, 21.8s}. We then use GC2 for the exe-
cution and get another 5 running times asS2={21.1s, 20.8s,
20.7s, 20.7s, 22.8s}. Their average running times are respec-
tively mT1 = 22s andmT2 = 21.2s. Their confidence inter-
vals are respectively[20.5s, 23.5s], and [19.7s, 22.8s]. Al-
thoughmT2 is smaller thanmT1, their confidence intervals
overlap with each other. So, according to the statistics theory,
there is no significant difference between the two garbage
collectors in terms of their effects on the program execution
time. The difference between their average running times are
likely caused by random noises rather than the difference be-
tween the two garbage collectors.

3. Measurement Results
This section presents three findings we obtain from the ex-
periments. We first demonstrate that due to the influence pro-
gram inputs impose on the performance of different garbage
collectors, the set of the best garbage collectors rarely re-
main constant across inputs. The variations suggest the risks
of traditional profiling-based garbage collector selection: A
garbage collector selected by profiling the execution on one
or few inputs may be an inferior or even the worst choice
for other inputs. On the other hand, the results in Section 3.3
show that even with the influence from program inputs, it is
typical for one or two garbage collectors to meet the needs
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Figure 1. Il lustration of the clustering scheme used for
comparisons among confidence intervals.

of almost all inputs of an application. This phenomenon sug-
gests some possible solutions to handle program inputs in
the selection of garbage collectors. But the observations re-
vealed in Section 3.4 indicate that, with the combined influ-
ence from heap sizes, some special treatment must be taken
for some programs that are sensitive to heap size changes.

3.1 Metrics

Before describing the results, we first explain several con-
cepts related to the metrics used in our data analyses.

Top Set of Garbage Collectors. In our experiment, there
are 10 runs for every combination of(program, input, heap
size ratio, garbage collector). The 10 running times result in
a confidence interval. So, for a fixed(program, input, heap
size ratio)tuple, we have 5 confidence intervals, correspond-
ing to the 5 garbage collectors used in the experiments. We
cluster the 5 intervals into several sets based on their over-
laps. The clustering works in an iterative way. It maintains a
working list, initially including all the 5 confidence inter-
vals. In each iteration, it selects the interval whose upper
bound is the smallest among all the intervals in the work-
ing list as the seed of a new set. It then includes into that
set all the intervals in the working list that overlap with that
seed. Those intervals and the seed interval are then removed
from the working list. This process continues until the work-
ing list becomes empty. At the end, every interval belongs
to exactly one set, and no members of a set are significantly
different from each other (according to the definition of the
confidence interval.) The garbage collectors corresponding
to the set constructed in the first iteration are the top per-
formers among all 5 garbage collectors. They form thetop
set of garbage collectors.

Figure 1 illustrates the clustering scheme. The 5 intervals
form 3 sets with the top set covering the first and third
intervals. The second interval, for instance, forms a separate
set because it is significantly different fromat least one
interval in each of the other two sets.

Coverage of a Garbage Collector. For a given program
and heap size ratio, all the runs of the program on each
input yield one top set of garbage collectors. The coverage
of a garbage collector,gc, is the number of the top sets
that includegc divided by the total number of top sets. For

instance, there are 10 inputs and the top sets of 6 inputs
include GC1. The coverage of GC1 is6/10 = 0.6.

Top Garbage Collector. The top garbage collector of a
program is the collector with the largest coverage for that
program.

3.2 Variations of the Top Set of Garbage Collectors

The runs of each combination of(program, input, heap size
ratio) yields a top set of garbage collectors. The cross-input
variations of those sets reflect the influence of program in-
puts on the relative performance of different garbage collec-
tors.

The pie graphs in Figure 2 summarize the cross-input
variations for every program and heap size ratio. TakeMon-
teCarlo as an example. Whenr=1, for 60% of its inputs,
the corresponding top sets of garbage collectors are{GC1,
GC3}; for 75% of its other inputs, the top sets are{GC1,
GC2, GC3}; for the remaining inputs, the top sets are al-
ways{GC3}. The three kinds of top sets correspond to the 3
pieces in the leftmost pie ofMonteCarloin Figure 2. When
the heap size ratio becomes larger (r=2), the set{GC3}be-
comes the top set for every input. The corresponding pie thus
has no splits at all.

The number of pieces in a pie is equal to the number
of unique top sets. Most pies in Figure 2 have some splits,
showing that the top set of garbage collectors changes across
inputs for most of the programs.

To understand the reasons for the input influence, we take
programMtrt (whenr=1) as an example. Garbage collectors
GC2 and GC3 are two of the most popular collectors in the
top sets ofMtrt. However, the ranking between them changes
across inputs. For 9% of the inputs ofMtrt, their top sets
include GC3 but not GC2. For 23% of the inputs, the top
sets include both. And for the other 68% inputs, the top sets
include GC2 but not GC3.

Figure 3 (a) and (b) reveal the reasons for such cross-
input differences. Figure 3 (a) shows the running times of
Mtrt when it runs on the smallest heap size and either GC2
or GC3 is used. The inputs are ordered in the program’s cor-
responding running times under GC2, from the shortest to
the longest. The crosses (“x”) in the figure indicate those in-
puts whose corresponding top sets of garbage collectors in-
clude GC3. Almost all of those inputs are among the small-
est; the corresponding segments of the GC2 and GC3 curves
are close to each other. As the input size increases, the gap
between the two curves enlarges and GC3 becomes unfavor-
able after the 32nd input. One of the reasons for the enlarging
gap is that as input becomes larger, the time spent by GC3
increases faster than the time by GC2, as shown in Figure 3
(b).

A more detailed analysis on Figure 3 (b) exposes the
reason why the 9% inputs have GC3 but not GC2 in their
top sets. Those inputs are the inputs 1 to 9 in the Figure 3.
As shown by Figure 3 (b), GC2 and GC3 have similar GC
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Figure 2. The influence of inputs on the top sets of garbage collectors. Each column of pies correspond to one heap size ratio
(r is the ratio of the heap size to the minimum possible heap size.) Each piece in a pie shows the fraction of a program’s inputs
whose top sets of garbage collectors is equal to a particular set. The number of pieces in a pie equals the number of unique top
sets of garbage collectors of the program under a given heap size ratio.

times on each of those inputs. So, the reason for the better
performance of the program under GC3 than GC2 is because
GC3 brings better data locality to the program and shortens
the mutator running time. This explanation concurs with the
performance on inputs 10 to 32, on which, although GC3
takes longer time to finish than GC2, the program performs
similarly on the two garbage collectors.

Figure 3 (c) exposes the number of garbage collections.
Although GC2 is invoked more often than GC3, an invoca-
tion of GC2 takes less time to finish than an invocation of
GC3.

Implications to Garbage Collector Selection. The exam-
ple of Mtrt reflects the potential risk of the existing ap-
proaches in profiling-based garbage collector selection. In
those approaches, typically very few (one or two) inputs are
used for profiling to select the best garbage collector. If the
input used for profiling ofMtrt happens to be a small input,

GC3 may be chosen as the best garbage collector. That deci-
sion would cause the program inferior performance on most
large inputs, reflected by the gap between the two curves on
Figure 3 (a).

The many splits in the pies in Figure 2 suggest that such
risks exist for almost all programs. To demonstrate the po-
tential severity of such risks, the boxplots in Figure 4 show
the performance when the user happens to choose a garbage
collector that, although appearing in the top sets of more
than 20% inputs, is not in the top sets of the majority of the
inputs. (The greater than 20% coverage suggests the non-
trivial probability for the garbage collector to be chosen in
a profiling-based selection.) We normalize the running time
by the time achieved when the best garbage collector is used
for every input.

When r=1, exceptEuler andSearch, all programs show
significant performance degradations. ProgramsMtrt and
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Figure 4. Thepotential performance degradation of input-oblivious garbage collector selection.

MolDynshow up to 1.5 and 2.5 times slowdown. When r=4,
all programs exceptMonteCarlo exhibit significant slow-
down.

The results draw the conclusion that selecting garbage
collectors by profiling few inputs is subject to the risk of
significant performance degradations.

3.3 Consistency of the Top Garbage Collector

The previous section shows that program inputs complicate
the selection of garbage collections. The analysis in this sec-
tion, on the other hand, shows another aspect of the mea-
surement, and suggests a potential way to address the input
influence.

In Figure 5, the largest piece in a pie shows the fraction of
a program’s inputs whose top sets of garbage collectors in-
clude the garbage collector that has the largest coverage. The
other pieces in a pie show how other garbage collectors cover
the remaining inputs. TakeMolDyn as an example. When
r=8, GC2 is the top garbage collector with 60% coverage.
GC3 is the most popular one in the remaining 40% inputs,
covering 82.5% of them. GC1 then covers the remaining in-
puts. Together, the 3 garbage collectors correspond to the
three pieces in the rightmost pie ofMolDyn in Figure 5.

In contrast to Figure 2, the pies in Figure 5 have fewer
pieces. Out of the 40 pies, only one of the 40 pies have
more than 2 pieces, and 15 of the pies consist of only 1
piece in each. For every program exceptMolDyn, there exist
one garbage collector that can cover over 83% inputs of
the program. Two garbage collectors are virtually enough to
cover all inputs for all the programs.

Implications to Garbage Collector Selection. Figure 6
shows the performance degradation when the top garbage
collector is used for all inputs to a program. Compared to
Figure 4, the degradations become much smaller. Most pro-
grams have less than 3% degradations on most inputs. This

result suggests that, given a fixed heap size ratio, using the
top garbage collector is often sufficient for the selection of a
reasonably good garbage collector.

However, if the heap size ratio changes, the problem be-
comes more complex. Before discussing the effects of heap
sizes, we note that Figure 5 should not be used for under-
standing the influence of heap sizes. Some information it
leaves out may cause misleading conclusions. For example,
ther=4 pie ofSearchcontains no portion of GC2 at all, even
though GC2 has a coverage of 87.5% in that scenario. The
reason for not having GC2 in the pie is because GC1 and
GC3 together already form a full coverage of the pie.

3.4 Influence from Heap Sizes

The size of heap significantly influences the number of
garbage collections that happen in an execution. Table 3
reports the average number of garbage collections in an ex-
ecution of each program. The increase in heap size reduces
the number of garbage collections. It also causes changes in
the ranking of garbage collectors.

To demonstrate the influence from heap sizes on garbage
collector selection, we examine how the coverage of a
garbage collector changes across heap sizes. Figure 7 show
the cross-heap-size changes of the coverage of the top
garbage collector for a program. For example,Mtrt shows -
40% changes in ther=1 case, indicating that by applying the
top garbage collector obtained whenr=2 to the executions
whenr=1, 40% more runs would suffer from significant per-
formance degradations. (The significance is in the sense of
statistical confidence.) Whereas, there are positive changes
in the cases ofr=4 andr=8 for Mtrt. The positive changes
are also reflected by the rightmost 3 pies ofMtrt in Figure 5:
The most popular garbage collector is GC3 for all three
cases and its coverage increases as heap size increases. (We
note again that Figure 5, even though showing some heap-
related information, cannot be used for analyzing heap size
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Figure 5. The influence of inputs on the top garbage collectors. The largest piece in a pie shows the fraction of a program’s
inputs whose top sets of garbage collectors include the overall top garbage collector. The other pieces in a pie show how
other garbage collectors cover the remaining inputs. Each column of pies correspond to one heap size ratio (r is the ratio
of the heap size to the minimum possible heap size.) The right-most two columns show the fraction of the most dominant
garbage collector(s) averaged across the 4 heap sizes. The bottom two rows show the corresponding fraction averaged across
benchmarks.

effects in general.) Some bars, like ther=4 bar inSearch,
are invisible because their values are 0.

There are small coverage changes onr=4 andr=8, but
some large changes onr=1. The reason is that the heap is
large enough in all the cases of (r=2,4,8). So as showed in
Table 3, the number of garbage collections does not change
as dramatically as between the (r=2) and (r=1) cases.

Figure 8 shows the similar barplots as Figure 7, except
that the garbage collector that is used is obtained in the case
of (r=1) rather than (r = 2.)

On both figures, the programs fall into two categories:
Programs that are sensitive to heap size ratio changes—
includingDb, Mpegaudio, Mtrt,andBloat, and the insensi-
tive programs—including all other programs. For the insen-

sitive programs, profiling multiple inputs on one heap size
should be sufficient for the selection of garbage collectors.

But for the sensitive programs, it is necessary to profile
on not only multiple inputs but alsomultiple heap sizes. But
even with that, it is still not enough: To use the right garbage
collector for a new run, we have to first determine the heap
size ratio of the current run. To do that, we must know the
minimum possible heap size of this run besides the given
heap size. Unfortunately, as shown in Table 2, the minimum
possible heap size may change across inputs. Therefore, to
solve this problem, we need to have a cross-input predictive
model that can forecast the minimum possible heap size for
an arbitrary run of a program.
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Table 3. Theaverage number of garbage collections
Benchmark Compress Db Mpegaudio Mtrt Bloat Fop Euler MolDyn MonteCarlo Search

r=1

GC1 3.9 216.3 35.4 86.0 2.1 2.3 150.5 4.2 3.0 1076.6
GC2 3.0 94.1 12.6 10.3 1.0 1.6 73.1 2.2 3.0 822.4
GC3 2.0 23.5 5.8 5.6 0.0 1.0 18.3 1.0 3.0 548.0
GC4 2.7 65.4 12.8 12.9 1.0 3.1 47.9 1.7 4.0 754.3
GC5 3.7 116.3 19.3 53.0 2.0 2.0 71.8 3.6 3.0 1024.8

r=2

GC1 2.0 41.2 5.6 5.1 0.0 1.0 27.4 1.0 2.0 349.2
GC2 2.0 29.2 4.4 4.3 0.0 1.0 19.2 1.0 2.0 299.7
GC3 2.0 10.1 3.0 2.8 0.0 0.0 8.1 1.0 2.0 155.0
GC4 2.0 16.3 3.8 4.0 0.0 0.0 10.8 1.0 2.0 212.4
GC5 2.0 17.0 4.8 4.9 0.0 0.0 14.1 1.0 2.0 335.4

r=4

GC1 2.0 9.6 3.0 3.1 0.0 1.0 12.0 1.0 2.0 138.1
GC2 2.0 9.1 3.0 3.0 0.0 1.0 11.4 1.0 2.0 138.1
GC3 2.0 5.2 2.0 2.1 0.0 0.0 3.6 1.0 2.0 102.1
GC4 2.0 7.9 2.2 2.6 0.0 0.0 7.3 1.0 2.0 85.0
GC5 2.0 8.2 3.0 2.7 0.0 0.0 6.4 1.0 2.0 129.6

r=8

GC1 2.0 8.4 2.9 3.0 0.0 1.0 11.9 1.0 2.0 138.1
GC2 2.0 8.4 2.9 3.0 0.0 1.0 11.3 1.0 2.0 138.1
GC3 2.0 3.4 2.0 2.0 0.0 0.0 2.9 1.0 2.0 91.0
GC4 2.0 7.8 2.0 2.6 0.0 0.0 6.8 1.0 2.0 52.7
GC5 2.0 4.8 2.0 2.2 0.0 0.0 5.2 1.0 2.0 106.3
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Figure 6. Thepotential performance degradation if the top garbage collector is used for all inputs.
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Figure 7. Coverage changes due to the changes in the heap size ratio. Each bar shows:Coverage (gc, r=i) - Coverage (gc,
r=2), (i=1,4,8), where,gc is the top garbage collector whenr=2.
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Figure 8. Coverage changes due to the changes in the heap size ratio. Each bar shows:Coverage (gc, r=i) - Coverage (gc,
r=1), (i=2,4,8), where,gc is the top garbage collector whenr=1.

4. Cross-Input Predictability
Given the significant influence from program inputs, the
second part of this work attempts to explore the possibility
of addressing the influence by predicting it. Our objective is
to investigate whether it is possible to construct a predictive
model for an application to capture the relations between its
inputs and their influence on the best GC algorithms. With
such a model, by feeding the features of an arbitrary input
into the model, we would be able to forecast the best GC
algorithm for an execution of the program on that input.

4.1 Statistical Learning Techniques

We formulate the prediction of the best input-specific garbage
collector for a given program as a classification problem.
Each garbage collector is a class label. The training data is a
set of pairs,< Ii, GCi >, whereIi is the feature vector of a
program input, andGCi is the best garbage collector for the
program’s execution on that input (on a given size of heap.)
The goal is to use the training data to construct a function
that maps from input feature vectors to the best garbage col-
lectors. The function is predictive in the sense that it reports
the GC algorithm that suits the execution of the application
on an arbitrary input.

The problem of constructing such a mapping function is
a typical statistical learning task. There are a large number
of techniques developed in the realm of statistical learning
for classification [13]. We choose Classification Trees and
Nearest Neighbor (NN) methods, which represent two dif-
ferent learning strategies.

Classification Trees is a divide-and-conquer learning ap-
proach, which divides the input space into local regions, each
having a class label. Figure 9 shows such an example. Each
non-leaf node asks a question on the input features and each
leaf node has a class label. The class of a new input equals
to the label of the leaf node that the input falls in. The ques-
tion asked in a non-leaf node is automatically selected in the
light of entropy reduction—that is, the increase of class label
purity of the data set after the data are split on their answers
to the question in that node.

NN is a memory-based learning approach, which, for a
test instance, finds its closest neighbor (in the feature space)
among all training instances and uses that neighbor’s class
as the class of the test instance. NN requires the definition of
the distance between instances. In the setting of GC predic-
tion, the distance refers to the distance between the feature
vectors of two program inputs.

Besides predicting the best garbage collectors, we also
experiment cross-input prediction of the minimum possi-
ble heap size, a property that has been used in application-
specific selection of garbage collectors [18, 20]. This task
is a regression rather than classification problem, because
heap size is a quantitative property. We select Regression
Trees method for the model construction. Regression Trees
is similar to Classification Trees, except that each leaf of-
fers a quantitative value rather than a categorical class la-
bel. In our implementation, we use Least Mean Squares
(LMS) to produce a linear model that fits the data in each
leaf node. For every program, we use all its training runs,
{< I1, mhs1 >, · · · , < Ik, mhsk >} (mhs for minimum
possible heap size), to construct such a regression tree. For
a new input to the program, itsmhs can be then predicted
using the linear model inside the leaf node where this new
input falls.

The reasons for us to select those three learning tech-
niques are on multiple folds. First, the techniques handle
both discrete and numeric features, both of which are com-
mon in program input features. Second, the techniques are
simple and efficient, thus potentially applicable for practical
uses. Finally, Classification Trees and Regression Trees have
good interpretability. The trees can be converted into a set of
rules that a human can easily understand and validate.

We stress that the objective of this work is to investi-
gate the cross-input predictability of GC selection, laying the
foundation for practical solutions to address input influence,
rather than offering a completely practical solution. There
are some complications in employing the cross-input pre-
diction techniques for practical uses, such as how to make
the training process transparent to users, and how to control
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Figure 3. Theaverage running time and GC time ofMtrt on
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inputs whose top sets of garbage collectors include GC3.
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X2 are two input features) and the classification tree.

learning overhead. Section 5 discusses those complications
and possible solutions.

4.2 Input Characterization

For cross-input prediction, it is necessary to convert a pro-
gram input into a structured format with important input
features contained. In this work, we use the eXtensible In-
put Characterization Language (XICL) [16] for the transfor-
mation. XICL provides an extensible way for a programmer
to specify the input format and the potentially important in-
put features for a program. An XICL translator, based on
the XICL specification and program runtime values, auto-
matically converts a program input into a well-formed fea-
ture vector. The right-most two columns in Table 2 show the
numbers of features extracted by XICL translator before and
after feature refinement.

XICL-based characterization has some limitations, such
as the need for programmers’ efforts. However, enhance-
ment of input characterization is a research topic out of the
focus of this paper: No matter how the input vectors are
formed, this work explores whether the learning techniques
can produce accurate cross-input predictive models.

4.3 Prediction Results

We experiment two approaches for input-specific selection
of garbage collectors.

As shown in Figure 5, the best garbage collector for a
program is quite stable across inputs for a given heap size
ratio. Therefore, we may determine the top collector (i.e. the
one having the largest coverage of inputs) of a program for
each of a sequence of heap size ratios through some training
runs. For a new run of the program, if we can predict the heap
size ratio of the run, we may achieve good results by simply
choosing the corresponding top garbage collector. This is
the scheme adopted by our first approach for input-specific
selection of garbage collectors. Its key is the prediction of
minimum possible heap sizes from program inputs.

The second approach is similar to the first one, also re-
quiring the prediction of the minimum possible heap size
to determine the heap size ratio of the current run. The dif-
ference is that instead of selecting the top one garbage col-
lector, the second approach predicts which of the top two
collectors fits the current input better. The rationale is that
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although the top collector has high coverage of the inputs
for most of the programs, its coverage is less than 85% for
some programs likeMtrt, Fop, MolDyn. In contrast, the top 2
collectors cover over 98% of the inputs for every programs.
Therefore by adaptively selecting the more suitable one of
the the top 2 collectors for the current execution, the second
approach could possibly achieve better results than the first
approach does.

The prediction of minimum possible heap sizes is the
same for the two approaches. We report the results in Sec-
tion 4.3.1. Section 4.3.2 report the effectiveness of the two
approaches in selecting the best garbage collectors and the
corresponding improvement of program performance.

In all prediction experiments, we use leave-one-out strat-
egy [13] for evaluation. Each time, we pick one input out of
the whole input sets as the testing input, and use the rest for
the construction of predictive models. The prediction accu-
racy is the average of the accuracy on all inputs.

4.3.1 Minimum Possible Heap Size

Table 4 contains the prediction accuracy of minimum possi-
ble heap sizes using the Regression Trees method. The accu-
racy is computed as1 − (|S − Ŝ|/S), where,S andŜ stand
for the real and predicted minimum possible heap sizes re-
spectively.

Different GC algorithms have different heap requirement.
The table lists the prediction accuracy of each of the 5 GC
algorithms. In the selection of GC algorithms, it is useful
to know the maximum of the minimum possible heap sizes
of all garbage collectors. The right-most column in Table 4
corresponds to the prediction on such maximum values.

For most of the programs, the prediction accuracy is
larger than 95%. ProgramMtrt and Euler have the lowest
prediction accuracies: 86-91% forMtrt, and 90-95% forEu-
ler. The numbers of inputs to those two programs are rela-
tively small.Mtrt has 100 but its input feature vectors have
two dimensions;Euler has 14 inputs only. With more in-
puts, the prediction accuracy may become better. We note
that programSearchhas even fewer inputs than those two
programs, but its minimum possible heap size is a constant
across inputs, which accounts for its high prediction accu-
racies. Overall, this experiment demonstrates that minimum
possible heap size has good cross-input predictability, and
Regression Trees method is an approach suitable for the pre-
diction.

4.3.2 GC Selection

As mentioned at the beginning of Section 4.3, the first ap-
proach to input-specific GC selection simply selects the cor-
responding top GC after finding out the heap size ratio. The
second approach needs the prediction of the better one be-
tween the top two garbage collectors. In this section, we first
present the accuracy of the prediction of the best GC in the
second approach, and then report the performance benefits
brought by both approaches.

Table 5. Accuracy in predicting between top 2 garbage col-
lectors

Benchmark r=1 r=4
CT NN CT NN

Compress 100 100 83.3 38.9
Db 100 100 100 100
Mpegaudio 100 100 100 100
Mtrt 90.9 81.8 100 100
Bloat 100 100 100 100
Fop 100 100 76.9 92.3
Euler 100 100 77.8 88.9
MolDyn 75.0 75.0 100 100
MonteCarlo 100 100 100 100
Search 100 100 75.0 25.0
Average 96.6 95.7 91.3 84.5

r: heap size/ the minimum possible heap size;
CT: Classification Trees; NN: Nearest Neighbor

GC Prediction Accuracy We investigate both the Classifi-
cation Trees and the NN methods for the prediction of input-
specific garbage collectors in the second approach.

Table 5 reports the prediction accuracy when the heap
size ratios are 1 and 4. The two prediction methods, Clas-
sification Trees and NN, have similar overall prediction ac-
curacy. When the heap size ratio is 1, the average prediction
accuracies are both over 95% for both methods; the accura-
cies become 91.3% for the Classification Trees and 84.5%
for the Nearest Neighbor methods when the heap size ratio
becomes 4. The accuracy drop is mainly due to the more evi-
dent influence of inputs on garbage collector selection on the
larger heap size ratio, as shown in Figure 5. The low accu-
racy ofSearchwhen the heap size ratio is 4 indicates that the
Nearest Neighbor method is not suitable for that program.

We decide to use Classification Trees for the prediction of
the second approach. Next, we report the performance bene-
fits brought by the input-specific garbage collector selection.

Performance Improvement Figure 10 contains the perfor-
mance of the benchmarks when different GC selection is
used. Each benchmark corresponds to 4 bars, showing the
ranges of the normalized running times of all the executions
of the benchmark. The divider in the normalization is the
running time of the application when the garbage collector
best for the execution (among all of the 5 garbage collectors)
is used. The first bar corresponds to the running times when
the default GC algorithm is used. The second and third bars
correspond to the input-specific GCs predicted by the two
approaches described earlier in this section. The fourth bar
shows the range when the real input-specific GCs (selected
from the top 2 GCs) are used.

The results lead to the following points. First, the default
GC algorithm causes significant performance degradation to
some programs, compared to the performance achieved by
the best garbage collector. On programFop, for instance, the
running time is 10% longer on average when the heap size

58



Table 4. Prediction accuracy of minimum possible heap size under each garbage collection algorithm and the overall maximum
Benchmarks GC1 GC2 GC3 GC4 GC5 Max
Compress 99.8 99.8 100 100 99.9 99.9
Db 98.1 97.4 98.2 97.0 97.8 98.2
Mpegaudio 100 98.1 96.3 96.0 99.6 96.8
Mtrt 86.1 90.5 87.4 90.5 89.7 90.7
Bloat 99.9 100 99.7 99.4 99.9 99.9
Fop 98.2 97.2 96.6 98.3 97.7 98.3
Euler 91.3 92.7 91.4 95.2 90.4 93.9
MolDyn 98.6 99.0 98.1 98.8 99.3 98.6
MonteCarlo 98.9 99.1 99.4 99.3 99.5 99.3
Search 100 100 100 100 100 100
Average 97.1 97.4 96.7 97.4 97.4 97.5

ratio is 1, and over 25% longer on average when the heap
size ratio is 4. Most programs show more than 10% slow-
down, especially on the large heap size ratio. On average,
the mean degradation is about 4% and 8% on the two heap
size ratios, and the maximum slowdown is 7% and 17% re-
spectively. The more significant slowdown on the larger heap
size ratio is due to the more complex distribution of the top
garbage collectors as shown in Figure 5.

Second, the input-specific GC predicted by the two ap-
proaches show similar results, both outperforming the de-
fault GC significantly. The overall average slowdown be-
comes less than 1%; the maximum slowdown is cut to less
than 5% on average. The results from the second approach
are slightly worse than those from the first approach. It is
because of the influence of the prediction errors.

Finally, the average running time using the real input-
specific GC is very close to the possible minimum. This re-
sult is consistent with the high coverage of the top 2 garbage
collectors as shown earlier in Figure 5.

In summary, cross-input predictive models are effective
for the prediction of the minimum possible heap size. The
input-specific garbage collector selections may improve the
performance of the programs to the near-optimal.

5. Discussions
This section discusses the complications in exploiting the
cross-input prediction in practical managed runtime envi-
ronments. One of the difficulties is the need for profiling
runs and a learning process. Sometimes, it is difficult to
find a large set of representative inputs to do profiling and
to build the predictive models. One possible solution is to
move the learning process to the real uses of the applica-
tion [14]. Static selection techniques [11, 18] may produce
a small set of likely-best garbage collectors for an applica-
tion during compile time. During real uses of the application,
each time, the runtime environment picks one of the garbage
collectors for execution and records the input feature vec-
tors and the running times into a database. The database
gradually grows and the predictive models can thus be con-

structed from it. Furthermore, multiple users may share their
database to accelerate the learning process. This user-end in-
cremental learning scheme eliminates the need for explicit
profiling and circumvents the difficulty in collecting repre-
sentative inputs.

To prevent model construction from hurting application
performance, we can always do the construction during the
idle time of the machine. To control the quality of the learned
models, we can use the prediction errors on the data in the
database as a confidence measurement to enable discrimina-
tive prediction—predict only when confident.

6. Related Work
We are not aware of any previous work that has systemat-
ically studied the influence of inputs on GC selection with
a large set of inputs. Neither have we found any work on
cross-inputprediction of minimum possible heap sizes.

In this section, we first compare this work with previous
studies on the selection of garbage collectors, and then re-
view the prior explorations on handling the influence of pro-
gram inputs on other program optimizations.

Selection of Garbage Collectors A number of previous
studies have shown that for different applications, the best
performer among a set of garbage collectors are different [7].
As early as a decade ago, researchers have started the com-
parison of the performance of different GC algorithms on
different applications. Examples include the comparison be-
tween mark-and-sweep and copying-based GC algorithms
from Zorn [22] and Smith and Morrisett [19].

More recent studies fall into two categories based on
whether the technique allows static or dynamic selection of
GC. Fitzgerald and Tarditi [11] propose a profiling-based
approach for static GC selection. In their approach, the best
GC for an application is selected during compile time, based
on the profiling results of multiple runs of the application on
a sample input with different GC algorithms enabled. Singer
et al. [18] use machine learning techniques to predict the best
GC for an application.
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Figure 10. Comparison of normalized running times. The lower the better. The four bars (left to right) of each benchmark
correspond to the running time of the benchmark when the garbage collector uses the default GC algorithm, the predicted
input-specific GC selected by approaches 1 and 2, and the real input-specific GCs.

Some other research conducts finer-grained GC selection
by allowing the switch of GC algorithms in the middle of
an execution. Printezis [15] proposes a scheme to enable
the dynamic selection between mark-and-sweep and mark-
and-compact GC algorithms to manage the mature space
in a generational scheme. The technique relies on a sim-
ple heuristic on heap space fragmentation. Soman et al. [20]
develop a scheme on Jikes RVM to select and switch GC
algorithms dynamically, based on annotations inserted into
the bytecode of class files. The annotations include the min-
imum possible heap size of the switching points for each
application, determined by some profiling runs. The studies
conducted in our work has the potential to compliment the
dynamic selection by offering cross-input prediction of the
minimum possible heap size and possibly switching points.

Cross-Run Program Optimization There have been some
explorations on cross-input program behavior prediction,
mostly in the areas of locality studies on application written
in traditional C/C++ languages.

In 1991, Wall [21] conducts a study to measure how well
a profile from one run describe the behavior of a different
run. He finds that there is a significant departure between
profiles of the different runs, and using a perfect profile
may do sometimes factors of better than using a profile of
a different run.

Some of more recent studies measure the influence of
data sets on program behavior for benchmark design [5,10].
Ding and Zhong [9] describe an approach to predict program
data locality across inputs. Arnold et al. [4] have proposed
the repository-based approach for adaptive optimizations in
JVM. Shen et al. show the cross-input predictability of lo-
cality phase sequence by representing a phase sequence in

a regular expression [17]. Shen and Mao show the cross-
input predictability of program basic block frequencies on
some C/C++ programs [16]. They have recently proposed
an evolvable scheme to tailor the optimizations in JVM to
each input of an application [14].

Finally, the statistical analysis conducted in this paper is
enlightened by Georges et al. [12]. The analysis has proved
to be vital: It has corrected some conclusions we obtained
merely from the average values of the running times.

7. Conclusions
This paper presents a set of experiments and analyses on un-
covering the influence of program inputs on the selection of
garbage collectors. The study draws the following conclu-
sions:

• Inputs influence the relative performance of garbage col-
lectors significantly, causing large variations of the top
set of garbage collectors across inputs. Profiling one or
few runs is typically insufficient for selecting the garbage
collector that works for most inputs.

• But for most programs, when the heap size ratio is fixed,
one top garbage collector may work best for over 80%
inputs, and two would cover more than 96% inputs for
all of the programs. In that scenario, profiling many runs
on a sequence of different inputs and picking the best one
can work reasonably well.

• The heap size ratio may affect the relative performance
of garbage collectors significantly for some programs. It
is therefore important to distinguish between heap-size-
sensitive programs from the insensitive ones. For the for-
mer, profiling on one heap size should be enough; but for
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the latter, it is necessary to have a cross-input predictive
model that predicts the minimum possible heap size of
the execution on an arbitrary input.

• Through regression techniques, it is possible to accu-
rately predict minimum possible heap sizes across pro-
gram inputs. Classification techniques may help deter-
mine the best garbage collector for an arbitrary input. The
results suggest the promise of input-specific selection of
garbage collectors.
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