
13

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing

LINGDA LI∗, Brookhaven National Lab

ROBEL GEDA, Rutgers University

ARI B. HAYES, Rutgers University

YANHAO CHEN, Rutgers University

PRANAV CHAUDHARI, Rutgers University

EDDY Z. ZHANG, Rutgers University

MARIO SZEGEDY, Rutgers University

Graph edge partition models have recently become an appealing alternative to graph vertex partition models for distributed

computing due to their �exibility in balancing loads and their performance in reducing communication cost [6, 16]. In this

paper, we propose a simple yet e�ective graph edge partitioning algorithm. In practice, our algorithm provides good partition

quality (and better than similar state-of-the-art edge partition approaches, at least for power-law graphs) while maintaining

low partition overhead. In theory, previous work [6] showed that an approximation guarantee of O (dmax
√
logn logk) apply

to the graphs withm = Ω(k2) edges (k is the number of partitions). We further rigorously proved that this approximation

guarantee hold for all graphs.

We show how our edge partition model can be applied to parallel computing. We draw our example from GPU program

locality enhancement and demonstrate that the graph edge partition model does not only apply to distributed computing

with many computer nodes, but also to parallel computing in a single computer node with a many-core processor.

CCS Concepts: • Mathematics of computing → Graph algorithms; • Theory of computation → Parallel computing
models; • Computing methodologies → Modeling and simulation;

Additional Key Words and Phrases: Graph model; edge partition; GPU; data sharing; program locality

ACM Reference format:
Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario Szegedy. 2017. A Simple

Yet E�ective Balanced Edge Partition Model for Parallel Computing. Proc. ACM Meas. Anal. Comput. Syst. 1, 1, Article 13

(June 2017), 21 pages.

DOI: http://dx.doi.org/10.1145/3084451

1 INTRODUCTION
Graph edge partition models have recently become an appealing alternative to graph vertex partition models

for distributed computing due to their �exibility in balancing workloads and their performance in reducing

communication cost [6, 16]. In the edge partition model, a graph is partitioned based on the edges as opposed to

vertices in the vertex partition problem. The edge partition model optimizes the number of vertex copies, which

is a more precise measure for communication cost than the number of edge cuts.

∗
This work was done when Lingda Li was a Post-doc Associate at Rutgers University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions from

permissions@acm.org.

© 2017 ACM. 2476-1249/2017/6-ART13 $15.00

DOI: http://dx.doi.org/10.1145/3084451

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3084451&domain=pdf&date_stamp=2017-06-13

13:2 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

We show an example of a computation problem abstracted by a graph edge partition model in Figure 1. We use

the computation �uid dynamics (cfd) program [9, 10]. In cfd, the main computation is to calculate the interaction

between �uid elements bounded by certain spatial distances and to use the interaction information to update the

status of every �uid element for the next time step.

A �uid element is modeled as a vertex. An interaction is calculated between a pair of �uid elements, modeled

as an edge. Figure 1 shows six interaction edges among six �uid elements. Figure 1(a) shows one possible way to

Multi-core processor 1

(b) Optimized CFD computation partition(a) Un-optimized CFD computation partition

Multi-core processor 2

e1
e2

e3

e4 e5

e6

e1
e2

e3

e4 e5

e6

Multi-core processor 1 Multi-core processor 2

Fig. 1. Mapping of cfd interaction computation into two multi-core processors. Assuming we have two multi-core processors
and each multi-core processor is in charge of three edges. In (a) there are three fluid elements that need to be copied into
both processors while in (b) there is only one.

partition the computation (edges) to two multi-core processors, in which case, edges e1, e2, e3 are mapped to one

multi-core processor and e4, e5, e6 are mapped to the other multi-core processor, requiring three �uid elements

to be copied into both multi-core processors (marked as solid circles). However, with an optimized partition as

illustrated in Figure 1(b), with e1, e2, e4 mapped to one multi-core processor and e3, e5, e6 mapped to the other

multi-core processor, only one �uid element needs to be copied into both multi-core processors. In total, Figure

1(b) reduces the number of vertex copies by 66%, corresponding to a signi�cant memory communication cost

reduction.

Graph edge partition has been less studied in literature than graph vertex partition. The Powergraph [16]

work is the �rst that discovered using edge partition rather than vertex partition improves work balancing

and reduces communication cost in practice, especially for power-law graph. Bourse, Lelarge, and Vojnovic [6]

established the �rst theoretical approximation guarantee and developed an e�cient streaming edge partition
algorithm. The target application for both studies is data analytics in large-scale distributed computing clusters,

in which case good single-pass edge partition algorithms are desired.

The hypergraph partition approach [17] is an indirect approach to solve edge partition problem. The target

application for hypergraph partition is parallel program that has potentially good data reuse and has multi-pass

computation phases, for instance, sparse linear algebra solvers for optimization problems. In this paper, we target

the same type of parallel application workloads as the hypergrah model.

The streaming edge partition algorithms [6, 16] are for scenarios when the input graph is given as an stream

or only one pass through the input graph is allowed. In these settings their use is much preferred even when

they may not yield the same partition quality as the hypergraph algorithm, their non-streaming counterpart. The

reason is that the large overhead of the latter.

In this paper, we propose a novel edge partition approach that yields similar or improved partition quality

than the hypergraph model, while at the same time, maintains acceptably low partition overhead. Our approach

improves previous work in both theory and practice, in the following ways.

First, our approach is practical. It has signi�cantly lower partition overhead than the hypergraph partition

approach. Partitioning a power-law graph with 2 million vertices and 16 million edges takes about 400 seconds if

we apply the best hypergraph algorithm we are aware of, while less than 18 seconds if we apply the approach

proposed in this paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:3

Second, it is simple yet e�ective. It is based on a transformation procedure called split-and-connect procedure

we developed in this paper. The split-and-connect procedure improves the partition quality (the number of vertex

copies in di�erent partitions) over the streaming and the hypergraph approaches or is at least similar to the better

of the two. In particular, when compared with the streaming edge partition algorithms, the partition quality

improvement is the most pronounced in power-law graphs.

Third, it improves the theoretical guarantee for all ranges of parameters. Similar to the work by Bourse, Lelarge,

and Vojnovic [6], by formulating the edge partition problem into vertex partition problem, we established an

approximation guarantee of O (dmax
√
logn logk), where n is the number of vertices, m is the number of edges, k

is the number of partitions, and dmax is the maximum degree. The work by Bourse, Lelarge and Vojnovic [6]

showed that this approximation guarantee hold for graphs with the constraintm = Ω(k2). We rigorously proved

this approximation guarantee holds for all graphs.

We apply our edge partition approach to GPU programs and obtained non-trivial performance improvement.

As far as we know, this is the �rst study of applying edge partition approach to GPU computing and to programs

running on a many-core processor.

To summarize, our contributions are as follows:

• We propose a split-and-connect edge partition procedure that is easy to implement, yields good partition

quality, and has low overhead.

• Our approach improves theoretical guarantee for all ranges of parameters.

• Our approach improves data locality in practice for massively parallel programs.

The rest of our paper is organized as follows. We present an abstract machine model for massively parallel

programming in Section 2 to facilitate further discussion. Section 3 presents the split-and-connect partition

procedure (Section 3.2), as well its application to real and synthetic graphs (Section 3.3), and proof for the

approximation guarantee (3.4). Section 4 presents program transformations that are needed for applying the

graph edge partition model to GPU programs. Section 5 shows our experimental environment and evaluation

results. Section 6 discusses the related work, and Section 7 concludes the paper.

2 ABSTRACT MACHINE MODEL
We introduce an abstract machine model for GPU computing. We use GPU computing as an example here since

it is a widely adopted massively parallel computing accelerator. Nonetheless, the abstract machine model applies

to other parallel computing platforms as well.

We �rst describe the software cache model in GPU architecture. The software cache is a type of scratch-pad

memory, that requires explicit read/write management. It is called shared memory using NVIDIA terminology
1
. In

the rest of the paper, we use the term software cache and shared memory interchangeably for the same concept.

A GPU is composed of a set of streaming multiprocessors (SMs). The software cache is local cache for every SM,

shared by threads running on the same SM. Multiple thread blocks run on one SM. Every thread block acquires a

partition of the software cache, uses it, and yields it only when the thread block �nishes its work. When one

thread block yields the software cache partition, another thread block will claim the freed cache partition. During

program execution, one thread block cannot peek into another thread block’s software cache partition. It is as if

every thread block has its own local cache and there are as many local caches as the number of logical thread

blocks, despite the fact that the total physical space of software cache is typically limited. We show the abstract

machine model in Figure 2, where every thread block can be viewed as a logical multi-core processor and every

thread block is connected to a local cache.

The last level cache on GPU – the L2 cache is shared by all SMs on a GPU. An L2 cache on GPU has a high hit

latency – typically 200 clock cycles and above, compared with the L1 hit latency which is typically less than 24

1
We use NVIDIA CUDA terminology throughout the paper.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:4 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

TBLOCK TBLOCK TBLOCK TBLOCK TBLOCK

CACHE CACHE CACHE CACHE CACHE

Unified Memory Layer

……

……

Fig. 2. Abstract GPU cache sharing model. TBLOCK refers to thread block.

clock cycles. L2 cache is shared by all SMs and is connected to the device DRAM. All DRAM accesses go through

L2 cache. We abstract the L2 cache together with DRAM as an uni�ed memory layer that is connected to all

software local caches in Figure 2.

Hardware cache is similar to software cache. Only co-running threads share the hardware cache. There are

several minor di�erences. Hardware cache automatically places/replaces data object and maintains address

mapping. Cache replacement policies, such as least recently used (LRU) policy, are used to retain the more

recently used data in cache. Thus, the hardware cache tends to keep the data for co-running threads present at

the same time. L2 is hardware cache that is shared by all SMs. Other hardware caches, such as L1 cache, is local to

every SM. However, they are typically used for special type of data objects, for instance, constant, read-only data

objects, or thread-private memory [25] data objects. Thus L1 cache is not as extensively used as the software

cache on GPUs. Thus we use the computing abstraction with software cache as an example for graph edge

partition model.

3 DATA-CENTRIC LOCALITY MODEL
3.1 Problem Definition
With the abstract machine model de�ned in Section 2, we now describe how the graph edge partition model �ts

into the computing model. We also give a formal de�nition of the graph edge partition model.

The graph edge partition model places an emphasis on data. Computation is modeled as interaction between

data. In the graph, a node represents a data object and an edge represents the interaction between two data

objects.

1 n e i g h b o r _ l i s t ∗ n l i s t =

2 g e t _ n e i g h b o u r _ l i s t [c u r _ e l e m e n t] ;

3 f o r (i = 0 ; i < 3 ; i ++) {

4 ne ighbour = n l i s t [i] ;

5 i f (ne ighbour >= 0) {

6 d e n s i t y _ n b = d e n s i t y [ne ighbour] ;

7 movement_nb = movement [ne ighbour] ;

8 speed_nb = speed [ne ighbour] ;

9 p r e s s u r e _ n b = p r e s s u r e [ne ighbour] ;

10 compute_ f lux (dens i ty_nb , movement_nb ,

11 speed_nb , p r e s s u r e _ n b) ; }

12 }

Listing 1. CFD Pseudo Code for Interaction List
Computation

We illustrate the graph edge partition model using a real program – computational �uid dynamic (cfd). We

use the pseudo code of the cfd [8] program in Listing 1 to show its computation pattern. Every �uid element is

modeled as a vertex and the interaction calculation compute_�ux between a node and its neighbour is modeled as

an edge. The computation is modeled as a list of interaction edges that need to be calculated. To parallelize the

computation, one need to divide the edge list into di�erent threads, ensure load balancing, and in the meantime,

minimize communication cost. In our abstract machine model, the list needs to be divided evenly into di�erent

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:5

A
B

C

D

E

F
A

B

C

D

E
F

(a) Original graph

A
B

C

D

E

F
A

B

C

D

E

F

(b) Clone nodes (c) Add auxiliary edges (d) Partition vertices (e) Construct edge partition

A B

C

D

E
F

Original Node Cloned Node Dominant Edge Auxiliary Edge

Fig. 3. Balanced edge partition problem converted to balanced vertex partition problem.

thread blocks, and the data needed by each thread block is copied into its local cache. We want to minimize the

number of data copies in di�erent local caches.

Formally, the balanced workload partition corresponds to the balanced edge partition. Our goal is to place

the edges into k partitions, such that every edge is assigned to exactly one partition and the number of edges in

every partition is the same.. The partition is named as a k-way balanced edge partition [6].

We follow the same problem formulation as the edge partition with aggregation (EPA) model de�ned in the

work by Bourse, Lelarge, and Vojnovic [6]. The optimization problem is de�ned as follows:

De�nition 3.1. Assume we have a graph D = (V ,E) with the set of vertices V and the set of edges E ⊂
(
V
2

)
. Let

n represent the number of vertices,m represent the number of edges, and k represent the number of partitions.

Let Li denote the number of edges in partition i . Assume x is a valid k-way balanced edge partition for D. ∀v
∈ V , assume v’s incident edges are placed into pv distinct partitions in x . As if the vertex v was copied into pv
partitions, we de�ne the vertex copy cost for v as pv − 1. We optimize the total vertex copy cost CEP (x):

min CEP (x) =
∑
v ∈V (pv − 1)

s.t. ∀i ∈ [1...k] Li (x) =
m
k

x is a valid k −way edдe partitioninд
(1)

The number of distinct partitions a node’s incident edges fall into represents how often the corresponding

data object is copied into di�erent thread blocks’ local caches. In the ideal case, one node’s incident edges are

placed in one and only one partition and thus there is no need to copy this node (data object) into more than

one parition. One “copy" correspond to one memory load – loading the data object from o�-chip memory to

one local cache. We use pv - 1 to measure how many copies (loads) are needed beyond the �rst copy (load) for

every data object since the �rst copy is necessary – one node is placed in at least one partition. The total cost

CEP (x) =
∑
v ∈V (pv − 1) the edge (work) evaluates the partition quality and also the memory load cost for a

parallel program.

3.2 Partition Algorithm
The k-way balanced edge partition in De�nition 3.1 is NP-complete [6]. Compared with the balanced vertex

partition problem, the edge partition problem is a much less studied and non-traditional graph partition problem.

The most relevant studies we are aware of are the PowerGraph heuristic [16] and the weighted vertex partition

approach by Bourse et al. [6]. The PowerGraph heuristics use a one-pass streaming algorithm that does not

always yields good partition quality (as will be demonstrated in Section 3.3). The streaming algorithm by Bourse

et al. [6] yields similar quality to the o�ine weighted vertex partition heuristic, however, it may not yield the

best partition quality due to its emphasis on scalability (as will be discussed in Section 3.3).

An alternative approach to indirectly tackle the balanced edge partition problem is the hypergraph partition

model [17], which has good partition quality but signi�cantly larger overhead (as will be demonstrated in Section

3.3).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:6 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

We propose an approach that is based on a graph transformation which we name as split-and-connect transfor-

mation. We denote the split-and-connect transformation as Ψ transformation. Our approach strikes a balance

between e�ciency and overhead, maintaining low partition overhead and good quality.

We sketch our partition algorithm in three steps:

(i) Given original graph G, we transform it into a new graph G’ with the split-and-connect (Ψ) transforma-

tion.

(ii) We perform k-way balanced vertex partition on G’ and obtain a valid partition y.

(iii) We construct a valid edge partition x forG using the vertex partitiony forG ′, using the Ω transformation

in De�nition 3.3.

We describe every step in details together with a walk-through example in Figure 3.

1 We convert the original graph using the split-and-connect transformation, de�ned as follows.

De�nition 3.2. We de�ne the split-and-connect graph transformation function Ψ. Assume D = (V ,E), D ′ =
(V ′,E ′) is a graph that is transformed from D using the Ψ transformation, D ′ ∈ Ψ(D). In the split phase, for every

vertex v of degree d ∈ V , we create a set of vertices S (v) = {ν ′
1
, . . . ν ′d } in G ′, S (v) ⊂ V ′.

In the connect phase, for any edge e = (u,v) in G, we create a corresponding edge e ′ = (µ ′i ,ν
′
j) in G ′, which

we refer to as an dominant edge, such that µ ′i ∈ S (u) and ν ′j ∈ S (v), both µ ′i ,ν
′
j are connected to one and only

one dominant edge e ′. We then link the cloned vertices in every set S (v) to form a path of d nodes and d − 1
edges, where d is the degree of v in G. We name such an edge as an auxiliary edge.

Since there are di�erent ways to connect d nodes into one path, the Ψ transformation generates multiple

di�erent graph, and thus Ψ(D) returns a set. One way to connect the d nodes from set S (v) is to connect nodes

based on their indices in the set: ∀ (ν ′i , ν
′
i+1) pair in set S (v), i = 1, ...,d − 1, we connect node ν ′i to node ν ′i+1 with

one auxiliary edge
2
.

The split-and-connect transformation process is illustrated in Figure 3 (a), (b), and (c). In the transformed

graph D ′, the total number of vertices is exactly twice the total number of edges in the original graph D, by

construction.

2 We partition the vertices of the transformed graph D’. We assign weight 1 to every auxiliary edge. We

assign an in�nite weight to every dominant edge so that during vertex partition of D’, only auxiliary edges will

be cut and no dominant edge will be cut. In practice we set it to 1,000 and it worked well (as demonstrated by

experiment results in Section 5). Then we perform a k-way balanced vertex partition for D ′ and obtain a solution

y such that only auxiliary edges are cut. The vertex partition process is illustrated in Figure 3 (d).

3 We reconstruct the edge partition solution x for D from the vertex partition solution y for D ′ obtained in

the second step. Since in the solution y no dominant edges are cut, for every dominant edge, both end points fall

into the vertex partition, assuming the i-th partition in y, and then we assign the dominant edge into the i-th

partition in x . Every dominant edge in D’ has a one-to-one mapping to an edge in D. Since the total number of

vertices in every partition in D’ is the same, and the number of dominant edges is half the number of vertices

in the graph D ′, every edge partition in x has the same number of edges. By this step, we have successfully

reconstructed the edge partition x for graph D. The process is formally de�ned below.

De�nition 3.3. We de�ne the edge partition construction function Ω. Assume a graph D ′ is transformed with

the split-and-connect function Ψ, D ′ ∈ Ψ(D). Let y be valid balanced k-way vertex partition of D ′ that does not

cut any dominant edge. We construct an edge partition x of D form y of D ′ by the following.

Assuming y = {P1, P2, ..., Pk }, where Pi is a disjoint partition of vertices in D ′. For every dominant edge

e ′ = (u ′,v ′) ∈ D ′, �nd the vertex partition that u ′ and v ′ fall into in y. Assuming it is Pi ; then we place the

2
To simplify implementation, we also connectv1 andvd in the experiments for Figure 4, which does not change the theoretical approximation

bound

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:7

matrices # vertices # edges Default
quality

hMETIS
time (s)

hMETIS
quality

PaToH
time (s)

PaToH
quality

Random
quality

Greedy
quality

Random
quality

Greedy
quality time (s) quality

cant 124902 2034917 53792 1344 51902 11.66 57050 3621269 281009 100921 76016 1.7 49708

circuit5M 11116652 59524291 22684508 NEM N/A 2250 318709 85272145 16594380 19878734 10122128 67.2 285308

in-2004 2483424 16917053 3023386 NEM N/A 413.6 132999 27057814 4211017 2044863 1154572 17.9 199881

mc2depi 1051650 2100225 144758 327.2 34789 4.87 35254 3118216 269827 39736 39029 1.44 36124

scircuit 341996 958936 200519 95.67 3997 2.91 4610 1502568 129838 10920 8608 0.64 5607

Graph Feature Hypergraph Partition Model PowerGraph WVP SPAC

Fig. 4. Our proposed SPAC model vs. other partition methods. NEM represents not-enough-memory. �ality refers to the
number of vertex copies in di�erent partitions, as defined in Definition 3.1

corresponding edge e ∈ D into the i-th edge partition of x . Then we �nish the reconstruction process and

x = Ω(D ′,y,D).

Fig. 5. Degree distribution. Note that y axis is log scale, and x axis is log scale for in-2004 and scircuit.

The reconstruction process is illustrated in the example in Figure 3(d) and Figure 3(e).

3.3 Comparison with Existing Methods
We show how the split-and-connect (SPAC) partition approach works in practice by comparing it with existing

approaches. We show the theoretical bound of the SPAC approach in Section 3.4.

For vertex partition component (step ii) of the transformed graph in the SPAC method, we use METIS [20]

library, which is regarded the fastest vertex partition method in practice. We use representative graphs derived

from sparse matrices in the Florida matrix collection [12] and matrix market [4], since graph structures are

typically stored in sparse matrix format. We also use a graph generator to obtain synthesized graphs with di�erent

size, density, and degree distribution.

We describe the vertex degree distribution of the �ve real graphs �rst. The degree distribution of four of them

are in Figure 5. The selected graphs have di�erent degree distribution functions. The degree of cant’s graph

is between 0 and 40. circuit5M has a more random degree distribution and we only show part of the x axis

for readability. Two graphs exhibit power-law (i.e., scale free) pattern: in-2004 and scircuit. We did not show

mc2depi in Figure 5 since it has a relatively simpler degree distribution: more than 99% of vertices have degree

4, the rest have degree 2 or 3. The degree distribution of mc2depi resembles the mesh type graphs in scienti�c

simulations.

3.3.1 Comparison with hypergraph model. Hypergraphs are generalized graphs where an edge may connect

more than two vertices, and such an edge is also called a hyperedge. In the hypergraph partition model [17],

unlike our data-centric model, a vertex represents a task, and a hyperedge represents a data object where it covers

all the vertices (tasks) that use this data object. The goal of minimizing data copies in caches is equivalent to

minimization of hyperedge cuts when partitioning vertices (tasks) into k parts. Figure 6 shows an example on

how to use the hypergraph model and comparison with the edge partition model. We also show the optimum

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:8 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

A
B

C

D

E

F

A
B

C

D

E

F

(a) hypergraph vertex partition (b) edge partition model

data (hyperedge) task data task

Fig. 6. Hypergraph model vs. edge partition model.

partition for both models in this example. In Figure 6(a) one hyperedge is cut, that corresponds to the one vertex

cut in Figure 6(b).

For the hypergraph partition, we use hMETIS [21], a multilevel hypergraph partition tool, and PaToH [7], the

fastest hypergraph partition implementation we are aware of.

From Figure 4, we see that PaToH is faster than hMETIS in the hypergraph model, and our basic SPAC model

is signi�cantly faster than both of them in all cases. The partition quality, measured as the data copy cost in

De�nition 3.1, shows that our SPAC model generates similar quality as PaToH and hMETIS. When ours is worse

than of hyperpgraph model, for instance, in−2004 (where the gap is the largest), the ratio of the data copy cost

beyond the ideal case over the data copy cost in the ideal case (in which every node is loaded once and only

once from memory into cache) is low, ours is 8.0% while PaToH gives 5.3%, the di�erence between ours and

hypergraph model is rather small. However, our model runs signi�cantly faster than hypergraph models, between

4.5 times and 33.5 times faster.

Also note that the SPAC model has better scalability than the hypergraph model. For small graphs such as

scircuit, our approach is 4 times faster, while for large graphs such as circuit5M and in-2004, our model is

20 or 30 times faster.

3.3.2 Comparison with PowerGraph heuristics. PowerGraph [16] proposes two simple edge partition ap-

proaches. Both methods scan all edges linearly to distribute them into partitions. The random method randomly

assigns edges into every partition. The greedy method prioritizes the partitions that already cover one endpoint

of the to-be-assigned edge. If no such partition is found, it chooses the partition with the fewest edges. Figure 4

shows the partition quality of both methods. Compared with hypergraph and our SPAC model, both PowerGraph

heuristics have signi�cantly worse partition quality because of the streaming nature.

3.3.3 Comparison with weighted vertex partition. Bourse et al. proposed a balanced edge partition approach

based on weighted vertex partition (WVP) [6]. Every vertex is assigned a weight equivalent to its degree. Bourse

et al. ’s method partitions the degree-weighted graph into multiple balanced components with respect to total

vertex weight.

Next, the edges that are not cut are assigned to the i-th edge partition corresponding if their end points fall

into the i-th vertex partition. For edges that are cut, those whose endpoints fall into two di�erent partitions, WVP

assigns them either randomly or greedily to achieve a balanced partition. Bourse et al. also proposed a streaming

online algorithm, since their online algorithm performs as well as their o�ine weighted-degree algorithms [6, 27],

we compare with the o�ine algorithms here.

Figure 4 shows the partition quality of SPAC and two versions of WVP. The WVP random version assigns

the cutting edges randomly to two partitions and the WVP greedy version uses a greedy assignment similar to

PowerGraph’s greedy partition. From Figure 4, we observe WVP greedy outperforms WVP random because of

the blindness of random based method, and SPAC outperforms both WVP random and greedy.

We discover that the average degree of the nodes cut by SPAC is larger than that of the nodes cut by WVP.

Table 1 shows the average degree of cutting vertices in SPAC and WVP greedy. Note that the average cutting

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:9

degree is signi�cantly larger when the partition quality improvement is larger, for instance, in circuit5M and

in-2004. It is probably because the WVP model tends to avoid cutting large degree node more than the SPAC

model. The WVP model performs weighted vertex partition on the original graph �rst. The goal of weighted

vertex partition is to minimize the number of edges that are cut, and thus large degree nodes are less likely to be

cut. However, this goal does not align with the ultimate goal of minimizing vertex copies, in which cutting a

large degree node is potentially more bene�cial. The intuition behind this is that cutting a large degree node can

move more edges around for load balancing than cutting small degree nodes while in the meantime maintaining

less data copy cost (the extent to which nodes appear in di�erent partitions).

WVP greedy SPAC

cant 34.5 34.1

circuit5M 12.3 496.3

in-2004 57.9 159.6

mc2depi 4.0 4.0

scircuit 12.6 14.7

Table 1. Average degree of cu�ing vertices.

To gain more insights on the di�erence between SPAC and the WVP model, we implement a graph generator

that generates graphs with di�erent sizes, densities, and degree distributions. Figure 7 shows the partition quality

improvement of SPAC over WVP greedy on generated graphs. We use two di�erent types of graphs. The �rst is

uniform distribution, in which every pair of nodes has the same probability being connected. The second one is

power law distribution. We use the Barabasi–Albert model [2] to generate power law graphs. For both types of

graphs, the number of vertices is kept the same, always 50k. The average degree increases, as shown on the x
axis. The partition quality improvement is computed by dividing the quality of WVP greedy by that of SPAC. The

results show that the bene�t of SPAC over WVP greedy increases as the graph gets denser for both distributions.

The results also show that our improvement is more pronounced when the maximum degree of the power-law

graph increases. Although Figure 7 only shows the average degree on x-axis, the maximum degree increases as

the average degree increases in the synthetic power-law graphs.

 0.9

 1

 1.1

 1.2

 1.3

4 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 18 20Q
u
a
lit

y
 i
m

p
ro

v
e
m

e
n
t

o
v
e
r

W
V

P

average degree

Uniform Power law

Fig. 7. Parition quality improvement compared with WVP greedy for synthesized graphs.

3.4 Analytical Bound
Our SPAC partition model is demonstrated to be e�ective with empirical evaluation. As far as we know, it also

has the best provable approximation factor under the same load balancing constraints.

We prove that there exists a polynomial algorithm that approximates the optimal solution with a factor of

O (dmax
√
logn logk), relying on the following facts:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:10 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

Notations: Let CV P (y) be the cost of the balanced vertex partition y [15], which is the total number of edges

whose end points fall into two di�erent vertex partitions, also named as the number of edge cuts. Let CEP (x) be

the cost of the balanced edge partition x (De�nition 3.1 in Section 3.1).

Theorem 3.4. Assume we have two graphsW and D such thatW ∈ Ψ(D), let y be a valid vertex partition for the
graphW , let x be a valid edge partition of D, such that x = Ω(W ,y,D), the edge partition cost of x is less than or
equal to the vertex partition cost of y, CEP (x)≤ CV P (y).

Proof. When reconstructing x fromW , y, and D using the Ω transformation in De�nition 3.2, every auxiliary

edge that is cut in y contributes at most one unit cost to the total cost of CEP (x) (the total number of node cuts

for its incident edges to fall into multiple edge partitions). If l auxiliary edges inW that represent the same node

v in D are cut, the node v is cut into at most l + 1 distinct edge partitions in x , which contributes to l unit cost for

CEP (x). If a dominant edge e is cut in y, at most one end point u of the dominant edge e get an additional unit

cost for u potentially being cut into a di�erent edge partition of x , since we place this dominant edge into one

and only one edge partition in x . Only the edges that are cut in y will contribute to the edge partition cost of x .

Thus CEP (x) ≤ CV P (y). �

Theorem 3.5. For any graphD, there exist a graphW such thatW ∈ Ψ(D),W has an optimal vertex partition topt
with the cost ofCV P (topt) that is equivalent to the cost of the optimal edge partition xopt forD,CV P (topt) = C

EP (xopt).
We refer to this graphW as the dual graph for D.

Proof. Theorem 3.5 implies that the cost of the optimal edge partition for graph D is equivalent to the cost of

the optimal vertex partition for graphW , whereW is a graph constructed from D using the split-and-connect

transformation Ψ.

To showW exist, we constructW from D by the following steps. Assume we have an optimal edge partition

solution xopt of D, we construct W using D and xopt . Given a node v of degree d in D , we perform the split

phase of the split-and-connect transformation as described in De�nition 3.2 and create a set of d nodes S =
{v ′

1
,v ′

2
,v ′

3
, ...,v ′d } inW , each node v ′j corresponds to an incident edge ej (j = 1..d) of v in D. In the connect phase,

for the set S , we partition it into no more than k subsets Si , i = 1...k (assuming k is the number of edge partitions

in D) such that Si includes all the nodes v ′i1 ,v
′
i2 ,v

′
i3 , ..,v

′
iq that correspond to the edges in the i-th partition of

xopt , that is, ei1 , ei2 , ei3 , .., eiq belong to the i-th edge partition of xopt . For every non-empty set Si , we connect its

nodes to form a path Pi . We connect P1 to Pk to form a longer path (P1 to P2, P2 to Pk and so on). The edges we

use to create paths within and between Si are auxiliary edges.

We let the weight of every auxiliary edge be 1, the weight of every dominant edge be the total number of

auxiliary edges. It ensures that the optimal vertex partition ofW cuts only auxiliary edge.

Assume we have an optimal vertex partition solution topt for the graphW . We construct an edge partition

solution x of the graph D using the function x = Ω(W , topt ,D) (De�nition 3.2). Using Theorem 3.4, the cost of

the partition x is less than or equal to the cost of the partition topt : C
EP (x) ≤ CV P (topt).

It is obvious that the optimal edge partition xopt of D can also be mapped to a valid vertex partition t ofW by

following the above construction process ofW . The vertex partition t is obtained by cutting the edges that connect

di�erent Si sets. Note thatCV P (t) = CEP (xopt) using this construction forW . We prove the solution t has minimal

cost among all valid vertex partition solutions forW by contradiction. Assume there exists such a vertex partition µ
ofW that has smaller cost (fewer auxiliary edges are cut) than t ofW ,CV P (µ) < CV P (t), we use the reconstruction

function Ω to convert it to an edge partition ν = Ω(W , µ,D) and since CEP (ν) ≤ CV P (µ) < CV P (t) = CEP (xopt)

, this contradicts that xopt is optimal for D. Thus CV P (t) = CV P (topt), and we have CV P (topt) = CEP (xopt).
Therefore Theorem 3.5 is proved. �

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:11

Theorem 3.6. ∀M ∈ Ψ(D), assume the graphW is the dual graph of D, let yopt be the optimal vertex partition
of M , topt be the optimal vertex partition ofW , and dmax be the maximal node degree of graph D, the following
relation holds:

CV P (yopt) ≤ (dmax − 1)C
V P (topt)

Proof. Since we do not know a priori the optimal edge partition xopt of D, we do not immediately obtain the

dual graphW of D as described in the proof of Theorem 3.5. However, we can determine an approximation factor

of the optimal partition cost of an arbitrary split-and-connect transformed graph M with respect to the optimal

vertex partition cost of the dual graphW .

For any M ∈ Ψ(D), when connecting the cloned vertices v ′
1
,v ′

2
, ..,v ′d of one node v into a path, the order of the

nodes that appear on the path from one end to the other is arbitrary. However the set of cloned nodes and the set

of dominant edges every cloned node is associated with are the same, i.e., the set of cloned nodes for M andW is

the same. Since vertex partition topt ofW can be converted to a valid vertex partition s of the graph M by cutting

any auxiliary edge of M if its two incident end points are in di�erent vertex partitions of t_opt . For an arbitrary

graph M ∈ Ψ(D), if a path of auxiliary edges (corresponding to node v in D) is cut, at most dmax − 1 auxiliary

edges are cut since the number of edges on the path is equivalent to the degree of the node v . Correspondingly,

for any path that is cut in topt ofW , the number of auxiliary edges cut per path is at least one. When converting

topt to s , only if a path pi (for the i-th node vi in D) is cut in topt , the corresponding path p ′i (also for the i-th

node vi in D) will be cut in s . Therefore the vertex partition cost of s for M is at most (dmax − 1) times of the

vertex partition cost of topt for W , CV P (s) ≤ (dmax − 1) ∗ CV P (topt). Since yopt is the optimal solution for M,

CV P (yopt) ≤ CV P (s), Theorem 3.6 is proved. �

Corollary 3.7. For any graphM that is constructed from D,M ∈ Ψ(D), there exists a polynomial time vertex
partition solution y ofM such that, CV P (y) ≤ O (

√
logn logk) ∗ (dmax − 1) ∗C

V P (topt), whereW is the dual graph
of D and topt is the optimal vertex partition of the graphW .

Proof. This step can be trivially proved using the Theorem 1.1 in [22] and Theorem 3.6 we proved. Theorem

1.1 in [22] states that there exists a polynomial time algorithm for balanced vertex partition problem with

approximation factor of

√
logn logk .

Assuming that this solution is y for M ,

CV P (y) ≤ O (
√
logn logk) ∗CV P (yopt).

According to Theorem 3.6, CV P (yopt) ≤ (dmax − 1)C
V P (topt), therefore Corollary 3.7 is proved. �

Putting it altogether, we prove that there exist a polynomial algorithm that has O (dmax
√
logn logk) approx-

imation factor for the balanced edge partition problem using the following four steps. We use the following

notation. (D) represents the original graph,W is the dual graph of D, M is a graph constructed from D, M ∈ Ψ(D).
Let xopt be an optimal edge partition of the graph D, topt be an optimal vertex partition for the dual graphW . Let

y be a valid balanced vertex partition of M that satis�es Corollary 3.7 and let yopt be an optimal balanced vertex

partition of M . Let x be a valid edge partition constructed from M , D, and y, x = Ω(M,y,D). We show that x is

the partition solution that satis�es the O (dmax
√
logn logk) approximation factor.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:12 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

CEP (x) ≤ CV P (y) Step (1)

≤ O (
√
logn logk) ∗CV P (yopt) Step (2)

≤ O (
√
logn logk) ∗ (dmax − 1) ∗CV P (topt) Step (3)

≤ O (
√
logn logk) ∗ (dmax − 1) ∗CEP (xopt) Step (4)

We prove the approximation bound in the above four steps. Step (1) is directly obtained using Theorem 3.4.

Step (2) and (3) are obtained using Theorem 3.6 and Corollary 3.7. Step (4) can be obtained using Theorem 3.5.

Our approximation guarantee improves the work by Bourse et al. [6]. We not only proposed an alternative

way to prove the approxiamtion guarantee but also proved the approximation guarantee holds for all ranges of

parameters. Bourse et al. has relaxation of load balancing constraint, such that the maximum load size for every

partition is L(i) ≤ (1 + ϵ + k2/m)*(m/k), wherem is the number of edges, L(i) is the number of edges in the i-th
partition, and k is the number of partitions, while our load constraint is L(i) ≤ (1 + ϵ)*(m/k), without relaxing the

load balancing constraint. The ϵ factor comes naturally from the vertex partition component of our algorithm,

since the traditional balanced (k, ϵ) vertex partition problem allows a factor ϵ . In both our work and the work by

Bourse, Lelarge, and Vojnovic, ϵ is set to 1.

4 LOCALITY ENHANCEMENT
We describe how to apply the SPAC partition results to enhance GPU program locality.

Program Transformation The �rst step is to perform the job swapping and data reordering program transfor-

mations as described in [29]. The SPAC partition results determine how tasks should be scheduled to di�erent

thread blocks. Job swapping is a program transformation that enables task swapping among di�erent threads.

However, job swapping relies on an input schedule that guides the mapping of tasks to threads. The input schedule

here is determined by our locality graph partition results. The key transformation technique for job swapping

[29] is simple – replacing the logical thread id with a new threads id such that tid ′ = newSchedule[tid] while the

newSchedule[] array is determined by graph partition results and it is passed as an additional kernel argument.

Since GPU programs use thread id to infer the task for every thread, transformation of thread id can change the

task a thread. Similarly other thread index information such as thread block id also needs to be transformed if

they are used in the kernel.

Another program transformation that follows job swapping is data reorganization if job swapping adversely

a�ects memory coalescing e�ciency. Data reorganization depends on thread scheduling information. We use

existing technique to perform data layout transformation [29] [13]. The key idea is to reorganize data in memory

based on the new schedule of tasks, for example, place data processed by threads in the same warp (or block)

near each other in memory.

The second step is to pre-load data shared by threads in the same thread block into cache. If we use software

cache, we need to explicitly pre-load data into cache and determine the addresses in software cache, as illustrated

in Figure 8 (a). If we use hardware cache, for instance, the texture cache, we need to let the host function bind the

particular data objects to texture memory using the CUDA built-in function cudaBindTexture(). The GPU kernel

pre�xes every texture cache data reference using tex1Dfetch() as shown in Figure 8(a).

Overhead Control To reduce runtime overhead, we can perform SPAC partitioning and data layout transforma-

tion using the CPU while kernel is executed on the GPU. The CPU-GPU pipelining technique is proposed in

[28, 29] to overlap GPU computation and locality optimization so that the overhead is transparent. Our locality

optimization is performed once and we reuse the task schedule and data layout for performance improvement

for computation. We illustrate this overhead control model with an example in Figure 9. The CPU optimization

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:13

Fig. 8. Example code transformation.

Locality optimization
agent

 task schedule
generation and graph

partition

(A’,x’,schedule)

Iteration GPU CPU

…

…

SPMV <<<grid, block>>>(A,x);

SPMV<<<grid, block>>>(A’,x’, schedule);

SPMV<<<grid, block>>>(A’,x’, schedule);

SPMV <<<grid, block>>>(A,x); 1

n

n+1

end

Fig. 9. Overhead Control.

agent is working in parallel with the �rst n iterations and once it is done, the locality-optimized task schedule

and data layout is applied to the n + 1 iteration. We perform SPAC partition within the CPU optimization agent.

Rong et al. points out that in sparse linear algebra applications, once the best data layout and/or computation

schedule is obtained, it can be reused in multiple loop iterations or for di�erent computation task in the same loop.

We want to point out that other applications (besides sparse linear algebra) also share this property, for instance,

�uid dynamics and graph processing algorithms. Thus for this important set of applications, the overhead can be

amortized due to reuse of the partition result. We focus on this set of applications and describe in more details in

Section 5.

In the CPU-GPU pipeline model, the master CPU thread checks if the optimization agent is completed at the

end of every iteration and if so apply the optimization results. If the optimization thread does not complete when

the program �nishes, the master thread terminate it to ensure no performance degradation. We use this model to

take the overhead of SPAC into consideration and present the results in Section 5.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:14 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

5 EVALUATION
5.1 Experimental Methodology
We conduct the locality enhancement experiments on two GPUs: the NVIDIA Titan X (Pascal architecture) and

the GeForce GTX 680 (Kepler architecture) to evaluate the performance of SPAC. Table 2 shows the con�guration.

There are three con�gurations of L1 cache and shared memory for GTX 680: 16KB/48KB, 32KB/32KB and

48KB/16KB. Since L1 cache is not used for global memory data for GTX 680, we always con�gure shared memory

to be 48KB. We conduct the SPAC partition experiments on CPU – the Intel Core i7-4790 CPU with 4 cores at 3.6

GHz. Currently, the SPAC partition algorithm only utilizes one core, and thus the partition cost may be further

reduced using if using multi-core .

GPU Model Titan X GTX 680

Architecture Pascal Kepler

SM # 28 8

Core # 3584, 128 per SM 1536, 192 per SM

Shared memory 96KB per SM 48KB per SM

Texture cache 24KB per SM 48KB per SM

Linux kernel 2.6.32 3.1.10

CUDA version CUDA 8.0 CUDA 5.5

Table 2. Experimental environment.

Benchmark Application Domain

b+tree [8] Tree search

cfd [8] Computation �uid dynamics

gaussian [8] Gaussian elimination

particle�lter [8] SMC for posterio density estimation

SPMV [11] Sparse matrix vector mult.

CG [11] Conjugate gradient solver

Table 3. Benchmark summary.

Our benchmarks are listed in Table 3. We use six applications from various computation domains as described

in Table 3. This set of benchmarks are representative of important contemporary workloads that can bene�t from

cache locality enhancement.

We show the detailed experiment results for SPMV and CG in Section 5.2. We report the summary experiment

results for other four benchmarks in Section 5.3.

5.2 Detailed Analysis Results
We present the detailed analysis results for SPMV and CG for several reasons. First, SPMV is an important computation

kernel in many applications such as numerical analysis, PDE solvers, and scienti�c simulation. Second, the

conjugate gradient (CG) [19] is an application calls SPMV iteratively, representing an application case of SPMV.

Therefore, we can present both the performance improvement in individual kernel and the performance-overhead

trade-o� in a kernel to show how practical it is. We use real-world sparse matrices from the University of Florida

sparse matrix collection [12] and matrix market [4] as input to CG.

We compare our approach with the highly optimized implementation in cuSPARSE [26] and CUSP [11] libraries.

The CUSP SPMV kernel is open source. It reorders the data in a pre-processing step such that all non-zero elements

are sorted by row indices and then it distributes the non-zero elements evenly to threads. We are not aware of

cuSPARSE’s SPMV method implementation since its source code is not disclosed. However since it is a popular and

widely used library, and it is faster than CUSP for most of the times, we also include cuSPARSE for comparison.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:15

Name Dimension Nnz cuSPARSE time SPAC time

cant 62K*62K 2.0M 0.74 0.81

circuit5M 5.6M*5.6M 59.5M 15,806.64 211.82

cop20k_A 121K*121K 1.4M 6.74 6.63

Ga41As41H72 268K*268K 9.4M 7.03 4.24

in-2004 1.4M*1.4M 16.9M 157.99 68.48

mac_econ_fwd500 207K*207K 1.3M 8.83 6.83

mc2depi 526K*526K 2.1M 10.72 10.95

scircuit 171K*171K 0.96M 8.87 5.04

Table 4. Matrix Information. Nnz represents the total number of nonzero elements. cuSPARSE and SPAC shows total SPMV
kernel execution time in CG using the cuSPARSE, SPAC methods respectively on Titan X (in seconds).

0 0 A1,3 A1,4

A2,1 0 0 0

0 A3,2 A2,3 0

0 A4,2 0 A4,4

x1

x2

x4

x3

y1

y2

y4

y3
· =

x1

x2

x3

x4

y1

y2

y3

y4
A x y

x y
A·x=y

Fig. 10. Building locality graph for SPMV.

To construct a locality graph for SPMV, we let one vertex correspond to one element in the input vector x , and

one vertex correspond to one element in the output vector y. For any non-zero element A[i, j] in the input matrix

A, an edge connects the vertex j in the input vector and the vertex i in the output vector, since a non-zero A[i, j]
implies a multiplication of A[i, j] with x j and an addition to yi . We show an example on the locality graph for

SPMV in Figure 10.

With the locality graph constructed, we perform edge partition using the SPAC approach and we let one thread

block be mapped to one partition of the graph. We use software cache to store the necessary input and output

vector elements within each thread block, that is, all the unique input and output vector elements used in every

partition. Di�erent thread blocks might have di�erent shared memory demand since the number of unique data

elements in every partition might be di�erent. We pick the largest demand and set it as the shared memory

(software cache) usage per block (since the shared memory size for each thread block needs to be the same). We

will also show the results of using texture cache for only the input vector elements.

Table 4 shows the 8 matrices used in our experiments. We use matrices that have di�erent data access patterns to

show the applicability of SPAC. Note that here the execution time is the total SPMV kernel time in CG application

and it does not take the partition overhead into consideration.

Figure 11 and 12 compare the performance of four SPMV versions on Titan X and GTX 680 respectively, including

cuSPARSE, CUSP, the SPAC version that does not consider partition overhead (SPAC), and the version that takes

overhead into consideration (SPAC-adapt). SPAC-adapt results are obtained using the overhead control model

described in Section 4. We set the thread block size to 1024. We use cuSPARSE kernel time as the baseline, since it

is faster than CUSP for most matrices.

We observe SPAC based approach is faster than both of cuSPARSE and CUSP in most cases, except SPAC has a

marginal slowdown for cant. When using SPAC-adapt for cant, there is almost no slowdown compared with the

baseline. SPAC is slightly worse than CUSP on GTX 680 for in-2004 because the working set for some thread

block is large, thus causing SPAC to use a large amount of software cache, adversely a�ecting occupancy. SPAC
bene�ts from the large shared memory on Titan X, and thus it outperforms CUSP on Titan X for in-2004. We

also observe that in most cases, the performance of SPAC-adapt is similar to that of SPAC except for Ga41As41H72
and cant, where the partition time is large as compared with the kernel execution time and we can only optimize

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:16 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

 0

 0.5

 1

 1.5

 2

 2.5

cant
circuit5M

cop20k_A

Ga41A*

in-2004

m
ac*

m
c2depi

scircuit

S
p
e
e
d
u
p

30.5 74.6 74.6

CUSP cuSPARSE SPAC-adapt SPAC

Fig. 11. SPMV performance on Titan X.

 0

 0.5

 1

 1.5

 2

 2.5

cant
circuit5M

cop20k_A

Ga41A*

in-2004

m
ac*

m
c2depi

scircuit

S
p
e
e
d
u
p

16.0 25.5 27.6

CUSP cuSPARSE SPAC-adapt SPAC

Fig. 12. SPMV performance on GTX 680.

a small portion of SPMV invocations. Overall, the performance results are similar on both GPUs, and thus we

mainly show the results for Titan X in the rest of this section.

Figure 13 shows the normalized memory transaction number for three SPMV kernels on Titan X. All results are

normalized to that of cuSPARSE. We observe that memory transaction number is reduced signi�cantly for all

matrices except cant and Ga41As41H72. Overall, the transaction reduction maps well to the performance results.

Next, we compare the performance of SPAC when using texture cache or shared memory for the input vector.

Since the output vector is for reduction type writes, texture cache cannot be used to handle it. The shared memory

(software cache) is still used to store the elements in the output vector in texture cache version. Table 5 compares

their performance under di�erent thread block size on Titan X. The texture and software cache versions are

represented as tex and smem respectively. Software cache version outperforms texture cache version for almost

all matrices although by a small percentage. Note that the texture cache version still outperforms CUSP and

cuSPARSE in Figure 11 and 12.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:17

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

cant
circuit5M

cop20k_A

Ga41A*

in-2004

m
ac*

m
c2depi

scircuit

N
o
rm

a
liz

e
d

 r
e
a
d

 t
ra

n
sa

ct
io

n

3.22 1.74 3.55

CUSP cuSPARSE SPAC

Fig. 13. Normalized transaction number for SPMV.

Block size 256 512 1024

time (µs) tex smem tex smem tex smem

cant 114 109 116 112 119 114

circuit5M 3007 2843 3160 2976 2977 2798

cop20k_A 76 77 78 75 77 78

Ga41A* 450 432 478 453 469 437

in-2004 830 799 858 816 857 807

mac* 76 75 77 75 78 77

mc2depi 131 121 133 126 136 127

scircuit 59 58 59 59 61 60

Table 5. SPMV performance with di�erent thread block sizes and cache types on Titan X.

In general, the texture cache based approach could potentially pollute cache by evicting data before it gets

fully reused, while using software-managed cache does not have such a problem. When hardware cache have

performed similarly well as the shared memory case, it may be be considered to help improve programmability.

Finally, we show the sensitivity of our approach with respect to di�erent thread block sizes. Table 5 shows

the execution time of one kernel invocation in SPAC under di�erent thread block sizes. The results suggest the

performance at di�erent thread block sizes are similar to each other. However, using smaller block size implies

larger block/partition number, and thus longer partition time of SPAC. Taking both kernel performance and

partition overhead into consideration, we choose 1024 as the default block size in our experiments.

 0.0005

 0.001

 0.0015

128 256 384 512

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(a) b+tree

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

128 256 384 512

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(b) cfd (f097K)

 0.8

 1

 1.2

 1.4

128 256 384 512

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(c) cfd (f193K)

 1.2

 1.6

128 256 384 512

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(d) cfd (m0.2M)

 0.05

 0.1

 0.15

 0.2

4*4 8*8 16*16 32*32

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(e) gaussian

 0

 0.001

 0.002

 0.003

 0.004

128 256 384 512

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

original
SPAC

(f) particlefilter

Fig. 14. Application performance on di�erent block sizes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:18 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

5.3 General Analysis Results
Figure 14 shows the performance of four Rodinia applications under various thread block sizes on Titan X. The

original execution time is denoted as original in Figure 14. The execution time of SPAC is denoted as SPAC. In

these cases, the locality graphs are known at compile time or the SPAC partition information can be embedded

into the input �le format, i.e., the cfd benchmarks in Rodinia Benchmark suite. We show the experiments for

before using SPAC approach and after using SPAC approach without taking the overhead into consideration.

First, we observe that in most cases our optimized version outperforms the original version. The maximum

speedup is 2.40x for particlefilter at the thread block size 128.

 0.8

 1

 1.2

 1.4

 1.6

b+
tree

cfd (f097K)
cfd (f193K)
cfd (m

0.2M
)

gaussian
particlefilter

b+
tree

cfd (f097K)
cfd (f193K)
cfd (m

0.2M
)

gaussian
particlefilter

S
p
e
e
d
u
p

2.17

Titan X GTX 680

original SPAC

Fig. 15. General application performance summary.

Second, we observe that for most benchmarks, the SPAC approach improves performance at every thread block

size, except for gaussian. For gaussian, we have the speedup only for large thread block sizes. It is potentially

because with larger thread block size, there are more threads within a thread block and thus more potential data

sharing. The benchmark gaussian’s �rst two thread block sizes (inherent in the program) are no more than 64,

thus less data sharing potential. Thus the best speedup is obtained when the thread block size is 256 or larger.

Besides more potential data sharing, another advantage of larger thread block size is lower partition overhead

since the partition number decreases. Nonetheless, for the best performance of one program, it is not always

good to use larger thread block. For instance, there is a signi�cant performance degradation from the thread

block size 384 to 512 for all three inputs of cfd for the original program. This is because thread block size may

a�ect other performance factors, for example, the occupancy. For cfd, at the thread block size of 384, Titan X can

�t two thread blocks in each SM and achieve a total occupancy of 768 threads per SM, while only one thread

block can run on one SM at the block size of 512.

To ensure fair comparison, we pick the best performance across all thread block sizes for both the original

version and the SPAC version. In Figure 15, we show the best performance of SPAC over di�erent thread block

sizes versus the best performance of the original program across di�erent thread block sizes on both Titan X and

GTX 680. All data are normalized to the original version on that GPU. SPAC achieves signi�cant performance

gains, or at least no performance degradation, for all benchmarks. The performance improvement is similar for

b+tree on both GPUs. For particlefilter, SPAC performs better on Titan X because they bene�t from the

larger shared memory on Titan X. For cfd and gaussian, SPAC achieves better performance improvement on

GTX 680. For gaussian, the original kernel performs best at the block size of 8*8 on Titan X as shown in Figure

14e, but there is not much data sharing to exploit for SPAC at such a small block size. Although SPAC successfully

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:19

exploits data sharing and achieves better performance at larger block size, at the block size of 8*8 it does not

signi�cantly outperform the original kernel.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

b+
tree

cfd (f097K)
cfd (f193K)
cfd (m

0.2M
)

gaussian
particlefilter

b+
tree

cfd (f097K)
cfd (f193K)
cfd (m

0.2M
)

gaussian
particlefilter

N
o
rm

a
liz

e
d
 r

e
a
d
 t

ra
n
sa

ct
io

n

Titan X GTX 680

original SPAC

Fig. 16. Read transaction number.

Figure 16 shows the normalized L2 cache read transaction number measured by CUDA pro�ler for this set of

benchmarks. The reason why we do not show write transaction number is that there is no write sharing in these

benchmarks. All results are normalized to that of the original version at the same thread block size. The results

show that our technique can reduce memory transactions signi�cantly, since more memory requests are satis�ed

by software or texture caches within each SM. The performance results in Figure 15 are well correlated with the

memory tra�c results in Figure 16.

6 RELATED WORK
Graph Partition Model for Parallel and Distributed Computing

Graph partition models have been proposed to characterize data communication in parallel CPU computing

systems, but most of them focus on graph vertex partition. Hendrickson et al. study vertex-partition based graph

models in which vertices represent tasks [17, 18] and edges represent data communication. The vertex-partition

model correlate edge cut cost with data communication cost but do not directly give communication cost.

Hypergraph models [7, 21] can model communication cost directly. Hypergraph partitioning is used for cache

optimization. Ding et al. [14] show that optimal loop fusion for cache locality can be solved by k-way min-cut

of a hypergraph, and the problem is NP-hard for k>2. This formulation is recently generalized in the work by

Kristensen et al. [1]. A solution of k-way min-cut does not provide balanced partitioning and hence cannot be

used to solve the problem addressed in this paper.

The main drawback of the hypergraph model is its large overhead, as we demonstrate in Section 3.3, which

makes it infeasible for massively parallel computing.

Pregel [24] and GraphLab [23] introduce two parallel computation models based on message passing and

shared memory computing model, respectively. They assign all computation of one vertex to one processor due

to limitations of the graph partition model, while edge partition model allows computation of the same vertex to

be scheduled to di�erent processors to achieve better partition quality and load balance.

PowerGraph [16] uses graph edge partition and thus can distribute the computation of one vertex into several

processors. It also proposed random and greedy edge partition methods, but mainly streaming algorithms.

Bourse et al. propose to use weighted vertex partition to achieve balanced edge partition [6]. In Section 3.3, our

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

13:20 • Lingda Li, Robel Geda, Ari B. Hayes, Yanhao Chen, Pranav Chaudhari, Eddy Z. Zhang, and Mario
Szegedy

experiments and analytical analysis demonstrate our approach improves partition quality and also improves the

theoretical approximation guarantee.

Other Models for Improving Communication Cost in Parallel Computing
Bondhugula et al. introduce an automatic source-to-source transformation framework to optimize data locality,

and they formulate data locality problem with polyhedral model [5], which only works for regular applications

with a�ne memory indices. The graph model can be applied to these regular applications as well as irregular

applications, however, the polyhedral model can’t be applied to irregular applications, i.e., sparse linear algebra

solvers.

Ding and Kennedy proposed to use runtime heuristic for improving memory performance of irregular programs.

The programming support is known as the inspector-executor model. For locality optimization, this can be

automated and optimized by a compiler, as done initially for sequential code [DingK:PLDI99] and later for parallel

programs [Venkat+:PLDI15].

Most GPU dynamic workload partition studies mainly focus on optimizing memory coalescing rather than data

reuse, which is spatial locality rather than temporal locality. Zhang et al. propose to dynamically reorganize data

and thread layout to minimize irregular memory accesses [29]. Wu et al. also propose two data reorganization

algorithms to reduce irregular accesses [28] for more coalesced memory accesses.

There are also domain-speci�c studies for improving the memory performance of sparse matrix vector

multiplication. Bell and Garland discuss various sparse matrix representation formats [3]. Venkat and others

propose transformations to automatically choose sparse matrix representation and optimize inspector performance

in the inspector-executor model.

7 CONCLUSION
In this paper, we propose a simple yet e�ective graph edge partition technique based on the split-and-connect

heuristic to improve data communication cost. In practice, our algorithm provides good partition quality (and

better than similar state-of-the-art edge partition approaches, at least for power-law graphs) while maintaining

low partition overhead. In theory, we improved previous work [6] by showing that an approximation guarantee

of O (dmax
√
logn logk) hold for graphs with all ranges of parameters – that is, not just hold for the graphs with

m = Ω(k2) edges (k is the number of partitions).

This is also the �rst comprehensive study of how to characterize and optimize data communication cost using

graph edge partition model for massively parallel GPU computing platform. Compared with previous graph

partition models, our method provides high quality task schedule and yet has low-overhead. Our experiments

show that our method can improve data sharing and thus performance signi�cantly for various GPU applications.

ACKNOWLEDGEMENTS
We thank Milan Vojnovic for providing invaluable comments during the preparation of the �nal version of the

paper. We owe a great debt to the anonymous reviewers for their helpful suggestions on this paper. This work is

supported by NSF Grant NSF-CCF-1421505, NSF-CCF-1628401, and Google Faculty Award. Any opinions, �ndings,

conclusions, or recommendations expressed in this material are those of the authors and do not necessarily re�ect

the views of our sponsors.

REFERENCES
[1] Fusion of parallel array operations. pages 71–85, 2016.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.

[3] N. Bell and M. Garland. E�cient sparse matrix-vector multiplication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA

Corporation, Dec. 2008.

[4] R. F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, and J. Dongarra. Matrix market: a web resource for test matrix collections. In

Quality of Numerical Software, pages 125–137, 1996.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

A Simple Yet E�ective Balanced Edge Partition Model
for Parallel Computing • 13:21

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical automatic polyhedral parallelizer and locality optimizer. In

Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’08, pages 101–113, New

York, NY, USA, 2008. ACM.

[6] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition. In Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, pages 1456–1465, New York, NY, USA, 2014. ACM.

[7] U. V. Catalyürek and C. Aykanat. PaToH: a multilevel hypergraph partitioning tool, version 3.0. Bilkent University, Department of
Computer Engineering, Ankara, 6533, 1999.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Shea�er, S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.

In Proceedings of the 2009 IEEE International Symposium on Workload Characterization (IISWC), IISWC ’09, pages 44–54, Washington, DC,

USA, 2009. IEEE Computer Society.

[9] A. Corrigan, F. Camelli, R. Löhner, and J. Wallin. Running unstructured grid cfd solvers on modern graphics hardware. In 19th AIAA
Computational Fluid Dynamics Conference, number AIAA 2009-4001, June 2009.

[10] A. Corrigan, F. Camelli, R. LÃűhner, and J. Wallin. Running unstructured grid-based cfd solvers on modern graphics hardware. Int. J.
Numer. Meth. Fluids, 66:221–229, 2011.

[11] S. Dalton and N. Bell. CUSP: A C++ templated sparse matrix library, 2014.

[12] T. A. Davis and Y. Hu. The university of �orida sparse matrix collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, Dec. 2011.

[13] C. Ding and K. Kennedy. Improving cache performance in dynamic applications through data and computation reorganization at

run time. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design and Implementation, PLDI ’99, pages

229–241, New York, NY, USA, 1999. ACM.

[14] C. Ding and K. Kennedy. Improving e�ective bandwidth through compiler enhancement of global cache reuse. Journal of Parallel and
Distributed Computing, 64(1):108–134, 2004.

[15] G. Even. Fast approximate graph partitioning algorithms. SIAM J. Comput., 28(6):2187–2214, Aug. 1999.

[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed graph-parallel computation on natural graphs. In

OSDI, volume 12, page 2, 2012.

[17] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing. Parallel Comput., 26(12):1519–1534, Nov. 2000.

[18] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally unsymmetric sparse matrices for parallel processing. SIAM
Journal on Scienti�c Computing, 21(6):2048–2072, 2000.

[19] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. 1952.

[20] G. Karypis and V. Kumar. Metis-unstructured graph partitioning and sparse matrix ordering system, version 2.0. 1995.

[21] G. Karypis and V. Kumar. hMETIS 1.5: A hypergraph partitioning package. Technical report, Department of Computer Science,

University of Minnesota, 1998.

[22] R. Krauthgamer, J. S. Naor, and R. Schwartz. Partitioning graphs into balanced components. In Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages 942–949, Philadelphia, PA, USA, 2009. Society for Industrial and Applied

Mathematics.

[23] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: a framework for machine learning

and data mining in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph

processing. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages 135–146. ACM, 2010.

[25] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110. 2012.

[26] NVIDIA. cuSPARSE library. 2014.

[27] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs. In

Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pages 333–342, New York, NY, USA,

2014. ACM.

[28] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity analysis and algorithm design for reorganizing data to minimize

non-coalesced memory accesses on gpu. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, pages 57–68, New York, NY, USA, 2013. ACM.

[29] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-�y elimination of dynamic irregularities for gpu computing. In Proceedings
of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI,

pages 369–380, New York, NY, USA, 2011. ACM.

February 2017

Received November 2016; revised accepted

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article 13. Publication date: June 2017.

	Abstract
	1 Introduction
	2 Abstract Machine Model
	3 Data-centric Locality Model
	3.1 Problem Definition
	3.2 Partition Algorithm
	3.3 Comparison with Existing Methods
	3.4 Analytical Bound

	4 Locality Enhancement
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Detailed Analysis Results
	5.3 General Analysis Results

	6 Related Work
	7 Conclusion
	References

