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Abstract—Many dynamic simulation programs contain complex, irreg-
ular memory reference patterns, and require runtime optimizations to
enhance data locality. Current approaches periodically stop the execution
of an application to reorder the computation or data based on the
current program state to improve the data locality for the next period
of execution. In this work, we examine the implications that modern
heterogeneous Chip Multiprocessors (CMP) architecture imposes on the
optimization paradigm. We develop three techniques to enhance the
optimizations. The first is asynchronous data transformation, which moves
data reordering off the critical path through dependence circumvention.
The second is a novel data transformation algorithm, named TLayout,
designed specially to take advantage of modern throughput-oriented
processors. Together they provide two complementary ways to attack
a benefit-overhead dilemma inherited in traditional techniques. Working
with a dynamic adaptation scheme, the techniques produce significant
performance improvement for a set of dynamic simulation benchmarks.

I. INTRODUCTION

Due to the memory wall problem on traditional architecture, data

locality has been one of the most prominent factors that determine the

performance of a program. Its importance is even more pronounced

on modern Chip Multiprocessors (CMP), where, the last-level cache

and memory bus bandwidth are typically shared by multiple cores.

The sharing causes contention among co-running applications, and

the effect intensifies as the number of cores grows on a chip.

Data locality enhancement is an important approach to tackling the

problem. It reduces the required accesses to the last-level cache and

memory to alleviate the pressure on shared memory hierarchy.

Special difficulties for locality enhancement come from irregular

memory references. Such references often arise in dynamic simula-

tion applications—such as unstructured mesh simulation and molec-

ular dynamics simulation—due to the use of sparse and irregular data

structures. A representative form of irregular references is A[P [i]] ,

where the index array P may be embodied in real applications by

an input array or intermediate computation results that are difficult

to know until run time.

Irregular memory references have several properties. First, because

the content of the index array P may be arbitrary, the references to

A tend to cause serious locality issues. Second, the memory access

patterns of those references are unknown until execution time. Third,

applications having such references tend to contain a main loop—

such as, the mesh refinement loop in mesh generation, the time elapse

loop in molecular dynamics simulation—that encloses the irregular

memory references. The access patterns of the references (e.g., the

values in P ) often vary across the loop iterations. These properties

make locality enhancement of irregular references extremely difficult

for static compilation techniques.

A number of prior studies [8], [12], [21], [22], [26] have pursued

runtime data transformations to attack dynamic irregular references.

The strategy is to reorder data objects during an execution based on

their exhibited access patterns.

However, the power of the prior transformations has been re-

strained by a dilemma. In all prior techniques, the runtime data or

computation reordering happens synchronously—that is, the reorder-

ing is on the critical path of the application. This feature results

in a tension between transformation quality and runtime overhead:

More sophisticated transformations often yield better locality and

save more execution time, but at the same time, they add more

transformation overhead to the overall execution. The overhead can be

substantial, especially for sophisticated transformations. For instance,

one application of RCB—a classic data transformation approach—

takes more than 20 simulation time steps in most experiments

reported in Section VII. Moreover, the transformation have to be

applied repetitively due to the iterative computations in dynamic

simulations. Some studies propose to apply the transformation occa-

sionally rather than everytime when access pattern changes [11], [20].

Unfortunately, it is subject to the same quality-overhead dilemma:

The less frequently the transformation applies, the less overhead it

causes, but the worse the data layout is.

In this paper, we propose three orthogonal techniques to resolve

the quality-overhead dilemma.

The first is asynchronous data transformation, supported by a

dependence-circumventing decomposition. The basic idea is to hide

the transformation overhead by offloading the main transformations

from the critical path, making them happen asynchronously (on an

idle processor) in parallel with the execution of the application.

Despite the simplicity of the idea, to the best of our knowledge,

asynchronous data transformation has not been proposed previously.

The plausible reason exists in the circular data dependences between

data transformations and the execution of the application. On one

hand, the transformation modifies the data structure that the applica-

tion needs to read; on the other hand, the transformation needs to read

some results computed by the application to figure out the appropriate

data order. So, inherently, one invocation of a data transformation

must run serially with the corresponding iteration of the application.

In this work, we circumvent the problem by decomposing data

transformation into two parts and safely relaxing some dependences

through a careful analysis and layout approximation.

The second technique we develop aims at overhead minimization,

especially for a system equipped with massive parallel devices (e.g.,

GPU). We propose a novel data transformation algorithm, named

TLayout (T for throughput), which reduces transformation overhead

significantly with little compromise to the resulting quality. Unlike

traditional data transformation algorithms, TLayout is a massively

data-parallel algorithm, specially customized to the strengths of

throughput-oriented co-processors. It is novel in using an almost

dependence-free approach to grouping nodes into a number of

clusters such that the nodes referenced adjacently fall into the same

cluster. The algorithm shows high efficiency and scalability.

Asynchronous data transformation and TLayout tackle the limita-
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tions of previous data transformations in two orthogonal directions;

one for overhead hiding, the other for overhead minimization. To-

gether, they help resolve the quality-overhead dilemma that prior

approaches have been facing.

The third technique we develop is an online adaptive scheme.

By transparently selecting the appropriate transformation strategy

during runtime, the scheme gains the best of both asynchronous

and synchronous transformations, proving able to overcome the

limitations of both strategies.

Overall, the proposed techniques yield 65% higher performance

improvement than previous techniques do, accelerating the original

dynamic simulations by as much as a factor of 3.1 (2.4X on average)

on five representative dynamic simulation benchmarks.

In summary, this work makes four main contributions:

• To the best of our knowledge, this work is the first study that

proposes and implements asynchronous data transformation for

enhancing data locality of irregular dynamic simulations. The

technique resolves the quality-overhead dilemma that has been

limiting the effectiveness of prior runtime data transformations.

• It presents a new data transformation algorithm, TLayout, which,

as far as we know, is the first algorithm designed to take advan-

tage of the massive parallelism of through-oriented processors

for enhancing data locality of CPU applications.

• It introduces an online adaptive scheme to safely exert the power

of both synchronous and asynchronous transformations.

• This study initiates a new type of collaborations between CPU

and co-processors. We are not aware of any previous proposals

of using co-processors to do runtime program optimizations

for CPU applications. This new direction may lead to some

unconventional ways to exploit the power of heterogeneous

computing systems.

II. BACKGROUND ON IRREGULAR REFERENCES AND RUNTIME

LOCALITY ENHANCEMENT

Irregular references commonly exist in dynamic simulation pro-

grams due to the use of sparse and irregular data structures. They are

typically in forms of indirect references like A[P [i]].

Previous solutions to irregular references use runtime data and

computation reordering. In computation reordering, the iterations of

the central computation loop are reordered so that the iterations

accessing the same or adjacent data elements are adjacent in time.

This transformation requires that there are no dependences across

the iterations. Techniques for determining the suitable iteration order

include lexicographical sort [6], bucket sort [22], z-sort [12], and so

on.

Data reordering repositions elements in an array to improve spatial

locality. The basic strategy is to relocate the elements such that

the elements that tend to be accessed closely in time become

close in memory space. Because determining optimal data orders

is an NP-hard problem in general [23], researchers have proposed

various heuristics-based algorithms, including consecutive packing

(CPACK) [8], Reverse Cuthill-McKee (RCM) [18], space filling

curve (SFC) [21], recursive coordinate bisection (RCB) [4], multi-

level graph partitioning (METIS) [14], and hierarchical clustering

algorithm (GPART) [12]. Previous studies [8], [12] have found that in

most cases, the combination of the two—a data reordering followed

by a computation reordering—gives better results than each alone.

In the following discussion, we use data transformation to refer

to the transformations that use data reordering or/and computation

reordering for locality enhancement.

for each time step
if time_to_update()
IList = update_IList (Location);

end if

/∗ main computation with irreg. references to Location ∗/
for each (i,j) in IList
f = calculate_force (Location[i], Location[j]);
Force[i] += f;
Force[j] -= f;

end for

for each particle i
Location[i] = update_loc (Location[i], Force[i]);

end for
end for

Fig. 1. The main loop of Moldyn.

In all prior research, data transformation is applied synchronously

with the application. It is placed on the critical path of the application

execution, hence subject to the quality-overhead dilemma mentioned

in Section I.

III. ASYNCHRONOUS DATA TRANSFORMATION

Asynchronous data transformation is our first technique for re-

solving the dilemma between transformation quality and overhead.

The basic idea is simple: putting data transformation on a helper

processor so that it can happen in parallel with the application

execution. However, to the best of our knowledge, this simple idea

has never been realized before. A plausible reason for the absence

is the inherent data dependences between data transformation and

the transformed application. To help explanation, we first outline the

sketch of a dynamic simulation program, Moldyn, as our example.

A. An Example Irregular Dynamic Simulation Program

Moldyn is a program for simulating the movements of many

particles caused by their interactions. The program maintains a list,

named “interaction list”, to record the particles that are close enough

to interact with each other. The list consists of a number of pairs; each

pair contains the IDs of two particles that are close enough in the

particle space to have interactions. Figure 1 shows the pseudo-code

of the computation kernel of Moldyn. It contains a time-step loop.

In each iteration, the program first checks if it is time to update the

interaction list IList; if so, it makes the update based on the current

locations of the particles. It then traverses the interaction list, and

computes the force that a particle receives from its neighbors. After

that, the program updates the locations of each particle based on the

newly computed forces.

Apparently, the major computation is on the force calculation loop.

The references to the Location and Force arrays in that loop are

irregular references; the IList array plays the role of an index array,

whose content decides which elements of Location and Force are

referenced at which iteration of the loop. Each time when IList gets

updated, the patterns of the references to Location and Force change

accordingly.

This example shows some representative features of irregular

dynamic simulations. These applications usually contain a main loop

(e.g., the time-step loop) that encloses irregular references. The

irregular references involve two data structures; one is the reference
target (e.g., Location and Force), the other is the reference clue (e.g.,

IList)1. The values of the reference clue often vary across the main

loop iterations.

1These terms are similar to “index array” and “data array” in some earlier
work; using them helps avoid confusion with some other terms in this paper.
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r: IList, Force, Location
w: IList, Force, Location

trans.

r: IList, Force, Location
w: Force, Location

particle update

r: IList, Location
w: IList

IList update
for each time step
if time_to_update()
IList = update_IList (Location);
dataTrans(IList,Location,Force);

end if
· · · · · ·

end for

Fig. 2. Dependence graph (left) and the synchronous data transformation
(right) for the Moldyn example. (“r” and “w” lists the sets of data that are
read and written respectively.)

B. Synchronous Data Transformations

Runtime data transformation can benefit the force calculation loop

in the Moldyn example. The basic strategy of a typical transformation

is to reorder the items in the reference target according to the

content of reference clue—for example, moving particles that have

interactions (by reading IList) close to one another in Location and

Force in the Moldyn example. Very often, a following computation

reordering is applied as part of the data transformation, in which, the

iterations of the loop (e.g., the force computation loop) that encloses

the irregular references are reordered. For the Moldyn example, it can

be realized by reordering the pairs in IList based on the new order

of particles to further improve the locality.

One place to put the transformation is between the update of the

reference clue and the accesses to the reference target, as shown in

Figure 2. This placement is natural because of the data dependences

among those components. In fact, this placement is what prior studies

adopt. Because the data transformation is put on the critical path of

the execution, we call it synchronous data transformation.

C. Decomposition and Dependence Relaxation

Data dependences between data transformation and the application

form a major obstacle for asynchronous data transformation. Figure 3

(a) summarizes the bi-directional (true) dependences.

We circumvent the dependences based on two properties of data

transformations. The first is that most data transformations can be

decomposed into an order analysis step and a data relocation step.

The order analysis step computes a locality-favorable order according

to the reference clue, and the relocation step repositions items in

the reference target (and reference clue) based on the produced

order. When a data transformation is decomposed into these two

components, the two dependence edges from the application to the

transformation become pointing to the two components respectively,

as Figure 3 (b) shows.

The second is that not all dependences between data transforma-

tions and the application are critical. Among the four dependences

shown in Figure 3 (b), the dependence from the application to the

analysis component is not critical for the correctness of the execution.

In another word, if we violate the dependence, the produced locality-

favorable order may not lead to a desirable layout for the reference

target, but the execution of the application will be correct still. Sim-

ilarly, if we violate the dependence from the relocation component

to the application, the application may have to use an old layout of

the reference target rather than the enhanced one; it may hence run

slower than it could, but will still produce the correct result. The

app.

trans.

ref
clue

ref
target

ref
target
&
ref
clue

app.

reloc.

ref
clue

ref
target

analysis

new
order

ref
target
&
ref
clue

(a) Before decomposition (b) After decomposition

Fig. 3. Dependences between data transformation and the application. Each
edge is a data dependence edge labeled with the related data. Broken edges
show dependences that are relaxed in asynchronous data transformation.
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transformation
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Master Thread
Helper Thread

new order

YES

NO

NO
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IList

new
order

comes?

data reposition

update IList

Fig. 4. Control flow of asynchronous data transformation for Moldyn.

same is true for the dependence from the analysis component to the

relocation component. On the other hand, the dependence from the

application to the relocation component is critical. A violation of

this dependence may cause the transformed reference target (e.g., the

Location and Force arrays) to contain obsolete values and impair the

correctness of the execution.

Based on the two properties, we develop asynchronous data

transformation by relaxing the three non-critical dependences in

Figure 3 (b). The key of the implementation is to decompose data

transformation into two components, leave the relocation component

on the critical path but make the analysis component run by a helper

thread asynchronously, and allow the use of obsolete reference clues

for the computation of new data orders.

Figure 4 outlines the basic control flow for the Moldyn example.

The master thread executes the application and the relocation compo-

nent, while the helper thread runs the analysis component in parallel.

At an update to the interaction list, the master thread sends the new

IList (or some other reference clue, e.g., coordinates of nodes) to

the helper thread, and then continues its execution while the helper

thread computes for a new locality-favorable data order. If the new

order is not ready yet when the master thread reaches the “new

order ready?” check, it continues executing the following part of

the application using current data layouts. When the helper thread

finishes computing the order (several time steps may have passed

since the order computation starts), it sets a flag so that when the

master thread reaches the “new order ready?” check again, it can use

the new order to reposition the reference target and reference clue to

improve the locality of some following iterations.

This design makes the analysis component of data transformation

proceed asynchronously with the application, but leaves the reposi-
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Fig. 5. State transitions for thread coordination in asynchronous data
transformation.

tion component on the critical path. In many data transformations,

the most costly part is in the order analysis rather than the data

repositioning–as Figure 8 will show, the time ratios between them are

between 6:4 and 8:2 for RCB. This design hence hides the majority of

the data transformation overhead. Meanwhile, because the placement

of reposition component maintains the critical dependence (the solid

line in Figure 3 (b)), the application still runs correctly.

We now examine how the asynchronous data transformation re-

laxes the three non-critical data dependences (the broken lines in

Figure 3 (b)), and the consequences. For the dependence from an

application to the analysis component, in the asynchronous transfor-

mation, the reference clue passed to the analysis component may be

obsolete. It happens when the order analysis takes longer time than

an update period of the reference clue. As a result, the new order

passed from the analysis component to the repositioning component

may be not as good as the computed data order if the current reference

clue was used. The ultimate consequence is that the layouts of the

reordered reference target and reference clue fit the obsolete rather

than the current reference clue well. This analysis reveals a potential

loss of the data transformation benefits incurred by the asynchronous

scheme. Section VI will show how this loss can be largely prevented.

D. Thread Coordination

In this part, we present some implementation details on supporting

the coordination between a master thread and a helper thread in asyn-

chronous data transformation. The implementation is based on a 6-

state transition graph to ensure in-time data transfers and meanwhile

avoid unnecessary data copies.

We use a shared variable, protected by a lock, to coordinate

the master thread and the helper thread. Figure 5 shows the states

recorded by the variable and the state transitions.

When an execution starts and a helper thread is created, the master

thread sends the current reference clue to the helper thread, and sets

the state to “busy”. From the “busy” state, there are two circular

paths.

• Bottom circular path. When the master thread finishes an update

to the reference clue and the state is still “busy”, it changes the

state to “dirty”, indicating that a new order needs to be computed

because the reference clue has changed. When the helper thread

finishes its current job and passes its computed order to the

master thread, it changes the state from “dirty” to “dready”. At

the next state check by the master thread, it will see that the

helper thread has just prepared a new data order and also it

needs to get the current reference clue to compute another data

order. The master thread then sends the current reference clue

to the helper thread, conducts a reposition transformation using

the new order, and then changes the state to “busy”.

• Right circular path. If the helper thread finishes its job within

one update period of the reference clue, it changes the state to

“ready”. At the next state check by the master thread, it will

see that the helper thread has just prepared a new data order. It

conducts the reposition transformation and then changes the state

to “done”. Note that it does not send the current reference clue to

the helper thread because the clue is identical to what the helper

thread already has, which is the key difference between the

“read” and “dready” states. At the next update of the reference

clue, the master thread sends the clue to the helper thread and

changes the state to “busy”.

The design of the state transitions ensures that both threads

receive necessary data in time, and meanwhile avoids unnecessary

data transportation. For instance, consider a case where during the

computation of one new data order, the master thread updates the

reference clue three times. The state will remain “dirty” after the first

update until the helper thread finishes its job. As the master thread

sends no data in the “dirty” state, only the most recent reference clue

(i.e. the one after the third updates) is sent to the helper thread.

Asynchronous data transformation hides most transformation over-

head, but is subject to the use of obsolete reference clue. The longer

a transformation takes, the more obsolete the used reference clue is.

Even though in many cases, the gain exceeds the loss as Section VII

will show, reduction of the transformation time will make its benefit

more pronounced—the goal of the technique presented next.

IV. TLAYOUT: A TRANSFORMATION ALGORITHM FOR

THROUGHPUT-ORIENTED PROCESSORS

The second technique we develop is TLayout, a data transformation

algorithm for reducing transformation overhead by exploiting the

special features of throughput-oriented processors.

The motivation comes from the trend in modern architecture devel-

opment. Due to the high throughput and power efficiency, throughput-

oriented processors (e.g., GPU) are being increasingly adopted to

co-run with general-purpose CPUs. This trend is underscored by the

recent Intel Sandy Bridge and upcoming AMD Fusion processors,

which have CPU and GPU on a single chip. Exploiting throughput-

oriented co-processors for irregular applications is a challenge, given

that these massively parallel co-processors are typically weak in han-

dling computations with complex memory references, dependences,

and control flows.

Our idea is to use such co-processors to accelerate data trans-

formations for CPU executions. This use of the co-processors is

especially appealing for legacy CPU code, because it needs virtually

no code changes. Programmers only need to insert three function calls

(see Section V) to invoke a data transformation function we have

developed for the co-processors. In contrast, many efforts are needed

for porting and tuning an irregular application to co-processors [28],

[29]. The paradigm of using co-processors for program optimizations

offers an easy, quick way for legacy programs to benefit from the co-

processors (even though the performance from manual code porting

may be higher).

Unfortunately, none of previous data transformation algorithms is

designed for massively parallel architectures. Their complex control

flows and dependences make them unsuitable for throughput-oriented

processors.

TLayout Algorithm: TLayout is our solution to the problem. It

is designed to be massively data parallel. It produces locality of the

similar quality as sophisticated classic transformation algorithms do,

but with one third of the overhead (on GPU).
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As with many previous data transformation algorithms [12], TLay-

out is based on the underlying graph structure of data references in

the application. Simply speaking, data elements that are referenced

closely (e.g., in one iteration of an inner loop) are regarded as

neighbor nodes in a reference graph, having an edge in between.

Data locality optimizations are then mapped to a graph partitioning

problem. Partitioning the graph and putting nodes in a partition

close in memory usually improves spatial and temporal locality. In

dynamic simulation programs, the reference graphs are often already

embedded in the reference clue—such as the interaction list in

Moldyn, and the mesh structure in a mesh refinement application.

As the reference graphs of these applications usually come from

the spatial or topological relations among objects (e.g., particles in

a physical space), it is typical that one reference graph covers all

interesting data objects.

The strategy of TLayout is incremental clustering through iterative

membership-propagation based on the topology of the reference

graph. The input to TLayout is a reference graph, encoded as a

number of node pairs, with each pair consisting of two nodes that

are connected by an edge in the reference graph. The output is a

number of clusters that partition the nodes of the graph completely

in a way that the nodes close in topology belong to the same cluster.

The algorithm starts by setting the membership of each node (i.e.,

which cluster it belongs to) to null. It then proceeds in the following

steps:

1) SEED PLANTING: TLayout randomly selects K nodes as the

seeds for K clusters.

2) PROPAGATION: Every node whose membership is null checks

the membership of its neighbors one after one. As soon as it

encounters a neighbor whose membership is not null, this node

changes its own membership from null to the membership of

that neighbor.

3) LOOP: Repeat STEP 2 until the fraction of nodes having null
membership is below a preset threshold δ, or the number of

times the propagation step has been invoked reaches a preset

upperbound U .

4) (optional) HIERARCHY CONSTRUCTION: Recursively

merging the clusters based on their closeness on the reference

graph into a hierarchy.

5) LAYOUT: Finally, arrange nodes according to the resulting

clusters. Nodes in the same cluster are laid out nearby in

memory. If a cluster hierarchy is created, the leaf clusters are

processed following their appearance order in the hierarchy.

The propagation step dominates the time cost of the algorithm.

But it is a completely data-parallel process, meeting the strength of

throughput-oriented processors.
Parameters and Adaptive Control: There are two parameters

in the TLayout algorithm. The use of a small positive value of the

parameter delta allows the algorithm to stop with a small portion of

nodes carrying null membership. These nodes will be attached to the

end of the final data layout. As the number is small, they have little

influence on the quality of the resulting data layout. But using such a

value may save one or multiple invocations of the propagation step.

Like many parameters used in practical systems, users set this value

based on their experiences and preferences. We use 1% as its value

for all our experiments.

The second parameter is the number of clusters K. A large value of

K leads to quick membership propagation, hence few invocations of

the propagation step. However, it may hurt the quality of the resulting

data layout: Many nodes that have good reference affinity may fall

into different clusters. The optimal value of K depends on the graph

properties and the application. As the reference graph periodically

changes throughout the execution of a dynamic simulation program,

its value is difficulty for users to set.

We design an adaptive control to automatically adjust the value of

K. After each data transformation, TLayout compares the transfor-

mation time and the length of the update period of the reference clue.

If the transformation time is too long, TLayout doubles the value of

K to accelerate the next data transformation. Typically, K starts with

a small value (100 in all our experiments).
Implementation on GPU: TLayout is designed for general

massively parallel architecture. We implement it using CUDA [2]

in machines equipped with GPU. CUDA is a C-like interface for

GPU programming. A CUDA program consists of a CPU code and a

GPU code. The code executed on GPU is wrapped in functions called

GPU kernels. A GPU typically contains hundreds of cores. There is

a certain amount of on-chip memory (called shared memory) and

a large chunk of off-chip memory (called global memory). When a

GPU kernel is invoked, hundreds of GPU threads are launched to run

the same GPU kernel with the same parameters. Each thread has one

unique ID number; the kernel may use thread ID to trigger different

behaviors of different threads.

In our implementation, each GPU thread manages one node in the

graph. Algorithms 1 and 2 outline the CPU code and GPU kernel

respectively.

Algorithm 1 TLayout(num nodes, num edges, neighbor list)
1: // build a single array to store neighborhood info to prepare for

GPU kernel execution

2: for i = 0 to num edges − 1 do
3: left = neighbor list[i][0];
4: right = neighbor list[i][1];
5: if neighbor size[left] < MAX NB Per Node then
6: neighbors[neighbor size[left] + +] = right;
7: end if
8: if neighbor size[right] < MAX NB Per Node then
9: neighbors[neighbor size[right] + +] = left;

10: end if
11: end for
12: //randomly select K nodes as the seeds for K clusters

13: for i = 0 to K − 1 do
14: membership[rand()%(num nodes)] = i;
15: end for
16: while too many nodes have null membership do
17: //invoke GPU kernel for neighborhood-based clustering

18: TLayoutKernel<<< ... >>>(neighbors, membership);
19: end while
20: //merge clustering results to generate a new data order

21: for i = 0 to num nodes − 1 do
22: id cluster = membership[i];
23: cluster lists[id cluster].append(i);
24: end for
25: ind = merge lists(cluster lists);
26: return ind

Discussions: TLayout has some appealing characteristics worth

mentioning. First, it well exploits the massive parallelism of GPU.

Assigning a thread to every node makes the algorithm simple to

implement and proceed efficiently. Second, a node having a high

degree tends to grab more nodes into its cluster than other nodes do,

which is a desirable property for spatial locality. Third, the algorithm

adaptively selects the appropriate number of clusters. This adaptivity
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Algorithm 2 TLayoutKernel(neighbors, membership)
1: // load neighbors into shared memory

2: . . .

3: // membership propagation

4: i = global thread number;
5: for j = 0 to MAX NB Per Node − 1 do
6: neighbor = get neighbor();
7: if membership[neighbor] & !membership[i] then
8: //propagate membership

9: membership[i] = membership[neighbor];
10: break;

11: end if
12: end for

fits the dynamic properties of irregular simulation well. We note that

TLayout specifically exploits the massive parallelism in throughput-

oriented devices (e.g., GPU). It is not intended to be used on CPU.

(Experiments show it is tens of times slower than RCB on a CPU.)

V. ASYNCHRONOUS DATA TRANSFORMATION LIBRARY

(ATRANS)

We integrate the techniques, along with previous transformation

techniques, into a Asynchronous Data Layout Transformation library

(ATrans) to simplify their use. ATrans consists of all the support

for asynchronous transformation, the adaptive TLayout algorithm,

and a set of previously implemented data transformation functions

from University of Maryland [12]. It supports the asynchronous data

transformation on both CPU and GPU.

Its usage is simple. To enable asynchronous data transformation for

an application, it typically requires just an insertion of three function

calls in the application program, one in the initialization stage, one

after the update of the reference clue, and one at the beginning

of the central loop (e.g., the time-step loop in Moldyn). Figure 6

illustrates the use of the library for Moldyn. The ATrans init pipeline
function indicates whether CPU or GPU is to be used for analysis

component, creates a helper thread, initializes the state of the pipeline

and necessary data structures, and prepares the GPU execution if GPU

is used. When the interaction list is updated, the ATrans analysis
function checks the pipeline state and wakes helper thread up to

do transformation analysis if necessary. At the beginning of each

iteration of the time-step loop, the ATrans reposition function checks

the state and reposition the data if it is time to do so.

int main (int argc, char ∗∗argv)
{

/∗ ∗ ∗initialization of the simulation∗ ∗ ∗/
ATrans_init_pipeline(__ATRANS_CPU, interaction_list,

MAX_EDGE, coordinates, MAX_NODE, forces);
for(iter = 0; iter < NUM_ITER; iter++)
{
if(update_interaction_list() == true)
ATrans_analysis();

ATrans_reposition();
/∗∗∗simulation kernel code∗∗∗/

}
/∗∗∗deal with result∗∗∗/

}
Fig. 6. Use of the ATrans library in Moldyn. Inserted codes are function
calls with prefix “ATrans ”.

VI. ADAPTING ON THE FLY

The benefits of asynchronous transformation do not come for free.

Recall that to circumvent the data dependence, it uses obsolete refer-

ence clues as heuristics for data transformations. Although in many

cases the benefits outweigh the catch, it is not always so. Whether an

asynchronous transformation excels a synchronous transformation is

subject to the ratio between transformation overhead and per iteration

computation time, the frequency of the update to reference clues, the

speedup, and so on.

We devise an online adaptive scheme to select the suitable transfor-

mation strategy on the fly. The basic idea is to estimate the benefits

of different strategies during the initial time steps, and then apply

that strategy to the remaining time steps.

To figure out the overall benefits of synchronous transformation, it

is necessary to determine the best frequency to apply it. Because of

its transformation overhead, applying it at every update of reference

clues is often sub-optimal. We employ a prior method [20] to solve

the problem. By applying the synchronous transformation only once,

it can determine the best frequency and estimate the overall benefits

by observing the computation speed in a number of iterations follow-

ing the transformation. The process introduces no extra overhead.

Figuring out the overall benefits of asynchronous transformation

is less straightforward. As asynchronous transformation is off the

critical path, it can be applied often. In our design, it is applied

at the reference clue update following the finish of the previous

asynchronous transformation. Because the per iteration time varies

across update periods, it is difficult to get a closed form to compute

all the ending/starting time points of asynchronous transformations,

causing difficulty for benefit estimation.

Our solution is to emulate the timeline of the kernel computation

and the applications of asynchronous transformations. For space

constraint, we describe it briefly. It requires the following param-

eters: the analysis and reposition times of a data transformation,

the frequency of reference clue update, the total time steps of the

kernel computation, and computation speed in a number of iterations

following the transformation. Attainment of these numbers needs

one application of the transformation only. An emulation of the

timeline involves the computation of a number of linear expressions

for calculating when each asynchronous transformation will apply

and how many time steps of computation can benefit from it. The

emulation takes less than 0.01% of overall running times in all our

experiments.

After estimation of the overall benefits of synchronous and asyn-

chronous transformations, the winner will serve for the rest of the

execution. Although the program may not be using the optimal

transformation scheme during the initial time steps, the next section

will show that the influence is small as these steps take only a small

portion of the entire simulation.

The adaptive scheme may suffer if some key factors (e.g., fre-

quency of reference clue update) change dramatically across time

steps. Fortunately, most dynamic simulations do not see such drastic

changes.

VII. EVALUATION

We conduct a series of comparisons to evaluate the values of the

techniques. We give an overview of the results first.

• Asynchronous Transformation: As Section III mentions, asyn-

chronous transformation hides most overhead, but its use of

obsolete reference clues may have certain side effects on the re-

sulting locality. We conduct a head-to-head comparison between

asynchronous and synchronous transformations (both using RCB

on CPU) in terms of the overall performance and resulting

locality of the transformed applications. The result shows both

the strength and weakness of the asynchronous transformations.

On three benchmarks, asynchronous transformations lead to
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18% more speedup than synchronous transformations do. In

addition, for these benchmarks, using an extra CPU core for

transformation brings 15% more speedup than using that core for

computation, justifying the resource usage of the asynchronous

transformations. On the other hand, the negative effects of

obsolete reference clues outweigh the benefits of asynchronous

transformations on two other benchmarks, leading to slightly

less speedup than the synchronous transformations do.

• Runtime Adaptation: The runtime adaption scheme is able to

identify the best transformation strategy for all benchmarks.

With low overhead, it helps exert the strength of both asyn-

chronous and synchronous transformations.

• TLayout: By comparing with a prior sophisticated algorithm

(RCB), we observe that in most cases, the TLayout algorithm

produces data layout of similar quality as the prior algorithm

does, but takes around one third time to run.

• Overall: When the techniques are applied together, they generate

1.3–3.1X speedup over the original performance of five bench-

marks, outperforming the state-of-the-art data transformation

techniques significantly.

The conclusions obtained are based on measured wall-clock times

and confirmed by hardware performance counters results.

A. Methodology

Platform: All experiments happen on a dual-socket dual-core

AMD Opteron 2216 machine in the National Center for Supercom-

puting Applications. The machine is equipped with an NVIDIA Tesla

S1070 GPU with 16GB DDR3 memory. It consists of four Tesla

T10 C1060 GPUs, with each containing 240 cores, organized in 30

streaming multiprocessors. We use only one of the GPUs in our

experiment. The machine runs Linux 2.6.33. We use GCC 4.3.2 (with

“-O3” flag) as the compiler and CUDA 3.0 as the GPU programming

model. We employ libpfm4 [1] for collecting cache performance data.

Benchmarks: We concentrate our experiments on a dynamic

simulation benchmark suite from Han and Tseng [12], and two other

programs, Mesh and CFD, respectively from the Chaos group [7],

[30] and the Fluid Dynamics community [5]. The suite from Han

and Tseng consists of three representative programs, Nbf, Irreg, and

Moldyn. They are all derived from real applications. Nbf is abstracted

from GROMOS, a force field of molecular dynamics simulation; Irreg

is the kernel of an iterative partial differential equation solver; Moldyn

is from a molecular dynamics simulation named CHARMM. These

three benchmarks have been commonly perceived to be representa-

tive, and have served as the only benchmarks in some influential data

locality studies in dynamic simulations [12], [15], [26]. We add two

more benchmarks to increase the coverage. Mesh is an unstructured

mesh simulation. CFD is an unstructured grid finite volume solver for

three-dimensional Euler equations for compressible flow. Similar to

the extensions Han and Tseng made to Irreg [12], both Mesh and CFD

are modified to accommodate dynamic changes in the underlying

mesh or grid structures.

Table I lists the properties of the inputs used with these bench-

marks. FOIL and AUTO are 3D meshes of a parafoil and GM Saturn

automobile, respectively. MOL1 and MOL2 are small and large 3D

molecule models originally obtained from MOLDYN application.

The results on all inputs show similar performance trends. Due to

space constraints, our discussion concentrates on the results on large

inputs (AUTO and MOL2) for the severity of their locality issues.

The frequency of the update to reference clues affects the problem

setting and the potential of runtime data transformations. We exper-

TABLE I
INPUTS∗

Name # Nodes # Edges Description

FOIL 144649 1074393 3D mesh of a parafoil
AUTO 448695 3314611 3D mesh of GM’s Saturn
MOL1 131072 1179648 3D molecule distribution (sm)
MOL2 442368 3981312 3D molecule distribution (lg)

∗: come from Han and Tseng [12].

iment three typical frequencies: one update in every 10, 20, or 30

iterations of the main computation loop of the applications.

Transformation Frequency: Data transformation can be applied

as often as once per update of the reference clue, or once every several

updates. The more frequent it is applied, the better the locality of the

application is, but meanwhile, the more overhead it incurs.

For the asynchronous paradigm, the transformation frequency is

automatically determined by the 6-state master-helper coordination

scheme as described in Section III-D. The problem is tricky for

synchronous transformations. For a fair comparison, one seemingly

straightforward option is to use the same transformation frequency as

the asynchronous transformation uses. But this option is in fact unfair

to the synchronous scheme. That frequency often causes much worse

performance than some other frequencies for synchronous transfor-

mations. A previous study [20] introduces a method to analytically

determine the optimal frequency for synchronous transformations.

We have verified the optimality of the method through a sequence

of empirical measurements. In all our experiments, we use optimal

frequencies found in that way for synchronous transformations.

Algorithm and Others: We select previously proposed RCB

algorithm (implemented by Han and Tseng [12]) as the analysis al-

gorithm in all CPU experiments, synchronous or asynchronous. RCB

has been shown to be one of the most sophisticated algorithms that

produce the largest locality enhancement for most benchmarks [12].

Our experiments echo that despite it is more expensive than some

other methods (e.g., CPACK), its overall performance is often among

the best when it is applied synchronously at the best frequency.

As the asynchronous transformation is mainly on data reordering,

we apply the same computation reordering (lexicographical sort) to all

experiments. The computation reordering overhead is small (less than

one seventh of RCB) and is counted in data repositioning overhead

in all experiments.

B. Experimental Results

We experiment both single-thread and parallel executions of the

benchmarks. They show similar conclusions. We first give a detailed

analysis using the single-thread results, and then report the parallel

results at the end, along with the justification of the resource usage

by asynchronous transformations.

1) Sequential Executions: Figure 7 shows the comparison of

overall running times. Each time consists of the application running

time and all transformation overhead that is not hidden (including

data transfer between CPU and GPU).

IRREG, NBF, MOLDYN: On the first three benchmarks, the

synchronous transformations show 77% average speedup. The asyn-

chronous transformations on CPU show 18% more average speedup.

The benefits come from two aspects. First, the asynchronous scheme

hides significant transformation overhead, as Figure 8 reports. The

second benefit relates with the first. Because the transformation

incurs smaller overhead on the critical path than the synchronous

scheme does, it is automatically applied more frequently by the

master-helper coordination scheme than the synchronous one. The
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Fig. 7. Speedup of the overall executions for single-threaded benchmarks.
The speedups are over single-threaded benchmarks without any data transfor-
mation applied.

more frequent transformation yields better locality, confirmed by the

L2 cache miss rates shown in Figure 10. The figure shows a few

exceptional cases (e.g., the configuration ”Moldyn 30”), in which, the

two transformations are applied at the similar frequencies; the use of

obsolete reference clues causes the relatively less locality enhance-

ment. However, thanks to the overhead hiding by the asynchronous

transformation, it leads to the better or similar overall performance

still, as Figure 7 shows.

We stress that the synchronous results are what we get when

the optimal transformation frequency is used. Increasing invocation

frequency of the synchronous transformations yields only worse over-

all performance due to the large overhead incurred, while decreasing

the frequency worsens the performance as well due to the less locality

enhancement to the application, as Figure 9 illustrated.
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Fig. 8. Optimization cost on critical path. The results are normalized over
those of synchronous transformation.

The asynchronous TLayout produces even larger benefits than the

asynchronous CPU approach. The extra speedup ranges from 28%

to 112% with an average of 65% over those of the synchronous

scheme, and 25–58% better than those of the asynchronous CPU

results. The extra benefits come from two appealing features of the

TLayout algorithm. First, it runs 2.8 to 3.3 times faster than the

RCB algorithm, thanks to its effective exploitation of the throughput-

oriented processors. Second, it produces data layout of comparable

quality as the sophisticated RCB algorithm does as Figure 11 reports.

These two features together explain why asynchronous TLayout
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Fig. 9. Speedup of IRREG with different transformation frequencies.
Neighbor list is updated every 20 iterations.
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Fig. 10. L2 cache performance comparison between synchronous and
asynchronous data transformation. Results are normalized over those without
any transformation.

produces better data locality than the asynchronous CPU does. The

second feature ensures that each invocation of the data transformation

in the two schemes are similarly powerful, while the first feature

entails much more affordable invocations of data transformations in

the asynchronous TLayout than in the asynchronous CPU.
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Fig. 11. The time per iteration of the computation loop after a transformation
is applied. It is the average of 100 iterations following the transformation.
The results are normalized over those of single-threaded benchmarks with no
transformations applied.

CFD and MESH: The results on these two programs show a

trend different from the other three programs. On both of them,

changes to the reference clue during the simulations are less sig-
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nificant than on the other programs. The overall speedups from the

transformations are still large because the initial data layout is infe-

rior. However, because the changes are small during the simulation,

there is no need to apply transformations often. There is limited

overhead for asynchronous transformations to hide. Consequently,

the negative effects of the use of obsolete reference clues become

noticeable. So on both programs, regardless the reference clue update

frequencies, the asynchronous transformations perform slightly worse

than the synchronous transformation. The L2 cache results of Mesh

in Figure 10 seem counter-intuitive: Asynchronous ones are lower

than the synchronous one. A plausible reason is that the locality

of the program is mainly embodied by other metrics. For instance,

the synchronous scheme has L1 cache miss rate half of that of the

asynchronous GPU scheme.

Adaptive Selection: The adaptive selection scheme successfully

selects the best strategy to use for all cases. Because some transforma-

tions in the initial time steps do not use the optimal strategy, there are

slight differences between the speedups from the adaptive scheme and

those of the best strategy. However, overall, it achieves the near best

performance on all benchmarks, showing the promise for exerting the

strength of both asynchronous and synchronous transformations.

2) Parallel Executions: Figure 12 reports the similar comparison

but on parallel executions of the benchmarks. For the baseline

(i.e. no transformations applied) and “synchronous CPU”, we use

4 threads for each benchmark as the machine contains 4 cores.

In “asynchronous CPU” and “asynchronous GPU” case, we use 3

threads for each benchmark so that the transformation can happen

on the remaining core.
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Fig. 12. Speedup of the overall executions for parallelized benchmarks. The
speedups are over parallelized benchmarks without any transformation.

The results show similar conclusions as the single-thread exper-

iments do. One particular point we want to mention is that even

though the “asynchronous CPU” uses one fewer worker threads

than “synchronous CPU”, with the help from the asynchronous

transformation, it still excels in resulting performance. Part of the

reason is that the irregular applications have many communications

among threads due to the inherent properties of the applications.

As a result, the parallel program shows sub-linear performance

scalability in the number of threads. Adding the fourth worker thread

improves the performance of the programs by 6%, exceeded by the

benefits from the asynchronous transformations. The results justify

the resource usage of the asynchronous transformations. In addition,

the parallelization imposes different influence on the locality of

different benchmarks. The locality issue of CFD becomes especially

serious after the parallelization, hence the large benefits from data

N0 N1

N2

N3

N4

N5

Fig. 13. An example showing the membership propagation in TLayout. The
filled node is already clustered; the others are not.

transformations.

3) More Results on TLayout Algorithm: The speed of membership

propagation in the algorithm determines the number of iterations the

propagation has to happen (to reach the predefined threshold δ). In

all the experiments reported in previous sub-sections, the average

numbers of needed propagation iterations are no larger than four.

This result indicates the high speed of membership propagation.

Analytically, it may be attempting to think that if the closest center is

K hops away from a node, it would take K iterations of propagation

for that node to be clustered. However, because global memory is

used for membership labels, during an iteration of propagation, the

membership of a node becomes visible to all threads (e.g., all nodes)

immediately after the node gains its membership. For instance, in

Figure 13, node N3 can be clustered in one propagation if either of

the following two conditions is met: (1) N3 is visited after N2 and

N2 is visited after N1; (2) N3 is visited after N5 and N5 is visited

after N4. In TLayout, the visiting order of nodes is random; in the

GPU implementation, the order is determined by the scheduling of

GPU threads, which exhibits large randomness.

To examine the scalability of the algorithm, we create a spectrum

of problems of different sizes. At each size, we run the algorithm 7

times to get the average number of propagations required to cluster

99% nodes. As the focus is on assessing the propagation speed, we

fix the number of clusters to be 100 in all runs. Results in Figure 14

demonstrates the good scalability of the algorithm.
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Overall, the results demonstrate that both the asynchronous data

transformation and the TLayout algorithm are able to produce certain

degrees of benefits for the enhancement of data locality of irregular

dynamic simulations. Together with the online adaption scheme, they

resolve the quality-dilemma faced by existing data transformation

techniques, and yield significant performance improvement.

VIII. RELATED WORK

In Section II, we reviewed some prior data reordering and com-

putation reordering techniques for the enhancement of data locality

of dynamic simulation programs. In addition, Strout and others

have proposed a compile-time framework that allows the explicit
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composition of run-time data and iteration reordering transforma-

tions [26]. Kulkarni and others [16] have studied locality issues of

irregular applications in the context of optimistic parallelism. They

concentrate on the partition of data among threads rather than data

layout reorganizations for locality improvement.

Recent years have seen a rapid increase of the use of GPU for

data-parallel computing. Previous work on CPU-GPU cooperative

computing concentrates on offloading some computation-intensive

and easily parallelizable parts of an application to GPU. In this

scenario, the key issue is how to partition the jobs among GPU

and CPU [24], and how to optimize GPU code to maximize the

computing efficiency on GPU through compiler techniques [3], [17],

[27], runtime optimizations [28], [29], or empirical search-based

optimizations [19]. Some recent studies attemp to enable seamless

translation between GPU and CPU code [9], [10], [25]. We are not

aware of prior proposals in using GPU to do runtime optimizations

for CPU computing.

There are many clustering algorithms developed in the machine

learning area [13]. But most of them are distance-based (e.g. K-

Means) rather than topology-based. Our search yields no satisfied

topology-based clustering algorithm that is simple and fits GPU well,

hence our development of TLayout.

IX. CONCLUSION

This paper presents three techniques for resolving the quality-

overhead dilemma of data transformations for irregular references.

The first, asynchronous data transformation, moves data reordering

off the critical path through dependence circumvention and layout

approximation. The second, TLayout, is a novel data transformation

algorithm designed to take advantage of modern throughput-oriented

processors. The third technique, adaptive control, allows transpar-

ent selection of suitable transformation schemes for an execution.

Together, they improve the performance of some irregular dynamic

simulations significantly. In addition, this study initiates a new way

of collaborations between CPU and co-processors, which may lead

to some unconventional directions for program optimizations in a

heterogeneous computing environment.
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