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Abstract
Dynamic program optimizations are critical for the effi-
ciency of applications in managed programming languages
and scripting languages. Recent studies have shown that ex-
ploitation of program inputs may enhance the effectiveness
of dynamic optimizations significantly. However, current so-
lutions for enabling the exploitation require either program-
mers’ annotations or intensive offline profiling, impairing
the practical adoption of the techniques.

This current work examines the basic feasibility of trans-
parent integration of input-consciousness into dynamic pro-
gram optimizations, particularly in managed execution en-
vironments. It uses transparent learning across production
runs as the basic vehicle, and investigates the implications
of cross-run learning on each main component of input-
conscious dynamic optimizations. It proposes several tech-
niques to address some key challenges for the transparent in-
tegration, including randomized inspection-instrumentation
for cross-user data collection, a sparsity-tolerant algorithm
for input characterization, and selective prediction for effi-
ciency protection. These techniques make it possible to au-
tomatically recognize the relations between the inputs to a
program and the appropriate ways to optimize it. The whole
process happens transparently across production runs; no
need for offline profiling or programmer intervention. Exper-
iments on a number of Java programs demonstrate the effec-
tiveness of the techniques in enabling input-consciousness
for dynamic optimizations, revealing the feasibility and po-
tential benefits of the new optimization paradigm in some
basic settings.
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1. Introduction
Dynamic program optimizations play a central role for en-
hancing the performance of applications in managed pro-
gramming languages (e.g., Java and C#) [3], as well as
scripting languages (e.g., Javascript) [13]. Even though re-
markable progresses have been achieved, most existing dy-
namic optimizations have not systematically exploited an
important factor: program inputs.

Program inputs refer to all the data that are accessed but
not generated by the program, including command-line op-
tions, content of input files, and so on. Many studies have
reported the importance of program inputs in determining
program behaviors and hence appropriate optimization deci-
sions [19,23,32]. The strong correlation suggests the poten-
tial of using program inputs as hints to predict large-scoped
behaviors of a program and hence assist dynamic optimiza-
tions. Recent studies [32] show that the hints from program
inputs may help make dynamic optimizations more proac-
tive (e.g., optimizing a method appropriately before any of
its invocations) and long-sighted (i.e., optimizing for the ef-
ficiency of the entire execution rather than a small interval),
leading to significant speedups. For instance, Tian and oth-
ers have shown 10–29% speedup for a set of Java programs
and 5–13% for a number of C programs when inputs are
considered in program dynamic optimizations [32], Li and
others have observed 44% performance potential for sorting
library construction when certain attributes of input data sets
are used [23].

However, program inputs are often complex—a plausi-
ble reason for the lack of exploitation of inputs in exist-
ing dynamic optimizations. An input file, for instance, may
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have various syntactic structures and semantics (e.g., a tree, a
graph, a video, a document, or a program). To exploit inputs
for optimizations, it is necessary to obtain a clean structure
that captures the important input features and is amenable
to automatic processing. But the complexity of inputs makes
this task extremely challenging. Some prior studies have pro-
posed the use of annotations [25] or offline profiling-based
solutions [19, 32]. But both put extra burdens on program-
mers. In addition, the annotation approach requires extensive
knowledge of the programmers on both the application and
its interactions with the underlying execution stack, while
the offline solutions demand a large number of representative
inputs and many offline profiling runs with detailed code in-
strumentation. These limitations impair the adoption of these
solutions in practice.

This current study is one step towards addressing this
open question. It examines the basic feasibility of transpar-
ent integration of input-consciousness into dynamic program
optimizations, particularly in managed execution environ-
ments (e.g., Java Virtual Machines) equipped with Just-In-
Time compilers (JIT). It uses transparent, continuous learn-
ing across production runs as the basic vehicle, proposes
several techniques to address some key challenges for the
transparent integration, and investigates the implications
of cross-run learning on each main component of input-
conscious dynamic optimizations1.

2. Overview of This Work
As prior work [32] describes, input-conscious dynamic
optimizations mainly consists of three components: input
characterization, input-behavior modeling, and input-based
adaptive optimizations. Input characterization identifies fea-
tures of program inputs that are important for optimizations.
Input-opt modeling constructs predictive models, which
maps the values of the features of an input to the appropriate
optimization decisions for the corresponding execution. We
name the models input-opt models. These two components
provide the foundation for the final component, input-based
adaptive optimizations, which feeds the values of input fea-
tures of the current run into the constructed input-opt models
to guide the dynamic optimizations for the present run.

In previous work, most parts of input-conscious dynamic
optimizations, except the third component, happen in an
offline training process, requiring the application developers
to conduct a large number of offline-profiling runs with
detailed instrumentation and data collection [32].

The solution investigated in this work tries to integrate
all components into a continuous learning process that hap-
pens across production runs. It is fully automatic, imposing
no special requirement on either application developers or
users.

1 We use “input-conscious” rather than the previous term, “input-
centric” [32], for its intuitiveness.

Database
(input feature 

values & 
program beh. 

values)
Input-Opt. Modeling

selected features

input-opt. models

selective profiling

Adaptive Dyn. Opt

values of 
input features

values of input features 
& prog. beh. values

Production RunsIdle-Time Model Refinement

Input Characterization
program execution

Figure 1.

As Figure 1 illustrates, in this paradigm, all three com-
ponents of input-conscious dynamic optimizations mingle
into a continuously evolving process. A production run may
benefit from the current results of input characterization and
input-opt modeling when dynamic optimizers use them to
help optimize the current execution. On the other hand, af-
ter each production run, new observations are added into the
database, which is used periodically (during the idle time of
a machine) to refine the input characterization and input-opt
models to better serve future runs.

This cross-run learning scheme circumvents the needs
for offline profiling, and hence overcomes the limitations
of prior solutions. But for the scheme to work effectively,
several new challenges must be addressed for each of the
three components.

The challenges to input characterization are the most dif-
ficult of all. Due to the complexity of inputs, the only ex-
isting solution for automatic input characterization is the
seminal-behavior identification approach, proposed by Jiang
and others [19]. It however requires the collection of many
runtime behaviors of a large number of runs through de-
tailed instrumentation, which is unaffordable for produc-
tion runs. Runtime sampling is a natural direction. How-
ever, how to achieve large coverage quickly without dis-
turbing performance of production runs is a challenge, es-
pecially for seminal-behavior identification because 1) it is
based on statistical correlation analysis, the data required by
which is usually tremendous; 2) dynamic instrumentation is
necessary, which complicates overhead control as both the
inserted instructions and the instrumentation process itself
cause overhead.

In this work, we propose randomized
inspection-instrumentation to solve the problem. The solu-
tion is based on a cross-user sampling scheme [24]—that is,
accumulating data sampled from many users’ executions—
with two extensions. Its inspection-instrumentation mech-
anism helps control instrumentation-incurred overhead. Its
randomization feature accelerates the coverage of the data
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collection by randomizing the coverage of the samples
among users. Section 4.2 describes these two techniques.

The data collected through the lightweight profiling tend
to be sparse, causing difficulty for the prior approach,
seminal-behavior identification, to effectively characterize
program inputs. We solve the problem by developing a
sparsity-tolerant algorithm, which capitalizes on the par-
tial overlaps of the data from different runs to incrementally
propagate the extracted knowledge on program inputs. Sec-
tion 4.3 presents the algorithm.

The challenges to the other components of input-conscious
dynamic optimizations mainly come from the continuous
evolvement of input features and input-opt models, a phe-
nomenon that exists in no prior offline-based scheme. The
issue is how to exert the full power of the incrementally en-
hanced predictive models without risking much the negative
effects of prediction errors.

Sections 5 and 6 describe our solution to this issue. It uses
self-assessment and selective prediction to control the risks
of wrong predictions. By maintaining a confidence value,
it prevents immature uses of input-opt models without be-
ing too conservative, coordinates the different components
of input-conscious optimizations, and ensembles them into a
concerted continuous optimization system to proceed trans-
parently and profitably.

Experiments based on a JVM, namely Jikes RVM [3],
demonstrate that the proposed techniques are effective in
addressing some major obstacles for transparent input-
conscious dynamic optimizations. On 18 Java benchmarks,
we observe 10–26% average speedup compared to their exe-
cutions on the default Jikes RVM (Section 8), outperforming
the previous input-oblivious approach substantially.

We stress that creating a complete transparent input-
conscious dynamic optimizer that is ready to deploy in prac-
tice is not the goal of this current work. To reach that goal,
there are many other obstacles (e.g., differences in platforms
and software versions as detailed in Section 7) to conquer,
which require many efforts from the community that are
probably far beyond what can fit into a single paper. The
contributions of this paper are at the proposal of solutions
to some of the key obstacles, and the demonstration of the
feasibility of the desired scheme in some basic setting.

In summary, this work makes four main contributions.

• As the first exploration towards transparent input-conscious
dynamic optimizations, it reveals the main challenges
and demonstrates the feasibility of the paradigm in some
basic settings.

• It proposes randomized inspection-instrumentation to
overcome difficulties for data collection for automatic
input characterization over production runs.

• It develops a sparsity-tolerant algorithm to enable in-
put characterization over data collected across production
runs.

opt-level = argmax (Benefit(i) - Cost(i)).
i {0,1,2}

Benefit(i) = Tfuture *(1 - 1/speedup(i)).

Cost(i) = compileSpeed(i) * method_size.

Figure 2. The default cost-benefit model (with simplifica-
tion for illustration purpose) in Jikes RVM for determin-
ing the optimization level for a Java method. (Tfuture: the
estimated time the method is expected to take (if not op-
timized) in the rest of the current execution. speedup(i):
the expected speedup of the method after being optimized
at level i. compileSpeed(i): the compilation speed at level
i.)

• It proposes a continuous learning framework that enables
incremental evolvement of input-conscious dynamic op-
timizations with risks tightly controlled.

We organize the rest of this paper around the challenges
each of the three key components of input-conscious dy-
namic optimizations has to meet so that the entire integration
of input-consciousness can occur transparently over produc-
tion runs. But first, we give a brief description of the underly-
ing platform we use as it is closely relevant to the remaining
discussions.

3. Platform: Jikes RVM
We use Jikes RVM [3], an open-source JVM originally from
IBM, as our main platform for its representativeness as a
dynamic optimization system. We briefly describe some of
its features that are closely relevant to the following sections.

Jikes RVM uses method-level JIT compilation. Like most
existing dynamic optimization systems, the optimizer in
Jikes RVM is reactive: During an execution, it observes the
behaviors of the application through sampling, whereby, it
determines the importance of each Java method in the ap-
plication, and invokes the JIT compiler to (re)optimize the
method accordingly. As compilation incurs runtime over-
head, the JIT offers four compilation levels. The high-level
optimizations (more sophisticated and hence taking more
time) are supposed to be used only for important Java meth-
ods, and low-level optimizations for the others.

During an execution, the default Jikes RVM uses a cost-
benefit model to determine whether a method should be re-
compiled at a higher optimization level. As shown in Fig-
ure 2, in the cost-benefit model, the cost is the time needed
to compile the Java method, estimated from the size of the
method and some predetermined compilation speeds at vari-
ous compilation levels. This cost calculation is directly used
in the inspection-instrumentation scheme described in the
next section. The benefit is estimated as the expected time
savings in the rest of the execution because of this recom-
pilation. In Jikes RVM, there are some predetermined con-
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stants that represent the average speedup each optimization
level produces [3].

The parameter Tfuture in the benefit formula means the
time that the method is expected to take in the rest of the cur-
rent execution. Jikes RVM assumes that Tfuture equals the
time this method has already taken. As a consequence, in one
run, a method may be recompiled several times at increasing
optimizing levels, as Jikes RVM realizes the importance of
the method gradually.

4. Transparent Input Characterization
Among the many challenges for transparently integrating
input-consciousness into dynamic optimizations, the most
difficult ones reside in the first component, input characteri-
zation.

The main goal of input characterization is to reduce the
raw program inputs to a set of features. These features criti-
cally determine the behaviors of the program that are essen-
tial to its performance.

The difficulty comes from the complexities in program
inputs. An application may allow hundreds of options; those
options may overshadow each other; input files may con-
tain millions of data elements, organized in complex struc-
tures and representing various semantics (e.g., trees, graphs,
videos).

Our solution is based on a recently proposed concept, pro-
gram seminal behaviors. We first briefly review the concept
and then describe our techniques for transparently character-
izing program inputs over production runs.

4.1 Review on Program Seminal Behaviors
The concept of program seminal behaviors is proposed by
Jiang and others [19]. It comes from the strong statistical
correlations among program behaviors. For example, two
loops in a program have iterations (15, 41, 52, 89, 101), and
(69, 173, 217, 365, 413) in five runs respectively. Statistical
analysis can easily determine that the trip-counts (i.e., the
numbers of iterations) of these two loops have a linear rela-
tion as C2 = 4∗C1+9, where, C1 and C2 are the trip-counts
of the two loops. Jiang and others have shown that such sta-
tistical correlations widely exist both among loop trip-counts
and from loop trip-counts to other types of behaviors, includ-
ing function invocations, data values, and so on.

Based on those observations, they developed an auto-
matic approach to recognizing a small set of behaviors in
a program, named a seminal behavior set. These behaviors
have two properties. First, they have strong statistical cor-
relations with many other behaviors in the program so that
knowing their values would lead to accurate prediction of the
values of other behaviors. Second, the values of those behav-
iors become known in an early stage in a typical execution of
the program. The seminal behavior set of a SPEC CPU2006
program mcf, for example, is composed of 10 behaviors: the
trip-counts of five of its loops, the values of four of its vari-

ables whose values come directly from command line argu-
ments or input files, and its input file size. In all measured
runs, the values of most of these seminal behaviors become
known during the first 10% portion of an execution.

Recall that the essence of input-conscious dynamic opti-
mizations is to use program inputs as the hints to predict the
behaviors of the program and guide the optimizations. The
properties of seminal behaviors suggest that they can play
the same role that program inputs play in the optimization
paradigm. A seminal behavior set can be hence viewed as
one form of characterization of program inputs.

The previously proposed approach to recognizing semi-
nal behaviors includes a profiling step and an analysis step.
The profiling step collects the values of some candidate be-
haviors (e.g. all loop trip-counts) by running the program—
which has been instrumented in detail—on many different
inputs. The analysis step greedily classifies the behaviors
into some affinity lists. Let S be the set of all candidate be-
haviors. In each iteration of the analysis step, one behavior
b is taken out of S. Using the data collected in the profiling
step, the algorithm finds all behaviors in S that strongly cor-
relate with b, extracts them out of S, and puts them into a
newly created list (called an affinity list); b is called the head
of the affinity list. This process repeats until S is empty. The
union of the heads of all affinity lists is taken as the seminal
behavior set.

Although the approach has shown effective for program
behavior prediction and optimizations [19], its design fails to
meet the needs of transparent input characterization. There
are two major hurdles. First, as a statistical approach, the
method requires tremendous data collected through detailed
instrumentation, which is apparently unaffordable for pro-
duction runs. Second, the algorithm for seminal behavior
identification works for large, dense profiling results. But
data collected through production runs tend to be sparse.
How to recognize seminal behaviors over sparse data re-
mains unclear. The following two sub-sections present our
solutions to each of them.

4.2 Randomized Inspection-Instrumentation for Data
Collection

There have been much work on lightweight runtime pro-
filing [7, 9, 17, 20]. In this work, we use cross-user sam-
pling [24] as the underlying vehicle for its strength in quickly
accumulating a large set of samples. The basic idea of cross-
user sampling is simple. In each run of a given program, the
JIT instruments a small portion of the program and record
the profiling results. The sampled information from differ-
ent runs and by different users (e.g., all the customers of a
software) of the program are accumulated together to form
one data set.

Initially, applying cross-user sampling to input character-
ization appears to be a straightforward process. But when
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we take into consideration the distinctive properties of input
characterization, it turned out to be a challenging task.

The special difficulties exist in two aspects. First, as the
data to collect are for thorough statistical correlation analy-
sis, the required instrumentations are intensive. For instance,
one type of data needed is the trip-count of every loop, at-
taining which often requires the insertion of counter update
instructions that needs to be executed in every iteration of
the loop. Second, the instrumentation must happen on the
fly. Most previous designs of cross-user sampling [24] are
for static instrumentation, which inserts some monitoring
instructions into the software before the deployment of the
software. But our problem requires instrumentation to adapt
to each run because of our focus on the influence of pro-
gram inputs. As a consequence, the overhead of the sam-
pling comes not only from the execution of the instrumented
instructions, but also from the instrumentation process itself,
making it more difficult than before to control the total over-
head to a given limit—a requirement critical for production
runs.

This sub-section describes two techniques,
inspection-instrumentation and randomization, designed to
address these difficulties.

Behaviors to Profile Before looking at the solutions, we
first explain the behaviors needed to profile. Following prior
observations [19], we focus on two kinds of program behav-
iors, from which, seminal behaviors will be recognized later
through statistical correlation analysis.

The first kind of behaviors is interface behaviors. (Please
note that the name has nothing to do with Java Interfaces.)
They consist of the values obtained directly from program
inputs—such as the values of command-line options and val-
ues from file reading operations. We ignore a file operation
that falls in a loop, the trip-count of which is either large or
unknown during compile time. Such an operation tends to be
accessing some massive data set, the values of which may
not influence the coarse-grained behaviors much, but may
significantly inflate the candidate behavior set and compli-
cate the recognition of seminal behaviors. Interface behav-
iors have two appealing properties: They usually correlate
with program inputs strongly; they tend to reside in the ini-
tialization part of a program, and hence their values often
become known in the early stage of an execution—an im-
portant property for the uses of the predictive models built
later on (Section 5.2).

The second kind of behaviors are the trip-counts of all the
loops in the program thanks to the importance of loops and
their strong correlations with other program behaviors [19].

4.2.1 Overhead Control through
Inspection-Instrumentation

Collection of interface behaviors (that are not loop trip-
counts) requires only the recording of some variable values,

incurring negligible overhead. The focus of overhead control
is on the collection of loop trip-counts.

Before describing the overhead control strategy, we first
explain the source of overhead. There are two sources of
overhead for collecting loop trip-counts.

• The first is compilation overhead. It relates to the way JIT
works. We use Jikes RVM for explanation; many other
managed environments have similar schemes. By default,
the JIT in Jikes RVM compiles a Java method using a
basic compiler when encountering the method for the first
time. The compilation is essentially a simple byte code
translation with little data or control flow analysis. Later
recompilations are through an optimizing compiler. Only
compilation by the optimizing compiler (at levels 0, 1,
or 2) exposes loop structures. Our loop instrumentation
is implemented in the optimizing compiler. So in order
to collect loop information, the selected Java method is
compiled by the optimizing compiler (at level 0) rather
than by the basic compiler when it is loaded for the first
time. Because compilations happen during runtime, the
extra time incurred by the optimizing compilation over
that by the default basic compilation is the first source of
overhead.

• The second source is execution overhead. To get the trip-
count of a loop, the compiler inserts a counter-increase
instruction into the loop body. Executions of these in-
structions happen in every loop iteration, forming the sec-
ond source of overhead.

Without a careful control, the two kinds of overhead may
cause unacceptable slowdown to the program executions.

Our solution is a guarded adaptive scheme for instrumen-
tation, named inspection-instrumentation. The basic idea is
simple: If we can estimate the overhead of an instrumen-
tation, we would be able to control the amount of instru-
mentations so that the total overhead is within an acceptable
limit. But because the inspection and selective instrumenta-
tion both have to happen over production runs, they must be
carefully designed to work hand-in-hand over the often in-
complete view exposed by production runs on program be-
haviors.

The designed inspection and instrumentation mingle to-
gether through all production runs. But for clarity of expla-
nation, we describe them separately as follows.

Inspection The purpose of inspection is to estimate the
compilation and execution overhead that an instrumentation
may incur.

1) Compilation Overhead. Compilation overhead mainly
relates with the size of a Java method. Typically, a JIT is
able to estimate the time needed to compile a method at each
optimizing level. For instance, there is a table in the default
Jikes RVM that lists the compilation speeds of the JIT at
various compilation levels (Section 3). So with the size of
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a Java method revealed, the compilation overhead can be
easily estimated from the compilation speeds.

The size of a Java method is obtained incrementally
across runs. In each run, as the JIT compiles a Java method,
it gets the size of the method for free. It records the size into
a database if it is not there yet. The first-time runs by all
the users (likely on many different inputs) typically give a
good coverage of all the Java methods in the program. If a
later run encounters some new methods, these methods are
excluded from instrumentation in that run. Their size will
be added to the database for guiding the instrumentations in
future runs. The recording of a method size happens once
per Java method, incurring negligible overhead.

2) Execution Overhead. The estimation of execution
overhead is based on the following assumption:

After a loop is instrumented, it becomes 1/S or less
slower than its default run, where S is the size of the
loop body in terms of the number of instructions.

This assumption comes from the fact that the instrumen-
tation inserts only one counter increase instruction into the
loop body. We acknowledge that the assumption may not
hold in certain cases (e.g., with early returns). But most other
parts of the overhead estimation algorithm are conservative.
Overall, the assumption causes no noticeable effects as ex-
periments show (Section 8).

Estimation of execution overhead takes place during the
compilation of a Java method by the optimizing compiler.
The compiler lists the loops in an ascendingly ordered se-
quence based on their body size. For a nested loop, the size
of the outer loop does not include the inner loops. Let Li

be the ith loop in that ordered sequence (i = 1, 2, · · · ,M ),
with M for the total number of loops in the sequence. The
overhead estimation mainly uses the following proposition:

PROPOSITION 1. For any given i, when all loops, Lj (i <=
j <= M ), are instrumented, their incurred execution over-
head (normalized by the execution time of the program’s de-
fault run) is no more than 1/size(Li). (size(Li) is the num-
ber of instructions in Li.)

To see the correctness, one needs to notice that because
of our assumption described two paragraphs earlier, after
the instrumentation, the total execution time of the program
becomes T ′ = Trest +

∑
j=i,···,M TLj ∗ (1 + 1/size(Lj)),

where, Trest is the time the non-loop parts of the program
take in the default run of the program, and TLj is the time
loop Lj takes in the default run of the program with the time
spent in its inner loops excluded. Because size(Lj) >=
size(Li) (i <= j <= M ), we have

T ′ <= Trest + (1 + 1/size(Li))
∑

j=i,···,M TLj

<= (1 + 1/size(Li))(Trest +
∑

j=i,···,M TLj )

= (1 + 1/size(Li))Tdef ,

where Tdef is the execution time of the program in its default
run. The correctness of the proposition follows.

static int totalCost=0;

Procedure methodProcess (Methodj){
if (Cj == null){
recordSize (Methodj);

defaultCompile (Methodj);

}
else

if (totalCost + Cj > H∗ T)

defaultCompile (Methodj);

else{
totalCost += Cj;

compileWithInstrument (Methodj);

}
}

Procedure compileWithInstrument (Methodj){
optCompile (Methodj);

LoopList = sortLoops (Methodj); // from small to large

instruB = false;

foreach e in LoopList{
if (instruB) instrument (e);

else if (totalCost/T + 1/e.size < H){
instruB = true;

instrument (e);

}
}

}

Figure 3. The online algorithm for guarded adaptive instru-
mentation.

Instrumentation Aided by the inspection component, the
algorithm of instrumentation ensures that the ratio between
the estimated total overhead and the default running time
does not exceed a predefined threshold, H (a small number
between 0 and 1; 2% in our experiments).

Figure 3 outlines the algorithm. For simplicity of expla-
nation, first assume that the default execution time of the
current run, Tdef , is known beforehand.

The runtime system (JVM) uses a variable totalCost to
track the total estimated overhead (normalized by the default
execution time) that may be incurred by instrumentations
that have been done in the current run. Its value is zero at the
beginning of an execution. The instrumentation algorithm
consists of three steps:

Step 1) When a method, Mj , is loaded, the JIT checks
whether its size has been recorded (by the inspection in
previous runs). If not, the method will be excluded from the
instrumentation, and compiled in the default way. Otherwise,
this method may need to be instrumented; the algorithm
proceeds to the second step.

Step 2) Recall that instrumentation can only happen
through optimizing compilation. In this step, the JIT com-
putes the overhead (Cj) that may be incurred by com-
piling Mj with the optimizing compiler. By comparing
(totalCost + Cj/Tdef ) against H , it determines whether
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using the optimizing compiler to compile this method is af-
fordable. If not, the method is compiled in the default way
with no instrumentation. Otherwise, tries to instrument Mj

by following the next step.
Step 3) The JIT increases totalCost by Cj/Tdef , and

does the optimizing compilation, during which, it tries to
instrument the loops in the method selectively as follows.
It examines the loops in the method in an ascending order of
their body size. Its examination stops when it encounters a
loop, denoted as L, that meets the condition

(1/size(L) + totalCost) < H. (1)

From Proposition 1, we know that the instrumentation of
loop L and all loops that are larger than it incurs no more
overhead (normalized by Tdef ) than 1/size(L). Therefore,
meeting condition 1 means that all these loops can be in-
strumented without incurring too much overhead. The JIT
increases totalCost by 1/size(L), and then instruments all
these loops. The program execution continues.

In the above description, we assume that Tdef is known.
It is rarely true in reality. To circumvent the problem, we in-
stead use the approximated shortest execution time, Tshort,
of the program.

The approximation of Tshort is over the first-time runs of
all users. The JVM records the execution times of those runs
(likely on various inputs). The idle-time analyzer computes
the mean (m) and standard deviation (d) of those times. The
value m−3d is taken for Tshort. Using m−3d rather than the
minimum of all run times is to avoid the noise from abnormal
executions of the program; it is a standard way in statistics
for outliers filtering (including the use of “3”) [16].

As typically Tshort <= Tdef , that replacement only
inflates the estimated overhead, hence adding no risks but
extra conservativeness to the selective instrumentation.

Coverage Maximization through Randomization A fac-
tor critically determining the coverage of the lightweight
profiling is the time when the instrumentation algorithm
starts to run in an execution. For instance, if it always starts at
the beginning of an execution, due to the limited affordabil-
ity, only the methods invoked early in the executions would
get a chance to be instrumented.

To help achieve a large coverage quickly, we design a ran-
domized scheme. For each copy of a Java application (likely
owned by different users), the JVM maintains a variable,
insStart, which determines the time when the instrumen-
tation algorithm starts to run.

After the first execution of the application, the JVM as-
signs a random value to insStart. The value is an integer be-
tween zero and N (the number of methods in the program).
In an execution of the program (except the first-time run), the
instrumentation algorithm starts after the number of methods
that have been loaded equals insStart. After each run, the

loop1

loop2

loop3

run1 run2 run3 run4 run5 run6 run7

x x

x x

x

x x

x
run8

x x x x x x

Figure 4. An illustration of the difficulty for seminal behav-
ior recognition caused by data sparsity.

value of insStart is updated to (insStart+m)%N , where
m is the number of methods getting instrumented in the just-
finished run. If no methods were instrumented (e.g., when
insStart is greater than the number of methods loaded), m
is set to be 1 to encourage the continuation of the instrumen-
tation in the next run.

The randomization of the initial value of insStart helps
to diversify the instrumentation coverage of the execu-
tions by different users. Meanwhile, the regular updates to
insStart within the executions by the same user ensure a
systematic coverage of the entire program among the execu-
tions by that user.

4.3 Correlation Propagation for Seminal Behavior
Recognition over Sparse Data

Based on the data accumulated through cross-user sampling,
the idle-time analyzer tries to identify seminal behaviors.
Recall that the goal is to find a small set of behaviors that
strongly correlate with other behaviors by processing the
collected data set.

A special complexity imposed by the transparent data
collection is that the collected data set tends to be sparse
because of the low tolerance of overhead by production
runs. The sparsity complicates the correlation analysis. For
example, as Figure 4 illustrates, Loop1 and Loop2 are never
sampled in one common run. So even if the trip-counts of the
two loops actually correlate with each other strongly, a direct
correlation calculation on their sampled trip-counts cannot
uncover that.

We circumvent the difficulty by exploiting the transitiv-
ity of correlations. The basic observation is that if event A
has strong statistical correlation with event B and event B
strongly correlates with event C, event A and event C tend
to correlate. For the example in Figure 4, as the samples
of Loop3 overlap with those of both Loop1 and Loop2, we
can use the overlapped runs to compute the correlation be-
tween Loop3 and Loop1, and the correlation between Loop3

and Loop2. If the two correlations are both high, it can be
inferred that Loop1 and Loop2 have strong correlations as
well.

Figure 5 outlines our algorithm for identifying seminal
behaviors. The algorithm iteratively partitions all sampled
loops into a number of families. The loops in a family have
strong correlations with one another in terms of trip-counts.
During this process, the algorithm examines every pair of
loops in order of loop ID. For each pair, it feeds the data
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//IB: the interface behavior set

//Hc: a predefined correlation threshold

Procedure SemRec( ){
semBeh = {};
LoopFam = buildLoopFam( );

foreach f in LoopFam {
l = getRepresentive (f);

c = calCor (l, IB);

if (c< Hc) {
s = getEarliest (f);

semBeh = semBeh ∪ s;

}
}

}

Procedure buildLoopFam (){
loopList = sortLoops (); // based on ID

foreach l1 in loopList {
loopList = loopList - l1;
for each l2 in loopList {
c = calCor (l1, l2);
if (c > Hc) {
f = getFamily (l1); // create one if none

addToFam (l2, f);

}
}

}
}

Figure 5. Algorithm for seminal behavior recognition.

collected from their overlapped runs to a correlation analyzer
(a component of the idle-time analyzer). If the analyzer
regards that the loops have strong correlations (either linear
or non-linear), the loop with the larger ID is added to the
family to which the loop with the smaller ID belongs. A new
family is created if there is no such family.

After the loops are partitioned into families, the next step
is to determine the seminal behaviors. This step starts with
the interface behaviors, which are put into seminal behav-
ior set by default. Recall that interface behaviors are typi-
cally cold behaviors and are collected in every run. The en-
tire set of interface behaviors is regarded as one predictor.
The algorithm examines the correlation between this predic-
tor and one representative loop in each family. The represen-
tative is selected to be the loop that has the largest samples
in the family for the stableness of the correlation analysis
results. When a strong correlation is found, the whole fam-
ily of loops are removed from further considerations as they
are predictable from the current seminal behavior set. If the
correlation is low or uncomputable (when there are too few
overlapped runs), the earliest loop of that family is taken as
a new seminal behavior and added into the seminal behavior
set.

We elaborate on two details. First, the earliness of a loop
is defined as the earliest time that its trip-counts is known.
We make changes to the JIT so that the instrumentation in-

serts a load and store bytecode before and after each sam-
pled loop to record how much time (in timerTicks in Jikes
RVM) has passed since the start of the program. The ear-
liness of a loop is computed as the average earliness of all
samples of the loop in all runs. Selecting the earliest loop
from a family as a seminal behavior helps the early use of
the to-be-built input-opt models (see Section 5.2). Second,
the correlation analyzer is a statistical tool we have devel-
oped. It consists of standard statistical functions for corre-
lation analysis: Least Median of Squares (LMS) regression
for linear regression, Regression Trees for non-linear regres-
sion, step-wise function and principal component analysis
(PCA) for feature selection. They are similar to the analyzer
in previous work [19]. Details are elided.

The technique designed in this work for seminal behav-
ior identification shares certain commonality with the prior
technique [19] in that both are based on statistical correla-
tion analysis. However, there are two important differences.
First, the previous technique works on dense data sets rather
than sparse data sets. Second, the previous work builds affin-
ity lists in a greedy manner. It cannot exploit the correlation
transitivity and hence is not amenable to sparse data sets.
For instance, for the example in Figure 4, the prior tech-
nique fails in recognizing the correlations between Loop1

and Loop2.
In the implementation of the algorithms, we use 0.8 as

the value for the threshold Hc to judge whether a correlation
is high enough. It is the same as the threshold value used in
the previous work, easing the comparison between the two
techniques (in Section 8). The complexity of the algorithm
is O(N2), where N is the number of loops in the program.
As this step happens during idle time of a machine, the
complexity is typically tolerable.

5. Input-Opt Modeling and Adaptive
Dynamic Optimizations

This section briefly discusses some issues the cross-run
learning paradigm brings to the other two components of
of transparent input-conscious dynamic optimizations. Al-
though these issues are not as difficult as those discussed
in the previous section, appropriate treatment to them is no
less important for the transparent input-conscious dynamic
optimizations to work effectively.

5.1 Input-Opt Modeling
Recall that the objective of input-opt modeling is to build up
a predictive model mapping from the values of input features
(i.e., seminal behaviors) to the appropriate optimization de-
cisions (e.g., appropriate unrolling levels for a loop, suitable
optimizing levels for a method, etc.) for an execution. The
mapping can be represented as Btarget = f(Bsem), with
Btarget for the value of a prediction target, Bsem for the val-
ues of seminal behaviors, and f() for the predictive models.
The goal of input-opt modeling is to determine f().
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The previous work [32] has treated this problem as a
statistical learning problem. The solution is to collect a data
set consisting of the values of Btarget and Bsem in many
runs of a program on different inputs, and then apply a
statistical learning tool to the data set to compute f().

The paradigm of learning across production runs imposes
new implications to input-opt modeling in two aspects.

Data Collection The first array of implications relate with
the collection of the data sets (Btarget and Bsem). The sem-
inal behavior set (Bsem) consists of mostly interface be-
haviors (which are usually outside hot code regions) and a
small number of loop trip-counts. The overhead for collect-
ing those behaviors is typically negligible.

Collection of target behaviors (Btarget) is more complex;
the overhead depends on what the target optimizations are.
We categorize various optimizations into three classes.

• Class 1) For some optimizations, the default runtime en-
vironment eventually exposes the appropriate decisions.
An example is the appropriate level for optimizing a Java
method. Even though the default Jikes RVM cannot de-
termine the appropriate level for a method during an ex-
ecution because it does not know how much time that
method takes in the entire execution, it can do so at the
end of the execution. So, the final optimizing level the
JVM decides on a method is usually the appropriate level
for the entire run. For this class of optimizations, the col-
lection of Btarget is simple, just recording the final deci-
sions at the end of an execution. As the overhead occurs
only after the execution, it is typically negligible.

• Class 2) For some optimizations, the default runtime en-
vironment does not directly expose the appropriate de-
cisions, but can produce such decisions as long as some
necessary information is provided. One example is func-
tion inlining. The inlining decisions made by Jikes RVM
during an execution may be inappropriate due to the lack
of information. However, Jikes RVM contains a model
that produces the appropriate inlining decisions as soon
as the hotness of all methods and their sizes are provided.
Often, the information needed is recorded through the ex-
ecution by default; the method hotness in Jikes RVM is
such an example. If not, the behaviors have to be col-
lected using the overhead-controlled sampling scheme as
described in the previous section.

• Class 3) There are some other optimizations, the appro-
priate decisions of which are hard to model, and are of-
ten better to resort to empirical cross-trial comparisons.
An example is the best unrolling levels of a loop. As
the trials may negatively affect the production run per-
formance, the number of trial runs must be minimized.
For some target optimizations, the trials of different deci-
sions can happen in one execution, such as loop unrolling
for a loop that is invoked many times in a run. For oth-
ers, the trials of different decisions may need to happen

on different runs of the program. An example is the se-
lection of the garbage collection that best fits an execu-
tion [26, 29]. In this case, the comparison of the quality
of the different decisions is tricky. If the trials happen on
the same inputs, the comparison is simple. But because
the trials are on production runs, the same inputs may not
be seen until many runs later (or ever). Fortunately, from
seminal behaviors values, one can infer the similarity or
relations among different inputs, and hence make approx-
imated comparison. Detailed explorations are out of the
scope of this paper.

Model Self-Assessment and Evolvement The second fold
of implications are on model construction. Because now
training data come incrementally across runs, it becomes es-
pecially important to track the quality of the current models
so that wrong predictions can be prevented from hurting the
optimizations.

We use ten-fold cross-validation [16] to compute the con-
fidence of each constructed model. Ten-fold cross-validation
is a standard statistical approach. It uses nine tenth of all
training data for model construction and the rest for test-
ing. This process repeats for ten times. A standard statisti-
cal analysis is then applied to the testing results to derive a
confidence value for that model.

Meanwhile, the model construction step records the
boundaries of the part of the input feature space that has been
covered by the training data. Prediction inside these regions
is typically safer than outside. The usage of the boundaries
is seen in the next section.

As more runs finish, more data are collected. With the
input-opt models reconstructed periodically using the up-
dated data set, the confidence levels and covered regions
boundaries are updated accordingly. The self-assessment
process happens in the idle-time analyzer and do not in-
terfere with the production executions.

5.2 Adaptive Dynamic Optimizations
The third component of input-conscious optimizations is to
employ the constructed input-opt models to guide runtime
optimizers. During runtime, as soon as the seminal behav-
iors values become known, the runtime environment invokes
the already constructed input-opt models to attain the appro-
priate optimization decisions and use them for runtime opti-
mizations.

As an implication from the paradigm of learning across
production runs, the usage of the models must be select as
the model quality takes some runs to enhance. The confi-
dence levels and region boundaries described in the previous
sub-section come at handy. The principle is that the runtime
environment uses a model only if the seminal behavior val-
ues of the current run falls into the covered region and at the
same time, the confidence of the model is high enough (over
70% in our experiments).
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6. A Concerted Assembly That Evolves
Continuously

Another implication from the new paradigm is that unlike
the prior offline schemes, the three components now must
happen throughout the entire life time of an application. It is
important to assemble them together into a concert to work
synergistically.

As Figure 1 shows, a continuous learning framework uni-
fies the three components together. Although all three com-
ponents remain active through the life time of an application,
the degrees of their activeness differ in different stages of the
life time.

The initial certain number of runs of a program are purely
dedicated to the first component for identification of the
seminal behaviors. The second and third components do
not need to be invoked as the seminal behaviors set is not
available yet.

The criterion we use for the initial activation of the sec-
ond component is as follows. Let ni,j be the number of runs
during which both loop i and j are sampled. Let n̄ be the av-
erage of all ni,j . The value of n̄ reflects the density of the ac-
cumulated data set. When it exceeds a predefined threshold
(e.g., 3 in our experiments), the second component, input-
opt modeling, gets activated. All the runs before the reach-
ing of the predefined threshold form the initial stage of the
optimization paradigm.

In every following run, the runtime optimizer tries to use
the current input-opt model for optimizations. After every
such run, the collected seminal behaviors and the observed
learning target (e.g., method optimization levels) are put into
the local database. Periodically, the local databases of dif-
ferent users are accumulated together (e.g., into a remote
server), upon which, the idle-time analyzer refines the semi-
nal behavior set and the input-opt models. So over time, the
seminal behavior set may become smaller (as more correla-
tions among seminal behaviors are discovered), the input-opt
model may become more accurate, and the program is likely
to run faster.

7. Other Complexities
The previous sections have described our solutions to some
core obstacles. This section lists some other complexi-
ties related with practical deployment of the optimization
paradigm. Resolving these complexities is beyond the scope
of this paper. We list them, hoping that they may trigger
some research interest of the community so that the new op-
timization paradigm can be practically materialized in the
near future.

Data Communication and Profile Management Concep-
tually, the idle-time analyzer resides in a machine that con-
nects with all the users of a target software. All the sam-
pled data of that software are sent to this central machine
periodically (when the local machine is idle) from all users

for the analyzer to process. The processing results, including
the IDs of the recognized seminal behaviors and the input-
opt models, are sent back to all the users for helping their
respective runtime optimizers (e.g., a JVM) to optimize the
future executions of the software. As neither the samples nor
the models are large, the amount of data transfer should be
modest, unless the customer base is massive. The frequency
of the communication can be configured to strike a good
tradeoff between the timeliness of the model update and the
communication cost. The concrete design of the communi-
cation system and the efficient way to manage profiles on the
servers may depend on the scale of the problem, the frequen-
cies of required updates, and so on.

Differences in Platforms and Libraries The second com-
plexity for real-world deployment of the paradigm is the dif-
ferences among platforms and software copies. Two users
may happen to run a program on two different architec-
ture or libraries; the data collected may have to be recon-
ciled. Studies (e.g. [38]) in matching profiles across plat-
forms may be helpful. Another possible solution is to con-
centrate on behaviors that are largely platform-independent
(e.g. method calling frequency) during input-opt modeling.
Prediction from such models may still be useful as the run-
time optimizer has the knowledge of the specific platform,
and hence may translate the predicted program-level behav-
iors into platform-specific optimization decisions.

Software Update The third complexity comes from soft-
ware update. Software update may cause changes to the
behaviors of the program, hence invalidating some results
learned so far. But on the other hand, an update to a soft-
ware rarely changes the program entirely. It is worth ex-
ploring how the continuous learning framework can adapt to
the changes smoothly, without discarding the entire profile
database and starting from scratch. Some techniques (e.g.,
code matching) in software test prioritization (e.g. [30]) may
be helpful to solve this problem.

Server Applications and Program Phases The inputs to a
server application typically come continuously through an
entire execution. The input-conscious continuous optimiza-
tions may need to happen at the arrival of each input. Simi-
larly, for a program with phase shifts, the integration of the
phase knowledge into the paradigm may be necessary.

8. Evaluation
Our evaluation focuses on the effectiveness of the techniques
for overhead control, and the feasibility and potential of the
transparent input-conscious paradigm for dynamic optimiza-
tions in some basic settings. Specifically, we aim at answer-
ing three-fold questions:

1) Control of Overhead. Can the runtime data collection
quickly collect many samples without causing too much
interference to production runs?
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2) Potential for Optimizations. How effective is the
paradigm in characterizing program inputs and exerting the
power of input-consciousness? Can the paradigm continu-
ously enhance program performance? Is the enhancement
significant?

3) Prevention of Risks. How effective is the selective pre-
diction in preventing wrong predictions from hurting pro-
gram performance?

8.1 Methodology
Platform Our implementation is on Jikes RVM (v. 3.1),
which has been briefly described in Section 3. All experi-
ments happen on machines equipped with Intel Xeon E5310
processors that run Linux 2.6.22; the heap size (”-Xmx”) is
512MB for all.

Benchmarks A special obstacle for our experiments is in
finding benchmark suites. Because of the focus on input in-
fluence, we require many different inputs per benchmark.
However, most existing benchmark suites come with no
more than three inputs.

A Java benchmark suite that comes with many inputs
is the one developed in a previous study on offline in-
put characterization [32]. The suite contains 10 Java pro-
grams selected based on the criterion that extra inputs for
these benchmarks are relatively easier to collect than for
other benchmarks in the original suites, and meanwhile, the
benchmark comes with source code as it is necessary for the
previous analysis. Despite the previous efforts, some of the
programs in the suite (e.g., Search) still have only a small
number of inputs. We include them for completeness.

In addition to including all the benchmarks in the previ-
ous suite, we add all the other programs from the Dacapo
(2006) benchmark suite, except Chart, for comprehensive-
ness of the test. (We have not figured out how to get new
inputs for Chart.) For each of the added benchmark, we try
to collect extra inputs that are typical in the normal execu-
tions of the benchmarks. More specifically, we collect or de-
rive the inputs by searching the real uses of the correspond-
ing applications, consulting the authors of the Dacapo suite
(Our special thanks to Blackburn!), and reading the source
code of the programs and example inputs. For the usage of
the benchmarks to be close to that of real applications, some
programs (e.g., Mtrt, Antlr, Bloat) are modified to reactivate
some of their command-line options that were disabled by
the benchmark suite interface.

Table 1 lists all the benchmarks. These benchmarks cover
a variety of domains, from utility tools to compiler tools to
computational applications. The inputs exhibit large varia-
tions, reflected by the large differences in the corresponding
running times shown in the 5th and 6th columns of the table.

Experimental Setting We use a controlled environment for
experiments. It helps us concentrate on the main goal of
the evaluation (i.e., the questions listed at the beginning of
this section), without getting distracted by the complexities

beyond the scope of this work, such as the design of the
distributed communication system, variations in platforms
and library versions.

In the controlled setting, there are 100 virtual users, run-
ning a benchmark on identical platforms. Instead of using
100 machines and getting distracted by complexities in data
communications, we put all runs on a single machine. Each
time, one virtual user runs the benchmark once, on an input
randomly selected from the input set. The profiles from all
runs are accumulated into a single database.

We acknowledge that the setting has apparent distance
from practical settings; but we maintain that the setting is
still usable for answering the three-fold questions in the fo-
cus of this study. For instance, the overhead incurred by
the sampling scheme is about the current execution by the
current user, largely independent of how all users are con-
nected, how profiles are managed, or any other complexities
excluded by the controlled setting; the same for the eval-
uation of risks prevention. We acknowledge that the exact
benefits from the optimizations may differ from those in real
settings. However, the measurement in this controlled set-
ting can still indicate whether the paradigm is promising in
continuously enhancing program performance, and whether
this direction is worth further investigations.

8.2 Data Collection Efficiency and Incurred Overhead
This sub-section concentrates on the efficiency of the data
collection scheme. Specifically, it examines the effective-
ness of the two sampling techniques proposed in this work,
randomization and inspection-instrumentation, in helping
achieve a large coverage quickly without causing too much
sampling overhead.

Overhead Among the executions of the continuous opti-
mization paradigm, the initial stage is subject to the largest
risks of exhibiting slowdowns due to the instrumentation for
data collection. Our evaluation of overhead concentrates on
that stage.

Because multiple runs of a Java program tend to show
considerable variations of running times even if all those
runs are on the same input, we use a statistical approach ad-
vocated by some previous studies [14] to examine the influ-
ence of the overhead. For each program, we randomly pick
one input. We run the program on that input for 20 times us-
ing the default Jikes RVM, and record the times. We then use
the same program and input to conduct 20 runs with the ran-
domized sampling based on the inspection-instrumentation
scheme. Figure 6 shows the distribution of the running times
in the two scenarios. The times are normalized with the av-
erage time of the 20 default runs.

We use the standard statistical hypothesis testing to exam-
ine whether a program’s performance in the two scenarios
differs significantly. The approach applies T-testing to the
time samples to compute a statistical metric, p-value. The
higher the p-value is, the less likely the two kinds of runs
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Table 1. Benchmarks and Their Properties
Program Description Code # Inputs Running time (s) #Runs in Sampled loops

lines Min Max init stage per run (%)
Compressj compression tool 927 20 0.94 9.33 618 6.7

Dbj database tool 1028 54 0.59 98.16 80 18
Mtrtj multithreaded ray tracer tool 3842 100 0.26 6.37 1161 4.2

Eulerg computational fluid dynamics 1179 20 0.93 7.79 55 17.4
MolDyng molecular dynamics simulation 583 20 0.11 63.05 38 21

MonteCarlog Monte Carlo simulation 3073 21 9.07 15.81 204 11.1
Searchg Alpha-Beta pruned search 712 9 2.74 210.36 106 20

RayTracerg 3D ray tracer 1224 21 3.10 236.57 83 16.7
Antlrd parser generator 32263 175 0.15 0.19 1270 4.8
Bloatd bytecode-level optimization 73563 100 0.08 41.46 1815 3.9

Eclipse d multi-language IDE 1903219 80 0.572 86.648 1856 1.5
Fop d print formatter 88846 70 0.385 2.039 943 3.4

Hsqldb d SQL relational database engine 151915 75 0.455 8.888 1146 2.9
Jython d python interpreter in Java 91982 60 0.594 34.02 1258 1.9

Luindex d text indexing tool 8570 50 0.363 7.299 645 3.2
Lusearch d text search tool 12709 63 0.482 1.443 1630 1.8

Pmd d Java source code analyzer 49331 53 0.323 4.475 1051 4.3
Xalan d transform XML documents 243516 60 0.229 5.723 924 3.1

j: jvm98 [2]; d: dacapo [6]; g: grande [1]
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Figure 7. The number of runs per user in the initial stage.
The solid-line curves are the results when randomization is
used; the broken-line curves are when randomization is not
used.

differ significantly in time. A typical statistical practice is
to reject the hypothesis that the two differ significantly if p-
value is greater than 0.05 [16]. As shown in the bottom of
Figure 6, only the p-values of Euler, Search, and Eclipse are
less than 0.05. The average time differences of the three pro-
grams are respectively 0.85%, 0.97%, and 4.7%, confirming
that the inspection-instrumentation scheme effectively limits
the overhead of most programs to be negligible.

Collection Efficiency The second to the rightmost column
in Table 1 reports the total number of sampling runs that
the initial stage of our continuous optimization paradigm
requires before the second and third components can start.
(Recall that the criterion is that on average, a pair of loops
must have been sampled in at least three common runs.) As
we have 100 users, on average each user needs to have 0.38
to 18.56 runs to reach that coverage. As a comparison, if the
randomized scheme is not used and every user’s sampling
starts from the beginning of the program, based on the right-
most column in Table 1, the estimated number of total runs
would be 1.4X to 7.5X more for them to cover every loop
just at least once.

It is worth noting that because of the randomization in
our sampling scheme, the average number of needed runs
per user decreases almost linearly as the number of users
increases, as Figure 7 shows. (For legibility, the figure shows
only 5 benchmark curves. The others have the similar trend.)
But the average number remains virtually constant when the
randomization scheme is not used, because no matter how
many users there are, the sampling window always moves
through the entire program gradually and sequentially for
every user’s executions.

8.3 Prediction Accuracy and Performance
Enhancement

As Section 5.1 describes, the input-conscious dynamic op-
timizations may be applied to help different classes of opti-
mizations. In this experiment, we take a specific optimiza-

tion decision problem as a concrete example to examine the
basic effectiveness of the new optimization paradigm.

8.3.1 Target for Enhancement
In this example use, the objective is to enhance the compila-
tion strategy in Jikes RVM. In Section 3, we have mentioned
that Jikes RVM realizes the importance of a Java method
only gradually after some invocations of the method. The
weakness causes two kinds of inefficiency. First, because the
JIT recompiles a method at a higher optimizing level when it
sees the increased importance of the method, a method may
be recompiled multiple times in one run, causing unneces-
sarily large compilation overhead. Second, the highly opti-
mized code is produced late, throttling the benefits of the
optimizations. An extreme case is that many methods that
are used heavily in the initialization stage of an application
may get highly optimized at the end of the stage; but after
that, the methods are never invoked again [15].

As many dynamic optimization systems use the similar
strategy, this weakness is shared by almost all of them. Sev-
eral studies [4, 15, 32] have reported the importance of this
weakness. For instance, Arnold and others [4] have reported
over 47% potential speedup when the weakness can be over-
come in IBM commercial JVM, J9. Despite many recent ef-
forts on this issue, the state-of-the-art solutions require ei-
ther extensive offline profiling [32] or are subject to input-
obliviousness [4].

8.3.2 A Solution from the New Paradigm
In this experiment, we try to apply the transparent input-
conscious paradigm to overcome the limitations of existing
solutions.

Specifically, we set the appropriate optimization level for
each Java method as the prediction target in the input-opt
models. As described earlier, the models are transparently
built across production runs of the program. When a Java
method is encountered and the values of the seminal be-
haviors of the current run are known already, the modified
Jikes RVM uses the input-opt models to predict the best op-
timization level for the method. If the prediction is confi-
dent, the JIT optimizes the method at that level immediately.
Otherwise, the default compilation scheme is applied to the
method.

This approach helps avoid repetitive recompilations of a
method. At the same time, as seminal behaviors typically
become known at the early stage of an execution, this ap-
proach helps the JIT produce optimized code early, hence
alleviating both kinds of inefficiency of the default strategy.
It overcomes the limitations of prior solutions [4, 32] by re-
moving the needs for offline profiling and enabling input-
consciousness.

8.3.3 Results
Figure 8 reports how the programs performance changes
across runs as the knowledge base (i.e., the input-opt mod-
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els) grows incrementally. The X-axis starts with the first run
following the finish of the initial stage of the paradigm. In
the experimental setting, the idle-time analyzer refines the
knowledge base after every five runs. For lack of space, it
contains only the figures for the top 12 benchmarks listed in
Table 1. The results of the other benchmarks show the simi-
lar trend.

The confidence and accuracy curves in each figure show
the quality of the constructed input-opt models. The Y-axis
value of each point on the accuracy curve is the percentage
of the Java methods whose appropriate optimization levels
are predicted correctly in the corresponding run. Being cor-
rect here means that the predicted optimization level of a
method equals the ground truth, which is obtained through
the default Jikes RVM as explained in the “Class 1” bul-
let in Section 5.1. The confidence value is computed using
cross-validation on the existing data base, as described in
Section 5.2. The arising trend exhibited by the curves indi-
cates that the continuous learning framework is able to incre-
mentally increase the quality of the input-opt models. Some
runs’ prediction accuracies are zero because in those runs,
the runtime system finds that their seminal behavior values
fall out of the space that the previous runs have covered. As
Section 5.2 describes, thanks to the self-assessment and se-
lective prediction scheme, in such cases, the runtime system
does not do prediction and falls back to the default execu-
tion; no performance penalty is incurred. Similar fallback
executions happen for those runs in which the confidence is
lower than the threshold (0.7).

As the model becomes good enough, the JIT starts to
use the predicted levels to do optimizations. The resulting
speedup starts to show. On different inputs, the speedup dif-
fers. Overall, for most of the programs, significant speedups
are exhibited.

Comparisons Even though the speedup brought by the
input-conscious optimizations is quite significant as Figure 8
shows, the benefits come from multiple sources. it is unclear
how much benefits the input-consciousness really brings.
Will a simple input-oblivious refinement of the default re-
compilation scheme be sufficient? And how much benefit
of input-conscious optimizations is compromised because of
the data loss caused by the cross-run sampling scheme?

To answer the two questions, we compare the speedups
brought by our technique with two other results. One is
from the repository-based approach by Arnold and his col-
leagues [4]. It learns from a repository of history runs, but
does not tailor optimization strategies to program inputs.
More specifically, it produces an optimization strategy for
each method in a program based on some optimization his-
tograms that are built through history runs of the program.
The optimization strategy contains a number of pairs. Each
pair, say < k, o >, indicates that the method should be
(re)compiled using level o when the sampler in the RVM en-
counters the kth samples of the method. The cross-run learn-

ing in the technique ensures that the produced optimization
strategy produce the best average performance for history
runs. Prior studies have shown that this scheme enhances
the optimization by Java Virtual Machines (J9) substantially.
Despite being a good refinement to the default recompilation
scheme, it is input-oblivious. The comparison with this ap-
proach will indicate the value of being input-conscious. The
authors of the technique did their implementation in IBM
J9; we implement their approach on Jikes RVM by follow-
ing their paper.

The other result to compare with is from the offline pro-
filing approach [32]. We use detailed instrumentation to run
each program on all its inputs to collect a complete train-
ing data set, then apply the techniques proposed in a re-
cent work [32] to characterize the inputs and build predic-
tive models for optimization level selection. After that, we
use the models to help JIT in the same way as in our tech-
nique. As the complete data set is used for training, the
obtained performance enhancements are expected to be the
upper-bound for our approach. A comparison with these re-
sults will indicate the benefit compromise caused by the
lightweight data collection in our approach.

Figure 9 shows the minimum, mean, and maximum
speedups from the three techniques on the benchmarks (40
runs per program). The cross-input adaptivity helps our tech-
nique to outperform the repository-based approach substan-
tially, accelerating the programs over their default runs by
10–26% on average. Some of the results, especially those
of “repository” results, show less than 1 speedup. Those
indicate that some slowdown is caused due to wrong pre-
dictions. In most cases, the minimum speedups of our ap-
proach are higher than those of the “repository” approach,
demonstrating that the selective prediction technique helps
our technique to avoid negative effects from prediction er-
rors. The small average distance from the offline profiling-
based results indicates that the automatic components in our
technique are able to well exert the potential of the input-
conscious continuous optimization paradigm. (In several
cases, our approach shows even better performance than the
offline one. It is due to the imperfect design of the compiler,
just another indication of the complexity and sub-optimality
of the current compiler construction.)

9. Related Work
Given the large body of literatures on program optimiza-
tions, this section concentrates on the studies closest to
cross-run program optimizations, input-based optimizations,
and sampling.

There have been some proposals on continuous compila-
tion across runs, including the design of CoCo by Childers
and others [10] and the CPO framework by Wisniewski and
others [37]. Their focuses are on the design of high-level
architectures, loop transformations, or the exploitation of
multiple levels of the software stack. Their design contains
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Figure 8. The cross-run changes of the prediction confidence and accuracy of the input-opt models, along with the corre-
sponding performance enhancement over the executions in the default Jikes RVM.
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Figure 9. The overall speedups from repository-based approach, input-conscious continuous optimizations, and the upper-
bounds obtained through offline-profiling–based experiments.

no systematic treatment to program inputs. Our work dif-
fers from the repository-based cross-run learning system by
Arnold and his colleagues [4] in three main aspects. First, we
propose an automatic way to tackle input complexity over
production runs, which is not addressed in their study. Sec-
ond, our technique tailors the optimization strategy for ev-
ery input rather than producing a single strategy that max-
imizes the average performance of all past runs. Finally,
our technique uses self-evaluation to selectively predict op-
timal strategies with confidence; their technique applies the
learned strategy to new inputs with no guarding. Mao and
Shen have developed a framework for cross-input learning
and optimizing programs [25]. Their work uses manually
characterized input features without addressing the difficul-
ties in automatic input characterization through production
runs. The required manual efforts are extra burden that im-
pairs the adoption of cross-input learning and optimizations.
To the best of our knowledge, this current work is the first
that enables fully automatic cross-run optimizations with
input-adaptivity.

Some prior studies have noticed the importance of pro-
gram inputs and tried to exploit them for optimizations. Tian
and others propose an input-centric framework [32]. Their
technique is heavily based on offline profiling for both in-

put characterization and the recognition of the relations be-
tween inputs and optimizations. There are some other stud-
ies that manually specify a set of input features that are im-
portant for the execution of the application, and then use
search or machine learning techniques to derive a model
to help the execution of the application adapt to those fea-
tures in an arbitrary input. Examples include the parametric
analysis for computation offloading [35], machine learning-
based compilation [22], adaptive sorting [23], and some li-
brary constructions [5, 12, 18, 28, 31, 36]. Because of the re-
quired manual efforts, those explorations have been focused
on some particular applications or kernels. The optimization
strategy is constructed through a large number of offline pro-
filing runs. A complementary approach to helping JIT is to
enhance the compilation decisions by training over a large
number of code features. An example is the method-specific
dynamic compilation by Cavazos and others [8]. Their work
also relies on a large number of offline training runs.

The term, continuous program optimizations, was also
used to refer to pure runtime adaptive optimizations [3, 11,
21, 27, 33]. They typically use runtime lightweight profil-
ing to guide dynamic optimizers. They do not use cross-run
knowledge, and do not deal with input complexities explic-
itly.
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Much work has used sampling for program optimizations
(e.g. [9, 17]) and debugging (e.g., [7, 20]). Cross-user data
collection has been used for bug isolation [24] and com-
pilation [34]. The data collection scheme used in this cur-
rent work differs from the previous work in that it uses
randomization to speedup coverage, and employs the over-
head pre-inspection to guard instrumentation. The two tech-
niques show effectiveness for both coverage maximization
and overhead control; we are not aware of prior uses of these
two techniques.

10. Conclusion
In this paper, we report an investigation in the basic feasi-
bility of transparent integration of input-consciousness into
dynamic program optimizations, particularly in managed ex-
ecution environments. The underlying vehicle of the new ap-
proach is transparent learning across production runs. Af-
ter examining the implications of the new paradigm on each
main component of input-conscious dynamic optimizations,
we propose several techniques to address some key chal-
lenges, including randomized inspection-instrumentation for
cross-user data collection, a sparsity-tolerant algorithm for
input characterization, and selective prediction for efficiency
protection. Together, these techniques make it possible to
automatically recognize the relations between the inputs to
a program and the appropriate ways to optimize it. The
new approach eliminates the needs for offline profiling or
programmers’ annotations, overcoming some limitations of
prior solutions. Meanwhile, the paper points out some com-
plexities that require further explorations. Experiments in a
JVM demonstrate the feasibility and potential benefits of the
new optimization paradigm in some basic settings.
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