
Complexity Analysis and Algorithm Design for Reorganizing
Data to Minimize Non-Coalesced Memory Accesses on GPU ∗

Bo Wu⋆, Zhijia Zhao⋆, Eddy Z. Zhang†, Yunlian Jiang‡, Xipeng Shen⋆

⋆The College of William and Mary, Williamsburg, VA, USA
†Rutgers University, NJ, USA

‡Google, USA

{bwu,zzhao}@cs.wm.edu, eddy.zhengzhang@cs.rutgers.edu, yunlian@google.com, xshen@cs.wm.edu

Abstract

The performance of Graphic Processing Units (GPU) is sensitive to
irregular memory references. Some recent work shows the promise
of data reorganization for eliminating non-coalesced memory ac-
cesses that are caused by irregular references. However, all previous
studies have employed simple, heuristic methods to determine the
new data layouts to create. As a result, they either do not provide
any performance guarantee or are effective to only some limited
scenarios. This paper contributes a fundamental study to the prob-
lem. It systematically analyzes the inherent complexity of the prob-
lem in various settings, and for the first time, proves that the prob-
lem is NP-complete. It then points out the limitations of existing
techniques and reveals that in practice, the essence for designing
an appropriate data reorganization algorithm can be reduced to a
tradeoff among space, time, and complexity. Based on that insight,
it develops two new data reorganization algorithms to overcome the
limitations of previous methods. Experiments show that an assem-
bly composed of the new algorithms and a previous algorithm can
circumvent the inherent complexity in finding optimal data layouts,
making it feasible to minimize non-coalesced memory accesses for
a variety of irregular applications and settings that are beyond the
reach of existing techniques.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Performance, Experimentation

Keywords GPGPU, Memory coalescing, Computational com-
plexity, Thread-data remapping, Runtime optimizations, Data trans-
formation

1. Introduction

Recent years have seen a rapid adoption of Graphic Processing
Units (GPU) for high performance computing. As a massively

∗ Zhang and Jiang worked on this project before their graduations from The
College of William and Mary.

// tid: the global ID of a thread
// M: num. of neighbors per molecule
ipos = pos [tid];
for (j=0; j< m; j++){
 jpos = pos [neighbors [j*M + tid]];
 computeForce (f, ipos, jpos);
}
force [tid] = f;

(a) codelet

(b) case 1: neighbors [0...3] = {4, 5, 6, 7}

(c) case 2: neighbors [0...3] = {9, 103, 23, 67}

Figure 1. (a) A simplified codelet of the force computation in a
molecular dynamics simulation. The values in neighbors decides
the access pattern of pos. (b) and (c) show a regular and irregular
pattern respectively.

parallel architecture, GPU significantly accelerates many regular,
data-parallel applications. But its benefits for irregular applications
are far less substantial, especially when the application contains
dynamic, irregular memory references.

The reason comes from the hardware properties of GPU. GPU
organizes its threads in groups and memory in segments. Every
W threads with consecutive ID numbers form a warp; every S
consecutive bytes in the global memory form a segment. At a
memory reference, the number of memory transactions needed to
load the data accessed by a warp equals the number of segments
the data fall onto. When that number is larger than the possible
minimum, the accesses are called non-coalesced memory accesses.

Non-coalesced memory accesses are common in irregular ap-
plications. Figure 1 (a) shows a simplified codelet in the core com-
putation in a molecular dynamics simulation. The underlined state-
ment “pos [neighbors [j*M + tid]]” gets the coordinates of a neigh-
bor of the current molecule. As a typical dynamic irregular refer-
ence, it may manifest various access patterns, determined by the
values contained in neighbors. In the case of Figure 1 (b), all ac-
cesses by the warp are to a single memory segment; only one mem-
ory transaction is necessary, assuming a segment can contain four
molecules’ positions. But in the case of Figure 1 (c), because of
irregular values in neighbors, the accesses are non-coalesced and
require four memory transactions. This kind of irregularity is com-
mon in a molecular dynamics simulation, thanks to molecules’
movements and their dynamic neighborhood. It is a key feature of
many scientific simulations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright © 2013 ACM 978-1-4503-1922-5/13/02...$15.00.

57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2442516.2442523&domain=pdf&date_stamp=2013-02-23

Non-coalesced accesses may result in memory transactions as
many as W times of the minimum, leading to a throughput a
number of factors lower than the peak of GPU [2, 5, 26]. They have
been the focused target of some recent studies. However, most prior
explorations [2, 12, 18, 20, 25] concentrate on static irregularities,
where the memory access patterns are known at compilation time.
The type of irregularity in our focus is dynamic: For instance, the
content of the indexing array neighbors in Figure 1 depends on the
input to the program and is updated throughout the simulation of
the molecules movement.

Dynamic irregular accesses have to be treated during runtime.
Some earlier studies [22] have relied on special hardware exten-
sions that modern GPUs do not have. A recent study [26] shows the
promise of pure software solutions. It develops a pipeline scheme
that makes it possible for CPU to reorganize data and threads for
a near-future GPU kernel invocation while GPU is working on the
current kernel. A related study [5] demonstrates the feasibility of
moving the reorganization to GPU so that CPU can also involve in
workload processing.

Despite that these studies have shown promising speedups, the
understanding to data reorganization for minimizing non-coalesced
GPU memory accesses remains preliminary. The focus of the pre-
vious studies has been on coordinating CPU and GPU to allow
runtime data reorganization. They have not explored fundamental
issues on data reorganization and its relation with GPU memory
performance. As a result, the reorganization algorithms they have
adopted either lack performance guarantees or are effective to only
some limited scenarios, as Section 3 reveals.

This current work provides the first principled understanding of
GPU data reorganization for minimizing non-coalesced accesses. It
makes four-fold contributions.

• Complexity Analysis: It systematically analyzes the relations
between data reorganization and GPU memory accesses, and
proves it infeasible to minimize memory transactions in poly-
nomial time through just data repositioning, unless P equals NP.
Furthermore, it proves that even if threads are allowed to be re-
grouped into warps, the complexity remains unchanged. The
results indicate that it is virtually in vain to keep searching for
a general, practical algorithm that can minimize GPU memory
accesses, either with or without hardware extensions, through
data repositioning, thread regrouping, or their combination—
the three methods that have been pursued by most previous
GPU memory optimizations. The strong theoretical results are
essential for guiding the directions of the current research ef-
forts. (Section 2)

• Limitations and Essence: This work points out the limitations
of existing algorithms for optimizing GPU dynamic irregular
references, and unveils that in practice, the essence for design-
ing an appropriate data reorganization algorithm can be reduced
to a classical tradeoff among space, time, and complexity. (Sec-
tion 3.1 and 3.2)

• Algorithms: Based on the insights, this work develops two
new data reorganization algorithms that complement prior al-
gorithms with respective strengths. It shows that the new algo-
rithms reduce space cost significantly with non-coalesced mem-
ory accesses kept minimized. (Section 3.3 and 3.4)

• Comparison and Selection: This work compares the various
algorithms, unifies them into an assembly, and develops some
selection guidelines and an automatic algorithm selector to ad-
dress GPU dynamic irregular accesses in various scenarios.
(Section 4)

• Evaluation: Experiments on a set of dynamic irregular appli-
cations show that the developed assembly, along with the al-

gorithm selector, circumvents the inherent complexity in find-
ing optimal data layouts, making it feasible to minimize non-
coalesced memory accesses for a variety of irregular applica-
tions and settings that are beyond the reach of existing tech-
niques. Compared to existing techniques, the assembly pro-
duces up to 2X speedup (10-50% on average), demonstrating
its promise as a comprehensive solution to dynamic irregular
memory accesses in GPU. (Section 5)

2. Problem Setting and Complexity Analysis

In this section, we first provide some background on GPU that
closely relates with the following discussions. We then describe
the main approaches researchers have been pursuing to tackle non-
coalesced GPU accesses. We finally reveal the fundamental chal-
lenges for such approaches by proving that using those approaches
to minimize non-coalesced accesses for general irregular references
is computational infeasible unless NP equals P.

2.1 Background on GPU

As a massively parallel device, GPU contains hundreds of cores
residing on a number of streaming multiprocessors (SM). When
a GPU kernel is launched, the runtime usually creates thousands
of GPU threads running on these cores in parallel. These threads
are organized hierarchically. A number of threads (32 in NVIDIA
GPU) with consecutive IDs compose a warp, a number of warps
compose a thread block, and all thread blocks compose a grid.
(This paper uses CUDA terminology.) A warp is the unit in GPU
scheduling; all threads in a warp proceed in lockstep.

GPU is equipped with several types of memory. The largest
is off-chip main memory called global memory. It consists of a
large number of segments (of 32, 64, or 128 bytes depending
on the access mode.) For the large size and long access latency
of global memory, its access efficiency is critical. GPU hence
offers memory coalescing, a hardware-enabled feature that uses
one memory transaction to load/store all the data in a memory
segment that are requested by a warp at a load/store instruction.
As a result, the execution of a load/store instruction by a warp
incurs K memory transactions, where K equals the number of
memory segments the requested data fall onto. Suppose the data to
load/store by a warp at a reference contain D bytes and a memory
segment is S-byte long. The reference is a non-coalesced reference
when K > ⌈D/S⌉. The corresponding memory accesses are
non-coalesced accesses. Another type of memory on GPU worth
mentioning is shared memory, which is on-chip with access latency
comparable to that of register files. A thread can access an element
that is loaded or stored into shared memory by another thread if
and only if the two threads belong to the same thread block. In the
following discussion, memory refers to global memory by default.

2.2 Objective and Complexity

The objective of non-coalesced access minimization is to minimize
the number of non-coalesced accesses of a GPU kernel. The mini-
mization, for its importance for GPU performance, has drawn lots
of attentions. However, satisfying solutions are still limited to some
special scenarios. In this section, we examine the inherent complex-
ity of the previous approach and prove that in general cases, using
the approach is infeasible to reach the objective unless NP equals
P. The results may guide the direction of future research, and also
lays the theoretical foundation for the rest of this work.

A GPU kernel may contain multiple references. We focus on
one reference first and discuss other scenarios later.

2.2.1 Data Repositioning and NP-Completeness

Data repositioning has been the main direction pursued by previous
work for minimizing non-coalesced accesses [2, 18, 22]. The es-

58

sential idea is to reorder data elements on memory so that the data
to be accessed by a warp can reside consecutively, covering the
minimum number of memory segments. For the example in Fig-
ure 1 (c), the transformation would create a new array Pos’ with
the same elements as Pos has but in a different order, such that the
four elements Pos[9], Pos[103], Pos[23], Pos[67] fall into a single
memory segment. Matrix transposing [22] is another example: By
repositioning elements on memory to create a column-major data
layout, it can minimize non-coalesced accesses for a column-wise
reference to the matrix.

Although it seems simple, using data repositioning can be com-
plicated when the data accessed by multiple warps overlap. Con-
sider a reference A[P [tid]], with P as follows
P[]={8, 23, 46, 93, 8, 9, 10, 67, 5, 11, 41, 67, 9, 41, 55, 59}.
Assume memory segment length S = 4 and warp size W = 4. The
repetitive values in P (highlighted in bold font) dictate that some
elements in A are accessed by multiple warps. Which segment to
put those values is tricky. For instance, putting A[8] into a segment
with A[23], A[46], A[93] would coalesce the first warp’s accesses
but leave the second warp’s accesses non-coalesced.

The issue has been largely limiting the applicability of data
repositioning. Despite many recent efforts, this approach has been
effective for only the cases where each target data element is ac-
cessed by only one warp in a kernel. In an application with dy-
namic irregular references, that condition rarely holds: In a molec-
ular dynamics, a molecule is often the neighbor of more than one
molecule; in a sparse matrix multiplication, an element in the vec-
tor is often used to multiply multiple elements in the matrix; in a
mesh simulation, a vertex is often shared by several triangles.

Complexity Theorem Prompted by the various difficulties people
have so far encountered in finding a general data repositioning algo-
rithm to guarantee minimum non-coalesced accesses, we conduct a
systematic analysis on the inherent complexity of the problem. An
important finding we obtain is that such an algorithm does not exist
unless NP=P. Formally, we develop the following theorem:

Theorem 1. Creating a new data layout through only data repo-
sitioning (which implies that each item in the original data struc-
ture has only one copy in the new structure) to minimize the non-
coalesced accesses for an arbitrary data reference on GPU is an
NP-complete problem.

As this is the first strong claim on the complexity of non-
coalesced access minimization, it is worth providing a formal
proof, for verifying its correctness as well as offering insights that
may be useful for analyzing the complexity of other GPU optimiza-
tion problems.

Proof Assume that the irregular reference, when executed by all
the GPU threads, accesses n unique data items. Let z be the length
of a memory segment (in the unit of data items.) The goal of the
repositioning is essentially to partition the n data items evenly
into n/z clusters such that when each cluster is put onto a single
memory segment, the total number of memory transactions at that
data reference is minimized. To prove the NP-completeness, we use
the following notations.

∆ : the set of all data items to be partitioned; n = |∆|; Ψ : the
set of all warps; m = |Ψ|; Ψ<x> = {w|w ∈ Ψ & w references
x} (x ∈ ∆); Ω : a complete partition of ∆ with z data items per
cluster; rC = |

⋃
x∈C

Ψ<x>| (C ⊆ ∆, |C| = z).
We can see that

⋃
x∈C

Ψ<x> essentially contains all and only
the warps that each accesses at least one element in C. So, essen-
tially, rC is the number of memory transactions incurred by all data
items in C when they are put into a single memory segment. Hence,
totally there are

∑
C∈Ω

rC memory transactions for partition Ω
if each cluster of data is put into one memory segment. The tar-

get problem is to find an Ω such that
∑

C∈Ω
rC is minimized. Its

corresponding decision problem is: Given an arbitrary number u,
whether an Ω exists such that

∑
C∈Ω

rC ≤ u. We call this deci-
sion problem DLDP (Data Layout Decision Problem).

Reduction from 3DM (three-dimensional matching), a known
NP-complete problem [11], to DLDP is enough to prove that our
target problem is NP-hard. 3DM is defined as follows.

• Input: 3 disjoint sets R, G, B, |R| = |G| = |B| = l, and a
set of 3-D vectors T , T ⊆ {< r, g, b > |r ∈ R, g ∈ G, b ∈ B}.

• Problem: Is there a set S meeting all these conditions (3DM
conditions): (1) S ⊆ T ; (2) |S| = l; (3) ∀ 〈r,g,b〉∈ S, ∀ 〈r’,g’,b’〉∈
(S - 〈r,g,b〉), r 6= r′, g 6= g′, b 6= b′.

From an instance of 3DM problem, we construct an instance of
DLDP as follows: ∆ = |B ∪ G ∪ P |, n = 3l; m = |T |; z = 3;
u = l(m − 1); Ψ : a set of m warps, with each warp having a
unique ID equaling one element in T , and a warp with ID 〈r,g,b〉
accesses x if and only if x ∈ ∆, x 6= r, x 6= g, and x 6= b.

We prove that a solution, represented as Ω̂, to the constructed

DLDP solves the 3DM problem. Because Ω̂ is a partition of ∆,

|Ω̂| = l; because Ω̂ solves the 3DM problem,
∑

C∈Ω̂
rC ≤ u.

From Ω̂ we derive a set of 3-D vectors Ŝ (|Ŝ| = |Ω̂|). Each element

in Ŝ, < y1, y2, y3 >, comes from one element in Ω̂, {x1, x2,
x3}, with “y1, y2, y3” as an ascending sequence of “x1, x2, x3” in
R,G,B order (i.e., ∀r ∈ R, g ∈ G, b ∈ B, r < g < b).

We prove that Ŝ is a solution to the 3DM problem—that is, it

meets all the 3DM conditions. It is obvious that Ŝ meets condition
two and three given its derivation from Ω̂. To prove the first con-

dition, we need to show ∀~v ∈ Ŝ ⇒ ~v ∈ T . This step uses the
following lemma: ~v ∈ T ⇒ r~v = m− 1; ~v /∈ T ⇒ r~v = m.

The correctness of the lemma is easy to see if one notices that
~v /∈ T means all warps in Ψ must access at least one element in ~v
(hence

⋃
x∈~v

Ψ<x> = Ψ, r~v = m), while ~v ∈ T means all but
one warp whose ID equals ~v access at least one element in ~v.

From the lemma, we see that if ∃~v ~v ∈ Ŝ and ~v /∈ T , then∑
C∈Ω̂

rC must be greater than u, u = l(m−1), contradicting the
initial condition that Ω is a solution to the DLDP. Thus, DLDP is
NP-hard. Apparently, DLDP belongs to NP; the optimal data layout
problem is hence NP-complete. Theorem 1 hence follows.

2.2.2 When Warp Reorganization is Allowed

The above proof assumes that only data repositioning is applied for
reducing non-coalesced memory accesses. Some recent study [26]
has shown that warp reorganization can help remove non-coalesced
accesses as well, and can be used together with data repositioning
for the optimization. In this subsection, we complement Theorem 1
by proving that using warp reorganization does not change the
NP-completeness of the problem. That is, we prove the following
strengthened complexity theorem:

Theorem 2. It is an NP-complete problem to minimize the non-
coalesced accesses for an arbitrary data reference on GPU through
data repositioning, warp reorganization, or both.

Warp reorganization is to swap threads across warps. It is also
called job swapping because it exchanges the jobs of swapped
threads and hence the data elements a warp accesses. The swapping
may remove non-coalesced accesses. For instance, suppose that
thread t3 accesses A[7] and thread t7 accesses A[3], while the
other threads in the first two warps access A[tid]. After swapping
t3 and t7, the new t3 will do the work originally done by t7 and
access A[3], while the new t7 will take over the work of t3 and
access A[7]. Both warps’ accesses become coalesced. Runtime
warp reorganization has been shown to be feasible through either
hardware extensions [9] or program transformations [26]. It may be

59

used together with data repositioning in minimizing non-coalesced
accesses [26].

We now prove that allowing warp reorganization does not
change the computational complexity of the data repositioning
problem. To prove it, it is enough to prove a special case of the
problem to be NP-complete. The special case we use is when each
data element is of the same size as the memory segment. In that
case, data repositioning has no effect on the number of memory
accesses as it does not change the clustering of data elements into
memory segments. So if we can prove that using only warp re-
organization to minimize non-coalesced memory accesses is NP-
complete, Theorem 2 is proved.

Warp reorganization is equivalent to grouping the jobs of the
threads into clusters with each cluster containing W jobs (W is the
number of threads per warp). Without loss of generality, consider
that a job contains just one irregular reference to an array. Let N
stand for the number of threads, M represents the total number
of memory segments that contain at least one data item requested
at the reference. We claim that it is NP-complete (in regard to
M) to partition N jobs evenly into N/W clusters such that when
each warp takes one cluster of jobs, the total number of memory
transactions at that data reference is minimized.

The proof is via a reduction from a known NP-complete prob-
lem, the partition problem [11] (represented as PAR to avoid con-
fusion). All jobs can be classified into M categories based on which
memory segment contains the data item requested in a job; we say
two jobs are of the same type if they are in the same category. Let
ni (i = 1, · · · ,M) represent the number of jobs in the ith cate-

gory. Apparently the total number of jobs N equals
∑

M

i=1
ni. In

the PAR problem, the goal is to decide whether a given set S of
integers can be partitioned into two subsets S1 and S2 such that
the sum of the numbers in S1 equals the sum of the numbers in
S2. The reduction to our problem is as follows. A special case of
our problem is that the size of each warp (W) is N/2. Our remap-
ping hence needs to assign the N jobs to two clusters. Apparently,
the number of memory transactions for a job cluster is the num-
ber of types of jobs in the warp. It can be seen that the achievable
lower bound of the number of memory transactions in our special-
case problem is M . It is obtainable only when M/2 types of jobs
fit exactly into one cluster; note that in this case, the integer set
S = {n1, n2, · · · , nM} is evenly partitioned. So, if we can find
the best partition of threads into warps in polynomial time (in re-
gard to M), we would be able to tell whether S can be evenly par-
titioned by checking whether the number of memory transactions
resulting from our mapping is M . Hence, the PAR problem would
be solvable in polynomial time, contradicting the well-established
NP-completeness of the problem. Theorem 2 follows.

2.3 Discussion

This section has analyzed the computational complexity of us-
ing data repositioning for minimizing non-coalesced accesses. The
proved NP-completeness should not rule out the possibility that
through some heuristic algorithms, the approach may still yield
good speedup on some special types of kernels. However, it does
indicate the extreme challenge to use it for achieving the optimal
for general cases. We next show that the challenge can be circum-
vented if a constraint assumed by the approach is relaxed.

3. Algorithms that Circumvent the Complexity

We design two new algorithms to circumvent the complexity fac-
ing data repositioning. The key observation is that the essential dif-
ficulty in data repositioning comes from an implicit constraint that
the produced new data layout uses no more space than the original.

If we allow more space to be used, the complexity of the problem
may reduce significantly.

Previous studies have not exploited this insight, except for the
one by Zhang and others [26], which takes advantage of extra
space but in an ad-hoc manner. In this section, we first review that
previous method, reveal its limitation, and crystallize the analysis
into an insight in the key tradeoff in designing a practical solution.
We then describe the two new algorithms we design.

The following discussion is based on reference A[P [tid]], a
conceptual form of dynamic irregular references. It assumes the
memory segment size (S) is a multiple of the working set size of a
warp. This condition often holds given that the warp size and S are
typically powers of 2. But even when it does not hold, the following
discussions are still valid except that some preprocessing needs to
be done to align data with memory segments.

3.1 Review of the Duplication Algorithm

The duplication algorithm is used by Zhang and others to optimize
irregular memory accesses [26]. For an irregular reference, such as
A[P [tid]], the algorithm creates a new array A′ such that A′[tid] =
A[P [tid]]; the reference to A[P [tid]] in the kernel is then replaced
with A′[tid]. The algorithm naturally ensures that all accesses of
a warp are to a consecutive memory region and there are no non-
coalesced memory accesses, as illustrated by Figure 4 (b).

The algorithm is called “duplication” as it creates duplicated
copies of a data element when the indexing array P contains repet-
itive values. Apparently, the new array A′ is as large as the number
of GPU threads (T), no matter how small the original array A is.
Even worse is when there are multiple references to the same ar-
ray (e.g., A[P [tid]] + A[P [tid] + v]), the algorithm creates a new
T -long array for each of the references.

3.2 Limitations and Tradeoff

The duplication algorithm converts irregular accesses to regular
ones. However, it may dramatically inflate space usage. For a K-
element array referenced n times by T GPU threads, the space
overhead is as much as a factor of n ∗ T/K. In a modern GPU, T
can be comparable with the number of bytes in the entire memory.

The large space overhead has two consequences. First, the ba-
sic duplication algorithm fails to apply when the space inflation ex-
ceeds the capacity of the memory. Second, the creation and transfer
of the large volume of data may introduce substantial time over-
head, throttling the optimization benefits. The previous work has
used partial duplication to alleviate the issues [26]. The idea is to
apply the transformation to only a fraction of the GPU threads. Al-
though it can reduce the space overhead, it compromises the quality
of the optimization proportionally. As Section 5 will show, it may
result in substantially lower speedup than what is possible.

Figure 2 shows the conceptual positions of the previous ap-
proaches in a space of optimization quality, complexity, and space
cost. Data repositioning and the duplication algorithm are at two
extreme ends of the spectrum of space cost. The partial duplication
lowers the space cost but also proportionally degrades the trans-
formation quality and lengthens the kernel execution time. Data
repositioning has the lowest space cost but the highest complexity.
So the key for having a practical algorithm is to find a sweet de-
sign point that reduces the space cost without compromising the
transformation quality and meanwhile possesses manageable com-
plexity. We next describe two new algorithms towards that goal.

3.3 Padding Algorithm

The padding algorithm tries to avoid some unnecessary data copies
made in the duplication algorithm without compromising the opti-
mization quality. Its basic observation is that if two threads (t1 and
t2) from the same warp access the same data element (a), there is

60

no. of non-coalesced accesses

s
p
a
c
e
 o

v
e
rh

e
a
d

reposition

duplication
partial duplication

computational complexity

s
p
a
c
e
 o

v
e
rh

e
a
d

reposition

duplication

NP-complete

0

unmanageable

manageable

(a) space-quality space (b) space-complexity space

0

Figure 2. Positions of various algorithms in the space-quality-
complexity coordinates. Graph (b) omits partial duplication for
legibility.

// inputIndArray, outputIndArray: the original and produced indexing arrays
// inputArray, outputArray: the original data array and its new copy after padding
function Padding(inputIndArray, outputIndArray, inputArray, outputArray)
 inputIndArray = SortByFrequency(inputIndArray);
 for each warp w,
 uniqueRefSet = FindUniqueRefs(w, inputIndArray, inputArray);
 nRemainingSlots = FindRemainingSlots(currentMemSegment);
 if uniqueRefSet.size <= nRemainingSlots,
 for each e in uniqueRefSet,
 add element e to outputArray;
 update outputIndArray;
 end
 else
 pad dummy values to outputArray for memory segment alignment;
 for each e in uniqueRefSet,
 add element e to outputArray;
 update outputIndArray;
 end
 end
 end
end

Figure 3. The pseudo-code of the padding algorithm.

no need to create two copies of that data element. We can simply let
them access the same copy of the data element. It will change the
one to one regular mapping between data and threads created by the
duplication algorithm, however, it will not create non-coalesced ac-
cesses since the two threads still access the same memory segment.

3.3.1 A Simple Design

A simple design is to just make the following modification to the
duplication algorithm. When the algorithm is about to create a copy
of an element in the new array A′, it checks whether the current
thread is the first of the current warp that accesses that element
and avoids the creation if it is not. (An entailed change is that
the original reference, say A[P [tid]], needs to be replaced with
A′[Q[tid]] rather than A′[tid], where Q contains the new mapping
between a thread and the data it accesses in A′.)

Unfortunately, this simple modification is insufficient for two
reasons. First, the avoided duplications cover only a small portion
of all the duplications because the chance for two threads access-
ing the same data element to come from the same warp is often
small. Second, the avoidance of some duplications often causes a
misalignment between the working set of a warp and memory seg-
ments. As a consequence, the working set of a warp may span over
the boundary of a segment, causing new non-coalesced accesses.

3.3.2 An Enhanced Design

Our enhanced design addresses the two problems of the simple
design through sorting and padding. Figure 3 shows the pseudo
code of the algorithm. It includes three steps.

threads: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

accessed
object: a a b b c c d d e e a a b b c d e f g h a a ...

original
layout: a c e g b d f h ...

acc freq: 6 3 3 1 4 3 1 1

(a) Original layout and accesses

new
layout: a a b b c c d d e e a a b b c d e f g h a a ...

acc freq: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Layout from Duplication

new
layout: a b c x c d e f g h ...

acc freq: 6 4 2 0 1 3 3 1 1 1

(c) Layout from Padding (“x” for empty slot)

new
layout: a b c d e f g h ...

acc freq: 6 4 3 3 3 2 1 1

(d) Layout from Sharing

Figure 4. An example that illustrates the algorithms of duplication,
padding, and sharing. Assume 4 objects per memory segment, 4
threads per warp, and 4 warps per block.

The first step reorders data elements based on their access fre-
quencies. At a data reference, the access frequency of a data ele-
ment is the number of threads that access it. The second step re-
organizes threads into warps. It reorders threads according to the
order of data elements—that is, all threads accessing data X must
precede all threads accessing Y if X precedes Y in the new data
sequence. Starting from the first thread, every W adjacent threads
form a warp in the resulting thread organization. These two steps
address the first problem of the simple design: By making threads
accessing the same data element locate closely and form warps,
they reveal more opportunities for saving duplications.

The third step puts data elements into memory segments. Start-
ing from the first data element in the new order, the data are greedily
packed into a memory segment one after one. But when it finds that
the current segment cannot hold all the data the current thread warp
accesses (e.g., the first segment in Figure 4 (c)), it moves all the
data accessed by that warp into the next memory segment, leaving
some empty slots at the end of the previous memory segment. Data
is duplicated only when necessary—that is, when one data element
is accessed by multiple thread warps whose working data sets do
not fall into the same memory segment. Examples are the two “c”s
in the layout in Figure 4 (c). This step addresses the second prob-
lem of the simple design. By padding a memory segment with some
empty slots when necessary, it aligns the working set of a warp with
memory segments.

Analysis This padding algorithm guarantees zero non-coalesced
access since it puts the working set of every warp into a single
memory segment. Its space overhead comes from the padded empty
slots and some duplicated data elements. If k threads in a warp
access one single data element, the empty slot in a memory segment
is at most as long as mod(S, ⌈W/k⌉), where ⌈W/k⌉ computes the
number of unique elements accessed by a warp and S is the number
of data elements a segment can contain. Both S and W are usually
power of two. So the worst case happens when k is small (hence
the remainder is large) but is not a power of two. Specifically, when
k = 3, the empty slot is the longest, up to W/3 − 1. But even in
that case, the space cost is much lower than that of the duplication
algorithm. The number of threads a memory segment serves in that

61

case must be no fewer than t = (S−W/3+1)/(W/3). Following
the assumption that S is the multiple of W, let S = r ∗ W with
r being a positive integer. The number of threads served, t, must
be no smaller than 3r − 1, which is at least 2. In the duplication
algorithm, these threads would use at least 2S memory (given that
r = 1 means S = W), double what they use in the padding
algorithm.

When analyzing the number of duplications in the padding al-
gorithm, it is important to notice that among all the warps accessing
the current memory segment, only the first of them may have some
data elements duplicated. It is because only when the working set
of a warp overlaps with the data elements in the previous memory
segment, those overlapped elements may have a duplicate in the
current memory segment (e.g., the second “c” in Figure 4 (c).) That
overlap must be partial since at a complete overlap, the previous
memory segment can already hold the working set of that first warp,
and hence that warp would have corresponded to the previous rather
than current memory segment. Due to the way threads are ordered,
that partial overlap entails that the working sets of the other warps
cannot overlap with the data in the previous segment, and hence
have no duplicated data. Following the observation, we can see that
in the case mentioned in the previous paragraph, the duplicated part
of a segment is at most W/3− 1, smaller than 1/3r of S. In com-
parison, the duplication algorithm creates at least 3 copies per data
element in that case. The data element contained in one memory
segment in the padding result would become 3∗ (S−W/3+1)/S
(which is greater than 3 − 1/3r and 2.67) segments in the result
from the duplication algorithm.

Limitation Despite its appealing properties, the padding algo-
rithm has one major limitation. Because it reorganizes not only
data but also threads, it may cause side effects to other references
in the kernel. For example, if a kernel contains “B[tid]+A[P[tid]]”,
after the third and ninth threads switch positions, they swap their
jobs, and the accesses to B must also be swapped. In another
word, B[tid] must be replaced with B[R[tid]] where, R[3] = 9,
and R[9] = 3. Otherwise, the new thread 3 would add A[P [9]]
with B[3] rather than B[9], causing wrong computation results.
As a result, the optimization of A[P [tid]] makes accesses to B
non-coalesced. So the padding algorithm is most beneficial when
all references in a kernel follow the same access pattern (e.g.,
B[P [tid]] +A[P [tid]].)

3.4 Sharing Algorithm

This algorithm overcomes the limitation of the padding algorithm
by increasing duplication avoidance from a different angle. It uses
the shared memory in GPU to enlarge the scope of duplication
avoidance. Shared memory is a type of on-chip memory in GPU.
Data written to shared memory by a thread is visible only to threads
in the same thread block. Shared memory has an access latency a
hundred times smaller than that of the global memory, and more
importantly, its performance is largely insensitive to irregularities
in accesses.

Insight The key insight of this algorithm is to shift irregular ac-
cesses from global memory to shared memory. As shared memory
is visible within a whole thread block, the sharing algorithm en-
larges the scope of duplication avoidance from a warp to a thread
block. Its basic idea is to create a copy of all the data accessed by
a thread block (a single copy per data element) and put them into
a consecutive chunk of memory. Then, it loads these data in a con-
secutive (hence coalesced) manner into shared memory. It redirects
memory accesses by the thread block to the corresponding copies
in the shared memory. By keeping only one copy for all data el-
ements accessed by a whole thread block, it avoids many duplica-
tions. By shifting irregular accesses to shared memory, it eliminates

// inputIndArray, outputIndArray: the original and produced indexing arrays;
// inputArray, outputArray: the original and produced data arrays;
// blockPos, blockSizes: the starting position and size of the working set of a thread block
function Sharing(inputIndArray, outputIndArray, inputArray, outputArray,
blockPos, blockSizes)
 [inputIndArray, inputArray] = DataClustering(inputIndArray, inputArray);
 for each thread block b,
 uniqueRefSet = findUniqueReferences(b, inputIndArray, inputArray);
 blockSizes[b] = uniqueRefSet.size;
 blockPos[b] = outputArray.size;
 for each e in uniqueRefSet,
 Add element e to outputArray;
 outputIndArray[e] = position(outputArray, e) - blockPos[b];
 end
 pad dummy values to outputArray for memory segment alignment;
 end
end

Figure 5. The pseudo-code of the sharing algorithm.

non-coalesced accesses to global memory. It uses clustering to fur-
ther increase the opportunity for duplication saving. The detailed
algorithm is as follows.

Algorithm Figure 5 outlines the pseudo-code of the sharing algo-
rithm. It includes two steps. In the first step, it conducts clustering
to swap threads among thread blocks so that the threads in a block
have as many accesses to the same data elements as possible, while
different blocks have as few as possible.

Many clustering algorithms can serve for the purpose. In our
implementation, we use two. The first is a graph partition-based
clustering [23], which is especially suitable for applications with a
graph topology, such as the distribution of molecules in a molecular
dynamics simulation, the structure of a mesh in a mesh simulation.
In these applications, typically each thread is in charge of one
node in the graph. The algorithm randomly selects some nodes
as seeds and assign each of them a distinct cluster number. The
nodes then iteratively propagate the cluster memberships to their
neighbors. The threads are clustered by inheriting the cluster ID
of their corresponding nodes. The second clustering algorithm is
suitable for other cases. It uses the working set of a thread as its
feature and applies the standard hierarchical clustering to build up
the clusters.

After clustering, the second step prepares data to be loaded
into shared memory and creates a new indexing array to reference
them. Specifically, it places the data elements accessed by each
thread block continuously into a global array. It is possible that
even after the clustering, the working sets of two thread blocks
may still overlap. In that case, some data will have to be duplicated
across thread blocks. Some trivial padding fills up the final memory
segment a thread block uses. Figure 4 (d) shows an example. The
clustering switches threads 9 and 10 with threads 21 and 22. After
that, each thread block accesses four unique data elements and there
is no overlaps between the working sets of the two blocks and hence
no duplications. Two meta-arrays, blockPos and blockSizes, record
the starting offset and the number of accessed data elements in
the new data array for each thread block. They add minor space
cost. When the GPU kernel executes, each thread block loads the
corresponding block of data to shared memory according to the
meta-arrays.

Notes We make several notes. First, the clustering step is op-
tional. It increases the chance for saving data duplications, but even
if it is not used, the algorithm can still remove all non-coalesced ac-
cesses and avoid duplications inside a thread block.

Second, when clustering is used, threads in different blocks may
get swapped. However, unlike the padding algorithm case, even
with the swapping, the sharing algorithm can still apply to a ker-
nel containing multiple references with different access patterns. It
is because the sharing algorithm does not require data references to

62

remain or become regular. Consider the example mentioned earlier,
B[tid]+A[P [tid]]. After clustering-incurred thread swapping, the
references may become B′[Q[tid]] + A′[P ′[tid]] and both refer-
ences become irregular. However, the second step of the sharing
algorithm ensures that both arrays will be loaded into the shared
memory in a coalesced manner. Accesses to the copies in the shared
memory may be irregular, but recall that the performance of shared
memory is resilient to access irregularity. It is worth noting that for
this algorithm to work properly, the clustering and data reorgani-
zation need to put all the references (B[tid] and A[P [tid]] in our
example) into consideration.

Third, the usage of shared memory may have two side effects on
the performance of the kernel. The first is the time overhead of the
introduced accesses to shared memory, which is often negligible
compared to the time incurred by global memory accesses, espe-
cially for the irregular applications that are often memory latency
bound. The second effect is that because shared memory is parti-
tioned to all active thread blocks on a streaming multiprocessor, a
large usage of shared memory by a thread block may reduce the
number of thread blocks that can be active at the same time (called
GPU occupancy.) Our experimental results in Section 5 show that
the effect is not obvious on irregular applications.

Finally, when a problem size is large, the working set of a thread
block could be larger than the shared memory. Fortunately, we
observe that for most kernels, when the problem size increases, the
problem size per thread block often remains unchanged but more
thread blocks are created. In exceptional cases, to apply the sharing
algorithm, the kernel can be modified to break the task of one block
into smaller tasks and assign them to more thread blocks.

Analysis Quality-wise, as described in the algorithm, after the
sharing algorithm applies, the accesses to the global memory
become consecutive and coalesced. It maintains the zero non-
coalesced accesses guaranteed by the duplication algorithm.

Space-wise, the algorithm saves space cost by avoiding data
duplications for threads inside a block. The maximum number of
copies of a data element is the number of thread blocks, rather
than the number of threads in the duplication algorithm. If on
average k (k < B, B for the number of threads per block) threads
access one data element, with a perfect clustering that puts threads
accessing the same data element into a single block, the algorithm
can virtually avoid all data duplications. In practice, the amount
of savings depends on the clustering quality (or how frequently
multiple thread blocks access the same data elements if clustering
is not used.) Section 5 provides the empirical results.

3.5 Discussion

The two new algorithms introduced in this section guarantee zero
non-coalesced access as the duplication algorithm does. Although
they reduce the space overhead of the duplication method substan-
tially, it should be noted that they do not guarantee minimum space
cost. Designing an algorithm with that guarantee and zero non-
coalesced accesses is not the goal of this work. In fact, that task is
no easier than the data positioning problem (they form dual prob-
lems with each other.) Section 5 will show that the two algorithms
do provide practical solutions to a variety of programs.

4. Algorithm Selection and Integration

The three algorithms described in the previous section have differ-
ent strengths and weaknesses. In this section, we provide a qualita-
tive comparison, and describe an automatic selector and its integra-
tion in a runtime library.

Qualitative Comparison We summarize the qualitative differ-
ences among the three algorithms as follows.

// T: # of threads; D: the set of memory references;
// D1: working set of a thread block;
// Z: the size of the irregularly accessed data;
if T is less or comparable with Z:
 use duplication;
else if D has a single access pattern:
 use padding;
else if D1 is smaller than shared memory:
 use sharing;
else:
 use duplication or change kernel to use sharing.

Figure 6. Guidelines for algorithm selection.

• Applicability: The padding algorithm is applicable to kernels
that have a single reference pattern. While the other two algo-
rithms do not have such a constraint, the sharing algorithm may
need kernel modification when the working set of a thread block
is too large to fit into shared memory, and the duplication algo-
rithm may be applicable to only part of the data when the space
limit is reached.

• Space cost: By avoiding unnecessary duplications, the padding
and sharing algorithms use much less space than the duplication
algorithm does.

• Optimization capability: All three algorithms have the capa-
bility to eliminate all non-coalesced memory accesses (in their
applicable scenarios.) However, when being applied at runtime,
the realizable benefits also depend on their runtime overhead.

• Transformation overhead: The time overhead of the duplica-
tion algorithm is in the creation and transfer of the new data
copies, which can be substantial when the number of threads is
very large or there are multiple references of different patterns
to the same array. For the padding algorithm, the overhead in-
cludes the data and threads sorting time in addition to the cre-
ation and transfer of the new arrays. The overhead of the sharing
algorithm consists of data creation and transfer time, the clus-
tering time, the accesses to shared memory and the side effect
on occupancy. Due to the large space reduction, the data cre-
ation and transfer in the two new algorithms usually take much
less time than in the duplication algorithm. Data creation and
transfer usually reside on the critical path of dynamic simula-
tion applications, but the sorting and clustering in those two al-
gorithms do not and hence can be largely hidden (e.g., through
the CPU-GPU pipeline in G-Streamline [26].) We will come
back to this point later in this section.

Algorithm Selection Based on the differences, we develop some
simple guidelines, as Figure 6 shows, to help programmers select
the suitable algorithm when writing a new program.

Meanwhile, we provide an automatic selector based on the on-
line profiling and adaptive control offered by G-Streamline, a run-
time library we previously developed [26]. The runtime library
works when the GPU kernel is invoked in a loop. By profiling
the initial several iterations during runtime along with some perfor-
mance models of the system (e.g., the time to transfer a data from
CPU to GPU, the time to create a data copy) built ahead of time
through offline profiling, it estimates the kernel running time and
optimization overhead to determine the suitable optimization algo-
rithm to apply and the appropriate optimization parameters to use
(e.g., the fraction of data to optimize in partial duplication.) Many
irregular applications, including dynamic simulations and numeri-
cal calculations, are of that iterative pattern and are amenable for
the runtime library to work. Our automatic selector employs the on-
line profiling to estimate the amount of overhead of the algorithms

63

and the kernel running time to pick the algorithm with the largest
performance potential.

Integration with G-Streamline We integrate the selector and the
reorganization algorithms into G-Streamline. G-Streamline uses a
CPU-GPU pipelining scheme to allow runtime optimization of a
future kernel invocation to happen on CPU when GPU is running
the current invocation. However, if the future kernel’s optimiza-
tion depends on its previous invocation result, the optimization has
to happen on the critical path. In that case, to make the optimiza-
tion still happen asynchronously, kernel splitting is used so that the
computations of a kernel are split and put into two parallel sub-
kernels. The optimization of the second sub-kernel can run with the
invocation of the first sub-kernel. The ratio between the amount of
task between the second and first sub-kernel is called transforma-
tion ratio. The more costly the optimization is, the lower the ratio
has to be so that the invocation of the first sub-kernel can hide the
optimization overhead.

For all irregular applications we find, among the major oper-
ations in the three algorithms, sorting and clustering can happen
across kernel invocations, but data creation and transfer are on the
critical path due to dependences across kernel calls. They have
to rely on kernel splitting to hide their overhead. In Section 5,
we will see that the padding and sharing algorithms have much
higher transformation ratio than duplication for their much smaller
overhead in data creation and transfer. It is worth noting that G-
Streamline uses its online profiling scheme to determine the suit-
able transformation ratio to ensure all overhead is hidden. If an op-
timization is infeasible to give benefits, G-Streamline shuts it down
automatically to prevent any slowdown to the kernel.

Integrating the data reorganization algorithms into G-Streamline
does not change the library’s interface. It only adds a handful of
functions as alternatives to the duplication algorithm already pre-
senting in G-Streamline. The usage of the modified G-Streamline
is the same as before [26]: Users insert several function calls into
the GPU application to invoke the runtime asynchronous optimiza-
tions and online profiling; some minor changes to the kernel may
be needed, including replacing old indexing arrays with new ones.

5. Evaluation

In this section, we evaluate the proposed algorithm assembly on
eight benchmarks in Table 1, which all have dynamic irregular
memory accesses. For comparing with the state of the art [26], they
include all memory benchmarks used in the previous work: CFD
is an unstructured grid finite volume solver; CG is a conjugate
gradient method with sparse matrix-vector multiplication as its
kernel; NN is for nearest-neighbor clustering; UNWRAP is for 3-
D reconstruction. MD is a molecular dynamics simulation from the
Shoc benchmark suite [7]; NBF and IRREG are derived from two
irregular CPU applications heavily used by previous research [10].
The former is part of GROMOS, a force field simulation; the latter
is the core of an iterative partial differential equation solver. The
benchmark MERGE is a database update program. All code has
gone through performance tuning to fit the execution models of
GPU. The inputs to MD, IRREG, NBF and CFD consist of some
nodes and neighbor lists generated randomly. The input to MERGE
includes some indexing arrays of a set of data generated randomly.
The inputs to CG contain a sparse matrix and vector. The locations
of the non-zero elements in the matrix exhibit some patterns such
that multiple rows of the matrix happen to multiple with a similar
set of elements in the vector. The inputs to NN and UNWRAP come
with the benchmarks.

We experiment on two types of GPU devices. One is NVIDIA
Tesla C1060 hosted in a quad-core Intel Xeon E5640 machine,
and the other is NVIDIA GTX480 hosted in a quad-core Intel

Table 1. Benchmarks and selected optimization algorithms
(M1:Tesla C1060; M2: GTX480)

benchmark description alg. on M1 alg. on M2

MD molecular dynamics Sharing Sharing
IRREG partial diff. solver Sharing Sharing
NBF force field Sharing Sharing
CFD finite volume solver Sharing Sharing
CG conjugate gradient Sharing Sharing
UNWRAP 3-D reconstruction Dup. (not runnable)
NN nearest neighbor Dup. Dup.
MERGE database update Padding Padding

unwrap cannot run on GTX480 for unknown reasons.

Table 2. Transformation ratios
benchmark Dup. Sharing

C1060 GTX480 C1060 GTX480

MD 0.25 0.1 0.85 0.65
IRREG 0.4 0.1 0.9 0.7
NBF 0.4 0.15 0.95 0.8
CFD 0.35 ∗ 0.6 ∗
CG 0.45 0.15 0.5 0.2
UNWRAP 1 - 1 -
NN 0.7 0.4 0.7 0.4
MERGE 0.3 0.3 0.6 0.6

∗: optimization is shut down; “-”: not runnable.

Figure 7. Speedup of selected algorithms

Xeon E5520 machine. Both machines have CUDA4.2 installed.
We obtain hardware performance through the NVIDIA’s CUDA
profiler.

Results Overview Figure 7 reports the kernel speedups on both
machines with the baseline as the execution time of the original
GPU version. All overhead, including transformation and extra data
transfer, is included. The selector-based algorithm assembly pro-
duces up to 21% speedup on GTX480. It gives even larger speedup
(up to 109%) on C1060 because that device is more sensitive to
irregular accesses for its lack of on-chip cache. (It is worth noting
that having cache or not on massively parallel processors is still a
debatable topic; some recent chips, such as Intel SCC, do not have
cache for power efficiency.)

For further confirmation, we use the NVIDIA hardware perfor-
mance profiler to measure the memory load efficiency. Load ef-
ficiency is defined as the ratio of requested global memory load
throughput to actual global memory load throughput. As Figure 9

64

Figure 8. Speedup of all algorithms (Tesla C1060)

Figure 9. Memory load efficiency of selected algorithms.

shows, the algorithm assembly improves the average efficiency by
4.9X on C1060 and 7.2X on GTX480 over the original version.

The two rightmost columns of Table 1 report the selected algo-
rithms on the two machines. Figure 8 shows the speedups brought
by each algorithm on Telsa C1060, confirming that all selections
except for the one for CG on Telsa C1060 are correct. (We explain
the selection error later in the detailed analysis on CG.)

Six of the eight benchmarks benefit the most from the newly de-
signed algorithms on at least one machine. As Figure 8 shows, the
new algorithms produce extra speedup as much as 8-60% over the
duplication algorithm. It is mainly due to the larger transformation
ratios (shown in Table 2) enabled by their large reduction of the
overhead in data copy and transfer. The padding algorithm, due to
its constraint on access patterns, is applicable to only the MERGE
benchmark in the suite.

Overall, the results show that the two new algorithms signifi-
cantly enhance the power of data reorganization for irregular mem-
ory optimizations. The algorithm assembly and online selector pro-
duce some promising speedups for most of the benchmarks. We
next discuss each benchmark in further details.

MD, IRREG and NBF MD simulates the interactions of a num-
ber of molecules in a 3-D space. Two molecule nodes are neigh-
bors if their distance is smaller than some predefined threshold.
One thread is in charge of each node. In a simulation iteration, that
thread traverses all its neighbors to calculate the force between each
neighbor and that node. The inefficient memory references come
from reading neighbors’ positions.

The duplication algorithm improves the performance by dupli-
cating position values to make sure adjacent threads load adjacent
memory locations. Figure 10 shows that the full duplication can
give 2X speedup on C1060 when overhead is not counted. But the
overhead of data creation and transfer throttles the speedup to only
15%. The sharing algorithm has a higher performance potential
than the duplication algorithm for the smaller working sets. Fig-

Figure 10. Potential speedups of all algorithms (Tesla C1060)

Figure 11. Normalized space overhead (padding is only applicable
to MERGE.)

ure 11 reports that the sharing algorithm cuts the space overhead
by 96%, which explains the seven times more speedup it creates
than the duplication algorithm does when overhead is counted as
Figure 7 shows.

The tremendous space reduction comes from two reasons. First,
the irregular reference to data array is surrounded by a loop to
traverse all neighbors, and in each iteration the memory access
pattern of all threads is different depending on the topology of the
interaction graph. The duplication algorithm, therefore, duplicates
the same array the same number of times as the iteration number.
Second, Sharing benefits greatly from clustering, which places
adjacent nodes in topology closely in memory accessed by threads
in the same block.

IRREG and NBF, like MD, have a graph topology. Figure 10
shows different potentials, because their kernels have different ra-
tios of computation to memory accesses. Nonetheless, the sharing
algorithm is also shown to be the best choice for them due to the
reasons similar to MD. It is worth mentioning that the benefits of
the optimizations also depend on the frequency of the neighbor list
update in these simulation programs. When the update is frequent,
the data transformations need to be applied often and hence lead
to higher transformation overhead. When the overhead cannot be
hidden completely, the runtime control of G-Streamline can adap-
tively adjust the fraction of data to transform to trade data layout
quality for transformation efficiency [26]. A detailed study on var-
ious tradeoffs of the different algorithms in these frequent update
scenarios are our future work.

CFD The program, CFD, computes force field of many particles.
Each particle has substantially more features than the molecules
in MD, and so each thread block processes more data. Figure 10
shows a potential of more than 3 times speedup from the duplica-
tion algorithm. But the data transfer overhead throttles the poten-
tial. The algorithm eventually produces 31% benefit with a 0.35

65

optimization ratio on C1060. The smaller space overhead of the
sharing algorithm leads to a larger optimization ratio (0.6) and a
higher speedup (37%.)

CG The kernel in CG does sparse matrix multiplication. The ma-
trix is stored in the Compresses Sparse Rows (CSR) format. In the
irregular kernel, one thread is in charge of one non-zero element in
the sparse matrix. The accesses to the vector may not be coalesced
depending on the sparsity in each row. The duplication and sharing
perform similarly well in the potential graph. The best speedup on
C1060 is 1.85 times, while the performance gain is around 20% on
GTX480 due to the cache effects on the reuses of the elements in
the vector. Figure 10 reports that the sharing algorithm has slightly
larger potential than the duplication on C1060. The better algo-
rithm, however, is duplication, because of the overhead caused by
shared memory accesses. The subtle difference is not captured by
the online algorithm selector, causing the sharing algorithm being
selected. But the speedup lost is only less than 5%.

UNWRAP The kernel of this program is in a central loop, which
transforms an image from the Cartesian coordinate system to the
Polar coordinate system. Unlike the other programs, this program
do not have data dependences carried by the different invocations
of the kernel. The first tens of iterations of the program success-
fully overlap the overhead of both the duplication and sharing al-
gorithms. The duplication was shown to be the better algorithm for
its lack of the side effects in shared memory usage. (For unknown
reasons, the benchmark cannot run on GTX480.)

NN The nearest neighbor identification program, NN, has a cen-
tral loop to process an unstructured input file chunk by chunk. The
kernel is launched once for each chunk, and calculates the Eu-
clidean distances from the target location to each record in that
chunk. At the end of the program, the main thread processes all dis-
tance results and obtains the K nearest neighbors. Figure 10 shows
the large speedup potential on both C1060 and GTX480. The shar-
ing algorithm does not reduce any space overhead as reported in
Figure 11. The reason is that one record is only processed once, and
the duplication algorithm essentially just transposes the data, cre-
ating no extra data copies. Like UNWRAP, there is no loop-carried
dependence for NN, but the transformation and transfer overhead
can not be fully overlapped, and we obtained 0.7 and 0.4 optimiza-
tion ratios on C1060 and GTX480 respectively. On this special
benchmark, the duplication algorithm is a better algorithm in both
machines, producing higher speedup than sharing.

MERGE MERGE has the same access pattern for both loads and
stores. Padding algorithm is applicable. As Figure 10 shows, Du-
plication and Padding have quite similar potential. Padding has
a larger potential than Sharing because it needs no shared mem-
ory accesses. Padding reduces the size of transformed data signifi-
cantly. Duplication, due to the memory size limit, only manages to
transform 30% of data. Padding is the best choice on both GPUs for
this program. The speedups on the two machines are quite similar
on this program. The reason is that the program has few short reuse
distances and hence does not benefit from cache much.

6. Related Work

Sections 1 and 5 have compared this work with previous studies [5,
22, 26] on optimizing dynamic irregular memory accesses on GPU.
This section reviews some other related studies.

A number of studies have proposed compiler techniques to opti-
mize GPU memory references. Examples include GPU optimizing
compilers [12, 25], OpenMP-to-CUDA compilers [18], polyhedral
models [2], performance tuning [20], and many others that cannot
be listed for lack of space. All these techniques have focused on

static irregularities that are amenable for compiler analysis. The
usage of shared memory in the design of our sharing algorithm is
inspired by some of those previous work [2]. But to our best knowl-
edge, the sharing algorithm is the first algorithm that uses cluster-
ing and shared memory to avoid data duplications for runtime data
reorganizations.

There are some recent studies exploring the synergistic usage of
CPU and GPU, including the execution strategies proposed by Huo
and others [13], the exploitation of OpenCL [16], and so on. In this
work, we use the CPU-GPU pipeline created in G-Streamline [26]
as it meets the needs for hiding transformation overhead.

Thread divergence is another type of dynamic irregularity in
GPU, defined as the threads in a warp follow different paths of a
kernel. Some hardware extensions have been proposed to remove
thread divergences from a kernel execution [9, 19]. Carrillo and
others [3] have proposed loop splitting and branch splitting to al-
leviate register pressure caused by diverging branches. As pointed
out by an earlier work [26], thread divergence and non-coalesced
memory accesses essentially stem from the similar source, a mis-
match between threads and data. It suggests that the findings from
this study are potentially usable for helping eliminate thread diver-
gences as well.

Data reorganization has been used for many CPU data locality
enhancements (e.g. [1, 4, 6, 8, 15, 24].) Some of them have espe-
cially concentrated on irregular applications [10, 21]. Kulkarni and
others have studied locality issues of irregular data structures in
the contexts of optimistic parallelism [17] and scheduling [14]. As
a massively parallel architecture, GPU displays different memory
access properties from CPU, exemplified by the hierarchical thread
organizations, hardware enabled memory coalescing, and the SIMT
execution model. All these features create differences in the chal-
lenges and opportunities in applying data reorganization, triggering
the new set of innovations in this paper on both complexity analysis
and transformation techniques.

7. Conclusion

This paper presents some fundamental understanding in exploit-
ing data reorganization for minimizing non-coalesced memory ac-
cesses on GPU. It reveals the complexity of the problem by proving
that it is NP-complete to create a data layout through data reposi-
tioning to minimize non-coalesced memory accesses on GPU, no
matter whether thread reorganization is allowed. It points out that
it is possible to circumvent the complexity by relaxing the space
constraint in data repositioning. It introduces two new algorithms
for minimizing non-coalesced memory accesses while avoiding the
space inflation problem of a previous algorithm. It compares the
various algorithms, presents some selection guidelines, and devel-
ops an automatic selector in a runtime library. Experiments show
that the new algorithms excel previous techniques especially under
space pressure. The algorithm assembly, assisted by the algorithm
selector, enhances the performance of a set of dynamic irregular
applications significantly, providing promising solutions to a large
class of dynamic irregular references.

Acknowledgment

We thank Weizhen Mao for her suggestions to one of the NP-
completeness proofs. We owe the anonymous reviewers our grat-
itude for their helpful comments to the paper. Some of the de-
vices used in this study were donated by NVIDIA. This material
is based upon work supported by the National Science Foundation
under Grant No. 0811791 and CAREER Award, DOE Early Career
Award, and IBM CAS Fellowship. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of

66

the authors and do not necessarily reflect the views of the National
Science Foundation, DOE, or IBM.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers:

Principles, Techniques, and Tools. Addison Wesley, 2nd edition,
August 2006.

[2] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan. A compiler framework for optimiza-
tion of affine loop nests for GPGPUs. In ICS’08, pages 225–234, 2008.

[3] S. Carrillo, J. Siegel, and X. Li. A control-structure splitting optimiza-
tion for gpgpu. In Proceedings of ACM Computing Frontiers, 2009.

[4] G. C. Cascaval. Compile-time Performance Prediction of Scientific

Programs. PhD thesis, University of Illinois at Urbana-Champaign,
2000.

[5] S. Che, J. W. Sheaffer, and K. Skadron. Dymaxion: Optimizing
memory access patterns for heterogeneous systems. In SC, 2011.

[6] T. M. Chilimbi and R. Shaham. Cache-conscious coallocation of hot
data streams. In PLDI, 2006.

[7] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth, K. Spafford,
V. Tipparaju, and J. Vetter. The scalable heterogeneous computing
(shoc) benchmark suite. 2010.

[8] C. Ding and K. Kennedy. Improving effective bandwidth through
compiler enhancement of global cache reuse. Journal of Parallel and

Distributed Computing, 64(1):108–134, 2004.

[9] W. Fung, I. Sham, G. Yuan, and T. Aamodt. Dynamic warp formation
and scheduling for efficient gpu control flow. In MICRO’07, pages
407–420, Washington, DC, USA, 2007. IEEE Computer Society.

[10] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific
codes. IEEE Transactions on Parallel Distributed Systems, 17(7):606–
618, 2006.

[11] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems.
PWS Publishing Company, 1995.

[12] A. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge:
portable stream programming on graphics engines. In ASPLOS, 2011.

[13] X. Huo, V. Ravi, W. Ma, and G. Agrawal. An execution strategy
and optimized runtime support for parallelizing irregular reductions
on modern gpus. In ICS, 2011.

[14] Y. Jo and M. KulKarni. Enhancing locality for recursive traversals of
recursive structures. In OOPSLA, 2011.

[15] M. Kandemir. A compiler technique for improving whole-program
locality. In POPL, 2001.

[16] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee. Opencl as a unified
programming model for heterogeneous cpu/gpu clusters. In PPoPP,
2012.

[17] M. Kulkarni, K. Pingali, G. Ramanarayanan, B. Walter, K. Bala, and
L. P. Chew. Optimistic parallelism benefits from data partitioning. In
ASPLOS, pages 233–243, 2008.

[18] S. Lee, S. Min, and R. Eigenmann. Openmp to gpgpu: A compiler
framework for automatic translation and optimization. In PPoPP,
2009.

[19] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for
integrated branch and memory divergence tolerance. In ISCA, 2010.

[20] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In PPoPP, pages
73–82, 2008.

[21] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition
of run-time data and iteration reorderings. In PLDI, San Diego, CA,
June 2003.

[22] D. Tarjan, J. Meng, and K. Skadron. Increasing memory miss toler-
ance for simd cores. In SC, 2009.

[23] B. Wu, E. Zhang, and X. Shen. Enhancing data locality for dynamic
simulations through asynchronous data transformations and adaptive
control. In PACT, 2011.

[24] Y. Yan, X. Zhang, and Z. Zhang. Cacheminer: A runtime approach
to exploit cache locality on smp. IEEE Transactions on Parallel

Distributed Systems, 11(4):357–374, 2000.

[25] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A gpgpu compiler for
memory optimization and parallelism management. In PLDI, 2010.

[26] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly elimina-
tion of dynamic irregularities for gpu computing. In ASPLOS, 2011.

67

