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Abstract—Automatic compilation for multiple types of devices
is important, especially given the current trends towards hetero-
geneous computing. This paper concentrates on some issues in
compiling fine-grained SPMD-threaded code (e.g., GPU CUDA
code) for multicore CPUs. It points out some correctness pitfalls
in existing techniques, particularly in their treatment to implicit
synchronizations. It then describes a systematic dependence
analysis specially designed for handling implicit synchronizations
in SPMD-threaded programs. By unveiling the relations between
inter-thread data dependences and correct treatment to synchro-
nizations, it presents a dependence-based solution to the problem.
Experiments demonstrate that the proposed techniques can
resolve the correctness issues in existing compilation techniques,
and help compilers produce correct and efficient translation
results.

Index Terms—GPU; CUDA; GPU-to-CPU Translation; Im-
plicit Synchronizations; Dependence Analysis; SPMD-Translation

I. INTRODUCTION

With the rapid adoption of accelerators (e.g., GPGPU) in

mainstream computing, heterogeneous systems are becoming

increasingly popular. Programming such systems is a chal-

lenge. Many devices have their own programming models

and hardware artifacts. Purely relying on these device-specific

models would require the development of separate code ver-

sions for different devices. It not only hurts the programmers

productivity, but also creates obstacles for code portability,

and adds restrictions for using cross-device task migration or

partition to promote whole-system synergy.
Recent years have seen a number of efforts trying to develop

a single programming model that applies to various devices.

These efforts include development of new programming lan-

guages (e.g., Lime [5]), libraries (e.g., OpenCL [3]), and

cross-device compilers (e.g., CUDA Fortran compiler [25],

O2G [16],MCUDA [21], [22],Ocelot [10]).
A common challenge to virtually all these efforts is how to

treat synchronizations in a program. Different types of devices

often entail different restrictions on inter-thread relations.

Except for some new streaming languages (e.g., Lime), device-

specific synchronization schemes (e.g., the implicit synchro-

nization in CUDA described later) are allowed to be used

by programmers in their applications. Uses of such schemes

help efficiency, but also cause complexities to cross-device

code translations. Despite the importance of the issue for

compilation correctness, current understanding to it remains

preliminary.

In this paper, we conduct a systematic study on the issue,

particularly in the context of compiling fine-grained SPMD-

threaded programs (called SPMD-translation in short) for

multicore CPU. We point out a correctness pitfall current

SPMD-translations are subject to. By revealing the relations

between inter-thread data dependences and correct treatment

to synchronizations, we present a solution to the problem and

examine the influence on program performance.

An SPMD-translation takes a program written in a fine-

grained SPMD-threaded programming model—such as

CUDA [2]—as the base code, and generates programs suit-

able for multicore CPUs or other types of devices through

compilation. In a fine-grained SPMD-threaded program, a

large number of threads execute the same kernel function

on different data sets; the task of a thread is in a small

granularity, hence parallelism among tasks are exposed to an

extreme extent. From such a form, it is relatively simple to

produce code for platforms that require larger task granulari-

ties by task aggregation. SPMD-translation simplifies coding

for heterogeneous devices, and meanwhile, enables seamless

collaboration of different devices (e.g., CPU and GPU) as tasks

can be smoothly partitioned or migrated across devices. Recent

efforts in this direction have yielded translators in both the

source code level (e.g., MCUDA [21], [22]) and below (e.g.,

Ocelot [10]).

Our study uses CUDA as the fine-grained SPMD-threaded

programming model for its broad adoption. There are two

types of synchronizations in a CUDA program. The first is

implicit synchronization, where despite the absence of syn-

chronization statements, a group of threads must proceed in

lockstep due to the artifacts of GPU devices. The second is

explicit synchronization, enabled by some special statements.

The main focus of this paper is on implicit synchronizations.

We show that the treatments to implicit synchronizations in

current SPMD-translations are insufficient to guarantee the

correctness of the produced programs (Section III). Through

dependence analysis, we reveal the cause of the issue and

the relations with various types of dependences in a program

(Section IV and V).

Based on the findings, we then develop two solutions (Sec-

tion VI). The first is a splitting-oriented approach, which starts

with the (possibly erroneous) compilation result of traditional

SPMD-translation, and tries to fix the translation errors by

detecting critical implicit synchronization points, and splitting
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the code accordingly. The second solution is based on simple

extensions to prior SPMD-translations. It is merging-oriented.

It treats implicit synchronizations as explicit ones, uses the

prior SPMD-translations to produce many loops containing

one instruction each, and then relies on standard compilers

to reduce loop overhead through loop fusion. We add some

remedies to make it handle thread-dependent synchronizations.

This solution serves as a baseline approach for efficiency

comparisons.

We evaluate the techniques on a set of programs that contain

non-trivial implicit or explicit synchronizations (Section VIII).

The results show that the proposed dependence analysis and

splitting-oriented solution resolve the correctness issue in ex-

isting SPMD-translations effectively, with correct and efficient

code produced for all tested benchmarks.

Overall, this work makes three main contributions:

• It initiates a systematic exploration to the implica-

tions of implicit synchronizations for SPMD-translations,

and points out a correctness pitfall in current SPMD-

translations.

• It reveals the relations between data dependences and pit-

falls for handling synchronizations in SPMD-translations.

• It provides a systematic solution for addressing the cor-

rectness issue in existing SPMD-translators.

II. BACKGROUND ON CUDA AND SPMD-TRANSLATION

This section provides some CUDA and SPMD-translation

background that is closely relevant to the correctness issue

uncovered in the next section.

Overview of CUDA: CUDA is a representative of fine-

grained SPMD-threaded programming models. It was designed

for programming on GPU, a type of massively parallel device

containing hundreds of cores. CUDA is mainly based on the

C/C++ language, with several minor extensions. A CUDA

program is composed of two parts: the host code to run on

CPU, and some kernels to run on GPU. A GPU kernel is a

C function. When it is invoked, the runtime system creates

thousands of GPU threads, with each executing the same

kernel function. Each thread has a unique ID. The use of thread

IDs in the kernel differentiates the data that different threads

access and the control flow paths that they follow. The amount

of work for one thread is usually small; GPU rely on massive

parallelism and zero-overhead context switch to achieve its

tremendous throughput.

Explicit and Implicit Synchronizations on GPU: On GPU,

there are mainly two types of synchronizations. Explanations

of them relate with GPU thread organization. GPU threads

are organized in a hierarchy. A number of threads (32 in

NVIDIA GPU) with consecutive IDs compose a warp, a

number of warps compose a thread block, and all thread

blocks compose a grid. Execution and synchronization models

differ at different levels of the hierarchy. Threads in a warp

run in the single instruction multiple data (SIMD) mode: No

threads can proceed to the next instruction before all threads

in the warp has finished the current instruction. Such a kind

of synchronizations is called implicit synchronization, as

no statements are needed to trigger them; they are enabled

by hardware automatically. There is another type of syn-

chronization. By default, different warps run independently.

CUDA provides a function ” synchthreads()” for cross-warp

synchronizations. That function works like a barrier, but only

at the level of a thread block. In another word, no thread

in a block can pass the barrier unless all threads in that

block has reached the barrier. Such synchronizations are called

explicit synchronizations. In CUDA, there is no ready-to-

use scheme (except the termination of a kernel) for enabling

synchronizations across thread blocks.

It is worth noting that in CUDA, control flows affecting an

explicit synchronization point must be thread-independent—

that is, if the execution of a synchronization point is control-

dependent on a condition, that condition must be thread-

invariant. In another word, “ synchthreads()” cannot appear

in a conditional branch if only part of a thread block follows

that branch. This constraint, however, does not apply to im-

plicit synchronizations: They exist between every two adjacent

instructions; there is no exception. This difference causes some

complexities for treating implicit synchronizations by simply

extending current solutions to explicit synchronizations, as we

will show in Section IV.

SPMD-Translation: The goal of SPMD-translation is

to compile fine-grained SPMD-threaded programs to code

acceptable by other types of devices. MCUDA [21], [22]

is a recently developed compiler for SPMD-translation. For

its representativeness, we will use it as the example for our

discussion.

MCUDA is a source-to-source compiler, translating CUDA

code to C code that run on multicore CPU. Its basic translation

scheme is simple. For a given GPU kernel to be executed by

NB thread blocks, MCUDA creates NB parallel tasks, with

each corresponding to the task executed by a thread block in

the GPU execution of the program. A generated parallel task is

defined by a C function (called a CPU task function), derived

from the GPU kernel function: Each code segment between

two adjacent explicit synchronization points (including the

beginning and ending of a kernel) in the GPU kernel function

becomes a serial loop in the CPU task function. Each of such

loops has B iterations (B is the number of threads per GPU

thread block), corresponding to the GPU tasks of a thread

block. Figure 1 shows an example (with some simplifications

for illustration purpose).

It is easy to see that the translation keeps the semantics of

explicit synchronizations: No instruction after a synchroniza-

tion point (e.g., the second loop in Figure 1) can run until

all instructions before the synchronization point (e.g., the first

loop in Figure 1) have finished. MCUDA gives appropriate

treatment to local and shared variables, branches (e.g., break,

continue, etc.), loops, and some other complexities in a kernel.

In a parallel execution on CPU, the NB parallel tasks will

be assigned to CPU threads appropriately to achieve high

performance.

From now on, we call the SPMD-translation represented by

MCUDA as the basic SPMD-translation. As seen, MCUDA
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// L: thread block size

__global__ void kernel_f(...){
    //work1
    ...
    __synthreads();
    //work2
    ...
}

void kernel_f(..., cid){
// cid: the id of the CPU threa
    s = cid*L;

for (i=s; i<s+L; i++){
        //work1
        ...
    }

for (i=s; i<s+L; i++){
        //work2
        ...
    }
}

(a) GPU kernel (b) Generated CPU function

Fig. 1. Illustration of MCUDA compilation.

ensures correct treatment to explicit synchronizations in a

kernel through loop fission. As all existing SPMD-translation

tools, MCUDA ignores implicit synchronizations in a kernel,

which may cause erroneous translation results, as discussed

next.

III. A CORRECTNESS PITFALL

We first use a simple, contrived example to explain the

correctness issue that current SPMD-translations are subject

to because of implicit synchronizations. We use source code

statements rather than assembly instructions for the conve-

nience of illustration.

Suppose that the ”work1” in Figure 1 contains the following

statement

S1: if (tid¡ warpSize) {A[tid] += A[tid+1]; B[tid+1]

= A[tid+1];},

where, tid is the ID number of the current GPU thread. In

the default MCUDA compilation, this statement will remain

unchanged in the generated code (Figure 1 (b)) except that the

tid will be replaced with the thread loop index variable i.
Recall that threads in a warp proceed in an SIMD manner.

So for statement S1 in a GPU execution, no instance of

”B[tid+1] = A[tid+1]” will be executed until all instances

of ”A[tid] += A[tid+1]” finish. The implicit synchronization

between the two statements hence ensures that the updates to

the elements in B (except B[warpSize]) come from the new

values of A. However, because MCUDA neglects the implicit

synchronization, the generated CPU code fails to maintain the

semantics: Each iteration of the first loop would copy the old
value of an element of A to B.

Such a reliance on implicit synchronizations appears in

some commonly used GPU applications. An example is the

parallel reduction program in the CUDA SDK [2]. It computes

the sum of an input array. The execution of a thread block com-

putes the sum of a chunk in the input array. The algorithm is

the classic tree-shaped parallel reduction algorithm, as shown

in Figure 2 (a). Each middle level of the tree corresponds to

one step in the reduction and computes the partial of the sum.

Figure 2 (b) shows a piece of code from the GPU kernel of

the reduction program in CUDA SDK [2]. Each iteration of

the ”for” loop corresponds to the reduction at one level of the

tree. Because of the dependences between levels, an explicit

synchronization appears at the bottom of the loop body.

// s[ ]: (volatile) input array
for (i=blockSize/2; i>32; i>>=1){
    if (tid < i)    s[tid]+=s[tid+i];
    __syncthreads();
}
if (tid < 32){
   s[tid] += s[tid+32];
   s[tid] += s[tid+16];
   s[tid] += s[tid+8];
   s[tid] += s[tid+4];
   s[tid] += s[tid+2];
   s[tid] += s[tid+1];
}

3 1 1 2 6 1

4 3 7

7 9

. . . . . .

. . .

(a) Algorithm (b) Kernel function

Fig. 2. Parallel reduction with implicit synchronizations used. (Assuming
warp size=32, block size>= 64.)

The six lines of code at the bottom of Figure 2 (b) are for

the bottom six levels of reduction. Even though dependences

exist among these levels, there are no synchronization function

calls among the six lines. This is not an issue because only

the execution of the first warp matters to the final result and

there are implicit intra-warp synchronizations already.

The motivation for GPU programming to leverage implicit

synchronizations is computing efficiency. For instance, the

way in which the final six levels of the reduction tree are

implemented comes from optimizations. In an earlier version

of the reduction in CUDA SDK, they are actually the final

six iterations of the ”for” loop (whose loop header is in

a form ”for (i=blockSize/2; i>0; i>>=1)”). The optimized

form saves loop index computation, invocations to the explicit

synchronization function, and unnecessary synchronizations

across warps. These benefits yield 1.8X speedup as reported

by NVIDIA [14].

Because of such large performance gains, similar exploita-

tions of implicit synchronizations are common in some im-

portant, high-performance programs (e.g., sorting, reduction,

prefix-sum, etc.). Current SPMD-translations lack not only

the capability to treat such synchronizations systematically,

but also the functionality to detect such critical implicit

synchronizations. The issue jeopardizes their soundness and

practical applicability.

IV. INSUFFICIENCY OF SIMPLE EXTENSIONS

A seemingly straightforward solution is to make current

SPMD-translators treat implicit synchronizations the same as

explicit synchronizations. This solution is insufficient for two

reasons.

First, the simple extension may cause inefficient code being

generated. Recall that MCUDA creates a loop for each code

segment between two explicit synchronizations. As an implicit

synchronization exists between every two instructions in a

GPU kernel function, the simple solution may generate code

consisting of a large number of loops, with each containing

only one instruction in the loop body, entailing high loop

overhead. Although loop fusion may help, its effectiveness

is limited on such deeply fissioned code, as shown in Sec-

tion VIII. Treating implicit synchronizations discriminatively
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L1: A[p[tid]]++;
        B[tid] --;
        if (A[tid]>0 && B[tid]>0) 

goto L1;

// W: warp size
L1: for (tid=0;  tid<W-1; tid++)

A[p[tid]]++;
for (tid=0; tid<W-1; tid++)

           B[tid] --;
for (tid=0; tid<W-1; tid++)

           if (A[tid]>0 && B[tid]>0)
goto L1;

(a) GPU code (b) Generated (erroneous) CPU code 

Fig. 3. Illustration of thread-dependent implicit synchronizations. Initially,
A = {−1, 1}, B = {2, 2}, p = {1, 0}. The naively translated code (b) is
erroneous.

would help, but that requires dependence analysis that handles

complexities specific to implicit synchronizations, as elabo-

rated later in this section.

The second issue is that the code generated by the simple

extension may still be erroneous. As Section II mentions,

MCUDA assumes that synchronization points are thread-

independent, which holds for explicit synchronizations, but

not for implicit synchronizations. Figure 3 exemplifies this

problem. Consider that warp size is 2, and the initial values

of A,B, p are A = {−1, 1}, B = {2, 2}, p = {1, 0}. In the

original GPU execution, only the second thread goes back to
L1 and for only once, the computing results are A = {1, 2}
and B = {1, 0}. But the execution of the CPU code produces

results A = {1, 3} and B = {0, 0}.

The reason for both issues of the simple extension exists in

the differences between implicit and explicit synchronizations.

Implicit synchronizations exist everywhere, hence the explo-

sion of the number of created loops; implicit synchronizations

can be thread-dependent, hence the second issue.

To accommodate these properties of implicit synchroniza-

tions, it is important to have a scheme to identify critical

implicit synchronizations and generate code maintaining their

semantics without introducing too much overhead.

A systematic dependence analysis is important for meeting

both conditions. Traditional dependence analysis offers many

insights, but are not directly applicable as they consider no

relations between data dependence across SIMD thread groups

and the semantics and properties of implicit synchronizations.

We next present a systematic analysis of the relations, and then

describe several derived solutions to the implicit synchroniza-

tion problem.

V. RELATIONS WITH DEPENDENCE

This section examines the relations between various depen-

dencies and the correctness in compiling implicit synchroniza-

tions. The reveal of these relations lays the foundation for

identifying and appropriately treating critical implicit synchro-

nizations.

For simplicity of explanation, our discussion in this part

concentrates on a segment of kernel code C that contains

no explicit synchronizations. Explicit synchronizations are

already handled by the basic SPMD-translation. Because im-

plicit synchronizations only apply to threads within a warp, we

will restrict our discussion to the execution of C by a warp.

[0]:    a = b+c

[1]:    b = c-e

[2]:    g = ... [3]:    h = ...

[4]:    k = ...

[5]:    b = ...

A

B

C D

E

F

rpn(A)=0;   rpn(B)=1;    rpn(C)=2;    rpn(D)=3;     rpn(E)=4;    rpn(F)=5

Fig. 4. Examples for the reverse postorder (rpn) of basic blocks and the
sequence numbers (enclosed by “[]”) of instructions.

Our strategy for dependence analysis is to first use the

default (problematic) SPMD-translation scheme, as described

in Section II, to derive a serial loop L from C, and then

conduct dependence analysis on L. This strategy circumvents

the complexities in dealing with the multithreading behaviors

in the original GPU code C.

From Section II, we know that L essentially takes C as its

loop body and adds a surrounding loop for iterating through

threads. (This loop is called a thread loop.) With only one warp

considered, the loop index values span from 0 to warpSize−
1. All appearances of thread id in C are replaced with the loop

index variable.

We say that L is correct if its executions on a CPU always

produce the same results as the corresponding GPU executions

of C do. Because L neglects all implicit synchronizations in

C, instructions may be executed in an order different from

the GPU execution of C, hence causing errors. Apparently, if

there are no data dependences in L, there is no need to observe

the implicit synchronizations: All execution orders produce the

same results. Data dependences are the key factor for analysis.

Considering the properties of GPU executions, we introduce

the following terms and notations (mostly derived from tradi-

tional terminology) to be used in our proposed dependence

analysis.

Terms and Notations:
• Reverse Postorder of Basic Blocks in L. Following the

traditional compiler terminology, we use postorder to

refer to the order that basic blocks are last visited in

a depth-first search on the control flow graph of L. A

reverse postorder is simply the reverse of a postorder.

For SPMD-translation, however, we add the constraint

that when the possible order of two blocks is not unique

(e.g., sibling branches), the leftmost block has the prece-

dence. (Without loss of generality, it is assumed that the

CUDA compiler ensures that code block layout follows

such a left-to-right order.) This constraint is useful for

dependence analysis because, the order in which a GPU

thread warp traverses basic blocks is consistent with this

reverse postorder due to their SIMD execution mode.

Roughly speaking, reverse postorder is a top-down order
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on a control flow graph but with branches and back-edges

appropriately handled. We use rpn(B) to represent the

reverse postorder number of a basic block B. Figure 4

shows an example.

• Sequence Number. Each statement in L has a distinctive

sequence number. Let S1 and S2 be two instructions

in basic blocks B1 and B2 respectively, and n1 and

n2 be the sequence numbers of the two statements. If

B1 = B2, n1 < n2 if and only if S1 precedes S2

in the block. If B1 �= B2, n1 < n2 if and only if

rpn(B1) < rpn(B2). An example is shown in Figure 4.

We use sn(S) for the sequence number of a statement

S. The sequence numbers cover all instructions in L
and gives them a single order that is consistent with

the execution order of the instructions in GPU when

back-edges are not considered (loops are treated through

dependence vectors). Such an order offers conveniences

for dependence analysis as shown later in this section.

• Dependence Distance Vector. This term is the same as in

the traditional dependence theory [4]. Roughly speaking,

for a dependence from S1 to S2, the distance vector is

the difference between the iteration vector of S2 and

that of S1. Elements in an iteration vector (from left to

right) corresponds to the loops enclosing the statement

(from outermost to innermost). The value of an element

is the value of the corresponding loop index. For example,

the dependence distance vector from S1 to S2 in the

right graph of Figure 5 (j) is (−1, 2,−1), where, the

three elements correspond to the loops tid, i, and j
respectively. (It is important to note that the elements

take the loop order rather than the array index order.)

Only the loops enclosing both statements are considered

in their dependence distance vectors. By default, indexing

of vector elements is 1-based.

• Dependence Sign Vector. It is just the results after a sign

function is applied to the elements in a dependence vector.

For instance, the dependence sign vector for the right

graph of Figure 5 (j) is (−1, 1,−1). If there are multiple

dependences between two statements and their depen-

dence sign vectors differ, “*” can be used to represent

the difference. For instance, two vectors (−1, 0, 1) and

(1, 0, 1) can be represented with one (∗, 0, 1).1
• Preserved Dependence. This term is identical to its tra-

ditional definition. A dependence between S1 and S2 is

preserved after a transformation if the access order to

common memory locations by the two operations remain

the same as in the original program.

• Critical Dependence. A dependence is critical if it is not

preserved by the basic SPMD-translation.

• V (i : j). We use V (i : j) to represent V (i, i+ 1, · · · , j).
SPMD-Translation Dependence Theorem: With the de-

fined terms, we describe the following theorem, which offers

the foundation for identifying critical dependences and implicit

1We use dependence sign vectors rather than traditional dependence direc-
tion vectors because the former is more intuitive and clear than the latter.

synchronization points for SPMD-translation. (As defined at

the beginning of this section, C is for a GPU kernel containing

no explicit synchronization, L is the serial loop produced from

C by the basic SPMD-translation.)

Theorem 1: SPMD-Translation Dependence Theorem: Let

S1 and S2 be two statements in L and sn(S1) < sn(S2). Let

d be a data dependence from S1 to S2 in C. Let v be the sign

vector of the data dependence in L that corresponds to d. The

dependence d is guaranteed to be preserved in L if and only

if at least one of the following conditions holds:

(1) v(1) == 0;

(2) v(1) > 0 & all elements in v(2 : |v|) are 0;

(3) v(1) equals the first non-zero element in v(2 : |v|) and

that element is not “*”.

We now outline the proof of the theorem. We start with

the first condition. The condition v(1) == 0 indicates that

between S1 and S2, there is no data dependence carried by the

thread loop in L, which suggests that between S1 and S2, there

is no data dependence among threads in the execution of C.

The neglect of the implicit synchronizations between the two

statements in L hence affects no inter-thread data dependences.

Graphs (c) and (d) in Figure 5 exemplify that the correctness

holds regardless the remaining elements of v.
For the second condition, because all elements in v(2 : |v|)

are zeros, between S1 and S2 there must be no data de-

pendences carried by any loop in C. Because of the SIMD

execution mode and sn(S1) < sn(S2), in one iteration of the

common loops in C enclosing both S1 and S2, executions of

S1 by all threads in a warp must finish before any execution

of S2 starts during the execution of C on GPU. Therefore,

if there are data dependences, S1 must be the source and S2

must be the sink in the GPU execution of C. The condition

v(1) > 0 ensures that the same dependence relation holds in

the execution of L on CPU. Graphs (a) and (b) in Figure 5

illustrate such cases, while graph (g) shows a counter example.
To see the correctness of the third condition, we note that

the appearance of non-zero elements in v(2 : |v|) suggests

that some loop(s) in C carries data dependences between S1

and S2. The direction of the dependence during the execution

of C on GPU is determined by the first non-zero element in

v(2 : |v|). While for L, it is the first non-zero element in v that

determines the dependence direction between S1 and S2 in the

execution of CPU. Therefore, the third condition ensures that

the dependence direction remains the same between L and C.

Graphs (e) and (f) in Figure 5 demonstrate that the correctness

holds regardless the exact dependence directions between S1

and S2, while Figure 5 (h) shows a counter example.
So far we have proved the “if” part of the theorem. The

“only if” part can be easily proved through an enumeration

of all the cases of the sign vector that are not covered by the

three conditions. It is elided in this paper.
Two notes are worth mentioning. First, the theorem and

proof do not distinguish locations where the dependence ap-

pears. So they hold regardless whether the dependence appears

in a thread-dependent branch. For example, the statement S2 in
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for (i=...){
for (j=...){

S1: A[tid][j][i+2] = ...
S2:        ... = A[tid+1][j+1][i]
    }}

for (i=...){
S1: A[tid][i]=... ;
S2:    ... = A[tid+1][i];
    }

S1: A[tid+1]=... ;
S2:    ... = A[tid];

for (i=...){
S1: A[tid+1][i]=... ;
S2:    ... = A[tid][i];
    }

for (i=...){
S1: A[tid][i+1]=... ;
S2:    ... = A[tid][i];
    }

for (i=...){
S1: A[tid][i]=... ;
S2:    ... = A[tid][i+1];
    }

for (i=...){
S1: A[tid+2][i+1]=... ;
S2:    ... = A[tid][i];
    }

for (i=...){
S1: A[tid][i]=... ;
S2:    ... = A[tid+2][i+1];
    }

(a) v=(1) (b) v=(1,0) (c) v=(0,1) (d) v=(0,-1) (e) v=(1,1) (f) v=(-1,-1)

(g) v=(-1,0) (h) v=(-1,1,-1)

for (i=...){
for (j=...){

S1: A[tid][j][i+2]=... ;
S2:        ... = A[tid+1][j+1][i];
    }}

(j)  Prior (problematic) SPMD-translation of code (h). v=(-1,1,-1)

for (tid=...){
for (i=...){

for (j=...){
S1: A[tid][j][i+2] = ...
S2:          ... = A[tid+1][j+1][i]
    }}}

S1: for (i=1; i< A[tid+1]; i++){
S2: A[tid] = ...;
       }}

(i) v=(1,*)

Fig. 5. Examples for demonstrating the SPMD-Translation Dependence Theorem. The code segments (a) to (i) are examples of GPU kernel code. The
captions show the dependence sign vectors from S1 to S2 in their corresponding CPU code produced by the basic SPMD-translation, as illustrated by graph
(j). Only the dependences in graphs (g,h,i) are critical for SPMD-translation. (Loops are assumed to have been normalized with indices increasing by 1 per
iteration; elided code has no effects on dependences.)

Figure 5 (i) is in a thread-dependent branch—different threads

in a warp may run the “for” loop for different numbers of

iterations. The dependence sign vector is (1, *) from the loop

conditional statement, “i < A[tid+ 1]”, to S2. It meets none

of the three conditions in the theorem, indicating that such a

dependence is critical and the basic SPMD-translation cannot

preserve it.

Second, the SPMD-Translation Dependence Theorem men-

tions no dependence types. It is easy to see that the theorem

holds no matter whether the data dependence is a true (read

after write), anti- (write after read), or output (write after write)

dependence.

Implications to SPMD-Translation: The SPMD-

Translation Dependence Theorem has three implications.

First, it facilitates the detection of SPMD-translation errors.

Based on the theorem, a compiler will be able to examine

a program generated by a basic SPMD-translation and tell

whether it may contain data dependence violations.

Second, it lays the foundation for the detection of critical

dependences and important implicit synchronization points

(i.e., those affecting the correctness of the basic SPMD-

translation), by revealing dependences meeting none of the

three conditions. Section VI will describe how this implica-

tion translates into a systematic detection scheme for critical

implicit synchronizations.

Finally, the theorem provides the theoretical guidance for

using loop transformations to fix certain errors in the basic

SPMD-translations. For instance, as described earlier, the

default SPMD-translation to the code in Figure 5 (g) yields a

dependence vector v = (−1, 0), satisfying none of the three

conditions, and hence indicating the error of the translation.

However, it is easy to see that a simple reversal of the thread

loop index in the CPU code would turn the dependence vector

into v = (1, 0), which meets the second condition of the

theorem, and the dependence from S1 to S2 in the GPU code

is preserved. Section VI will show how this implication can

be systematically exploited in a modified SPMD-translation.

VI. SOLUTIONS

This section presents two solutions for handling implicit

synchronizations. The first is based on data dependence analy-

sis revealed in the previous section. The second is based on the

simple extension described in Section IV, with the correctness

issue on thread-dependent conditional branches addressed. The

second solution is developed as the baseline for efficiency

comparison.

A. Solution 1: A Dependence-Based Splitting-Oriented Ap-
proach

The first solution to implicit synchronizations is based

directly on the SPMD-Translation Dependence Theorem. It

consists of six steps to be conducted by compilers.

• Step 1: Apply the basic SPMD-translation to obtain

thread loops for each code segment bounded by explicit

synchronizations. Let LS represent the set of thread

loops.

• Step 2: Extract a loop L from LS, compute the depen-

dence sign vector from every statement (S) in L to all

other statements in L that have a sequence number greater

than that of S. Statements that access only thread-local

data do not need to be considered in this step.

• Step 3: Based on the vectors, the dependences are classi-

fied into four sets: the intra-thread set I , inter-thread but

benign set B, inter-thread but reversible set R, and inter-

thread critical set K. Let d represent a data dependence

and v be its dependence sign vector. The classification

rules are as follows: v ∈ I if v(1) == 0; v ∈ B if v
satisfies either condition 2 or 3 in the SPMD-Translation

Dependence Theorem; v ∈ R if the dependence can

turn into a benign dependence when the index of the

thread loop gets reversed; K consists of all other data

dependences.

• Step 4: If R == K == φ, the compilation is correct; go

to Step 6.

• Step 5: Use the algorithm in Figure 6 to replace L with

a sequence of loops; each loop has (warpSize − 1)
iterations and executes sequentially.

• Step 6: If LS �= φ, go to Step 2.

314315

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 12,2023 at 16:48:22 UTC from IEEE Xplore.  Restrictions apply. 



// SK: set of statements involved in critical dependences
// SB: set of statements involved in benign dependences
// SR: set of statements involved in reversible dependences
Sa = Sd = ;
while (s = nextStatement()){ // in order of sequential numbers
    if (s  SK || (s  SB && s  SR){
        createLoop_asc(Sa); // with ascending loop index
        createLoop_des(Sd); //with descending loop index
        createLoop_asc(s);
        Sa = Sd = ;
    }
    else if (s  SR)
        Sd.add(s);
    else 
        Sa.add(s);
}
createLoop_asc(Sa); // remaining statements if any
createLoop_des(Sd); // remaining statements if any

Fig. 6. Algorithm for step 5 in Solution 1.

S1: B[i] = ...
S2: B[i+16] = ...
S3: ... = A[i]
S4: ... = A[i+16]

S5:A[i+8]=... S6: C[i+8]=...

S7: C[i]=...

// W: warp size
for (i=W-1; i>=0; i--){
    B[i] = ...
    B[i+16] = ...
    ... = A[i]
}
for (i=0; i<W; i++){
    ... = A[i+16]
}
if (...){

for (i=0; i<W; i++) {

A[i+8] = ...
    }
}
if (...){

for (i=0; i<W; i++) {
        C[i+8] = ...
    }
}
for (i=0; i<W; i++){
    C[i] = ...
}

S1:
S2:
S3:

S4:

S5:

S6:

S7:

: contr ow edges
: reversible dependence

(a) CFG of original kernel code (b) Generated code

: benign dependence

Fig. 7. An example for Solution 1.

The fifth step deserves some further explanations. It tries

to fix dependence violations caused by the basic SPMD-

translation. Its basic strategy is to split a problematic loop at

some critical implicit synchronization points. These points are

those statements involved in dependences belonging to either

K or both B and R. In both cases, simple loop reversal is

insufficient to fix the dependence violations. It uses set Sa to

record statements that involve no inter-thread dependences or

only benign dependences, and uses set Sd for those involving

inter-thread reversible dependences. At a splitting point, it

creates a thread loop with an ascending index to enclose

all statements in Sa, and a loop with a descending index

to enclose all statements in Sd, and then puts the current

statement into a single loop (which is likely to be unrolled

in later optimizations). Both Sa and Sd are then set to empty.

Figure 6 outlines the algorithm.

Control Dependences: Certain constructs (e.g., if-else

and loops) cause control dependences. We first briefly explain

the treatment to constructs with conditional branches. If the

CFG contains branches as exemplified by S5 and S6 in

Figure 7, statements in a branch are treated similarly as the

other statements, except that each of them is turned into a pred-

icated statement with the guarding condition derived from the

original “if” statement enclosing them. Turning the statements

into predicated statements creates much flexibility for code

generation. Some bookkeeping is needed if the condition is

subject to change in the conditional branch. Condition hoisting

is then used to refine the generated program (e.g., “for (){ if

(b) A[i+8]=...; if (b) A[i]=...;}” turns into “if (b) { for (){
A[i+8]=...; A[i]=...;}}”).

For loops, no special treatment is necessary if their bounds

are thread-independent or the loops contain no statement that

involves an inter-thread critical dependence. Otherwise, some

bookkeeping and code replication are needed as illustrated in

Figure 8. In the example, there is a critical dependence be-

tween the first statement and the “if” condition. A complexity

is that in the execution by a GPU warp, due to the SIMD

mode, once a thread fails the “if” check, it won’t check that

condition again. The introduction of the assistant array, cnt[],
is to maintain such a property.

The code generation involves some necessary variable re-

naming (e.g., “i” becomes “iArr[]” in Figure 8) similar to the

practice of prior SPMD-translations [21], [22].

B. Solution 2: A Merging-Oriented Approach

The second solution is based on the simple extension de-

scribed in Section IV with the correctness issue fixed. It treats

all implicit synchronizations as explicit ones and uses the basic

SPMD-translation for code generation. For thread-dependent

implicit synchronizations, it uses the technique similar to the

handling of control dependences in solution 1 (at the end of

Section VI-A) to ensure correctness. The only difference is that

it creates a loop for each statement. It then relies on the default

loop fusion in compilers to reduce loop overhead. We develop

this solution to serve as the baseline for our comparisons.

VII. DISCUSSIONS

Although the dependence theorem described in the previous

section is general, its application in practice needs consider-

ation of some actual complexities. For instance, if the code

complexity makes it difficult to determine the dependence

sign vector between two statements, the dependence should be

considered as critical. In addition, CUDA supports some warp-

level intrinsics (e.g., any() and all()). A warp-level barrier

(i.e., loop fission) is typically needed after each invocation of

such intrinsics in the generated code.

VIII. EVALUATION

Our evaluation concentrates on two aspects: whether the

proposed dependence-based solution can address the correct-

ness issues in the basic SPMD-translation, and how efficient

the produced code is.
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Fig. 8. Illustration of translation of a GPU loop with thread-dependent critical implicit synchronizations.

TABLE I
BENCHMARKS

Program Source Description

CG [1] conjugate gradient
Reduction [2] parallel reduction
SortingNetworks [2] bitonic sort & odd-even

merge sort
SGEMM [24] combined matrix matrix

operations
TransposeNew [2] matrix transpose

A. Methodology

We use five benchmarks, listed in Table I. They are selected

because of their inclusion of non-trivial synchronizations, both

explicit and implicit. Three of them, Reduction, SortingNet-
works, and TransposeNew come from the NVIDIA CUDA

SDK [2]. CG is a conjugate gradient application, originally

from NPB [7] and later ported to CUDA as part of the

HPCGPU project [1]. SGEMM is a high performance linear

algebra function developed by Volkov and Demmel [24].

All of the benchmarks contain a number of explicit syn-

chronizations. The top three of them contain critical implicit

synchronizations, while the other two do not. Including these

two programs helps to examine the capability of the solutions

in maintaining the basic efficiency of the program—that is,

whether they degrade the performance of the part of code that

contains no critical implicit synchronizations.

To test the performance on different platforms, we run

our experiments on two types of machines and through two

compilers. One machine is a quad-core Intel Xeon E5640

machine. The other is a dual-socket dual-core AMD Opteron

2216 machine in the National Center for Supercomputing

Applications. We call these machines the Intel and AMD
machines respectively. Both machines run Linux (2.6.33 and

2.6.32). The Intel machine has GCC 4.1.2 and the AMD

machine has Intel ICC 11.1 installed. All compilations use

the highest optimization levels supported by the compilers.

B. Experimental Results

For each benchmark, we create three versions. The first

version is mainly through MCUDA [21]. The second and third

versions are from the analyses and code generations described

in Section VI. Although our application of the techniques is

mainly manual, they can be automated through a compiler.

• Basic Version: This version is the result from the basic

SPMD-translation in MCUDA [21]. MCUDA has limita-

tions in handling some language-level features, for which,

manual modifications are conducted.

• Merging Version: This version is the result from the

merging-oriented solution described in Section VI-B. It

is based on a straightforward extension to the basic

SPMD-translation, but with issues on thread-dependent

synchronizations addressed.

• Splitting Version: This version is the result from the

dependence-based splitting-oriented solution described in

Section VI-A.

Correctness: The correctness of the three versions are as

expected. For the three programs containing critical implicit

synchronizations, some testing inputs cause the basic version

to produce erroneous results. For example, when an array with

224 ‘1’s is used as input, the reduction produced 200704 rather

than the correct answer 16777216.

However, all testing results of the merging and splitting ver-

sions are correct. Manual code analysis confirms that in both

versions, the errors on the critical implicit synchronizations in

the basic version are fixed. All three versions output correct

results on TransposeNew and Sgemm as they contain no critical

implicit synchronizations.

Efficiency: Figure 9 compares the performance of the

three versions on the Intel machine when GCC is the compiler.

Figure 10 shows the comparison on the AMD machine when

ICC is used. All these results record only the execution times

of the kernels of interest.

For the first three programs, it is important to note that

the performance of the basic versions is just for reference

as they are erroneous. Because they give no treatment to

implicit synchronizations, their code is the simplest and their

executions finish the earliest. For these three programs, the

performance comparison between the merging and splitting

versions is more meaningful as both produce correct results.

For these three programs, the splitting version runs consid-

316317

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 12,2023 at 16:48:22 UTC from IEEE Xplore.  Restrictions apply. 



0

0.5

1

1.5

2

2.5

3

cg reduction sortNet sgemm transpose
Benchmarks

N
or

m
al

iz
ed

 ru
nn

in
g 

tim
e

basic merging splitting

Fig. 9. Running times on the Intel machine, normalized to the execution
times of the (erroneous) basic SPMD-translation results. (“sortNet” is Sort-
ingNetworks in short)
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Fig. 10. Running times on the AMD machine, normalized to the execu-
tion times of the (erroneous) basic SPMD-translation results. (“sortNet” is
SortingNetworks in short)

erably faster than the merging version on the Intel machine.

The main reason is that the merging-oriented approach creates

many small loops, and the loop overhead causes significant

performance influence. The splitting-oriented approach, on the

other hand, creates loops only when necessary based on the

dependence analysis. This difference in loop overhead has

a large impact on the overall performance of reduction and

sortnet. The small impact on cg is due to artificial reasons. Due

to the complex code of cg, when creating the merging-oriented

version, we did not break the kernel into as many loops as it

should be. The performance of the merging-oriented version

is hence much better than a rigorous implementation of that

version.

As GCC has limited loop fusion functionality, it cannot

remove overhead effectively. Because of that, we apply the

commercial compiler, ICC, to the programs and run the same

experiments on the AMD machine. As Figure 10 shows, the

overhead of the merging version becomes smaller than on

the Intel machine when GCC is used, but is still substantial

compared with the splitting version.

For the remaining two programs, all three versions are

comparable as they are all correct. The splitting version

shows similar performance as the basic version, indicating the

capability of the dependence-based solution for maintaining

the basic efficiency of the programs. The merging version still

causes considerable overhead because of the many, small loops

created (recall that in this version, loops are created regardless

whether the implicit synchronization is critical).

Overall, the dependence-based splitting-oriented approach

demonstrates the promise to serve as an effective solution to

the correctness issue of the basic SPMD-translation. It is able

to correct the compilation error with the basic efficiency of

the compilation results maintained.

IX. RELATED WORK

Programming heterogeneous devices has drawn lots of re-

cent attentions. Some researchers try to develop new languages

(e.g., Lime in the Liquid Metal project [5]) to support multiple

types of devices. Some attempt to build new libraries and

compilation tools (e.g., OpenCL [3], MCUDA [21], [22],

Ocelot [10]) to enable cross-device code generation from

some existing (or slightly modified), broadly adopted program-

ming models. But none of prior studies has systematically

explored the issues related to device-specific synchronization

schemes—such as the implicit synchronizations on GPU.

Consequently, many of existing cross-device code generators

are subject to correctness pitfalls. For instance, besides the

discussions on MCUDA and Ocelot earlier in this paper, we

have observed that OpenCL, the GPU programming model

promoted by multiple industry companies, allows the use

of implicit synchronizations but gives no specification on

how they should be handled on different platforms. CUDA

emulation addresses the issue by asking for programmers’

annotations [2].

There have been many studies trying to improve GPU

programming productivity by providing openMP to CUDA

compilers [6], [11], [16], [25], or extensions to CUDA or

OpenCL (e.g. [12], [20]). A few recent studies have concen-

trated on synergistic collaborations between CPU and GPU.

Wu and others initiated a study of using GPU to perform run-

time optimizations for CPU programs [26], while Zhang and

others have demonstrated the potential of CPU-GPU pipelining

for streamlining GPU computation on the fly [28]. Luk and

others have exploited work partition between GPU and CPU

through compiler and runtime support [17]. In addition, recent

years have seen many efforts in optimizing GPU executions

through either software (e.g. [8], [9], [15], [19], [27]–[29]) or

hardware (e.g. [13], [18], [23]) approaches. We are not aware

of previous studies on optimizing the treatment to implicit

synchronizations.

X. CONCLUSION

In this paper, we present an SPMD-translation dependence

theorem, and reveal the relations between data dependences

and the correctness of SPMD-translation regarding implicit

synchronizations. We introduce a systematic solution for fixing
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the correctness issue in current SPMD-translations. Experi-

ments show that the dependence-based techniques solve the

problem effectively, with correct and efficient code produced

for all tested benchmarks. On the high level, this work,

for the first time, systematically examines the complexities

that device-specific synchronizations create for heterogeneous

computing. The insights may benefit practices beyond CUDA-

to-CPU compilation.
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