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Abstract

Accurately predicting program behaviors (e.g., locality, de-

pendency, method calling frequency) is fundamental for

program optimizations and runtime adaptations. Despite

decades of remarkable progress, prior studies have not sys-

tematically exploited program inputs, a deciding factor for

program behaviors.

Triggered by the strong and predictive correlations be-

tween program inputs and behaviors that recent studies have

uncovered, this work proposes to include program inputs

into the focus of program behavior analysis, cultivating a

new paradigm named input-centric program behavior analy-

sis. This new approach consists of three components, form-

ing a three-layer pyramid. At the base is program input char-

acterization, a component for resolving the complexity in

program raw inputs and the extraction of important features.

In the middle is input-behavior modeling, a component for

recognizing and modeling the correlations between char-

acterized input features and program behaviors. These two

components constitute input-centric program behavior anal-

ysis, which (ideally) is able to predict the large-scope be-

haviors of a program’s execution as soon as the execution

starts. The top layer of the pyramid is input-centric adap-

tation, which capitalizes on the novel opportunities that the

first two components create to facilitate proactive adaptation

for program optimizations.

By centering on program inputs, the new approach re-

solves a proactivity-adaptivity dilemma inherent in previous

techniques. Its benefits are demonstrated through proactive

dynamic optimizations and version selection, yielding sig-

nificant performance improvement on a set of Java and C

programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA/SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
Copyright c© 2010 ACM 978-1-4503-0203-6/10/10. . . $5.00.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—optimization, compilers

General Terms Languages, Performance

Keywords Program inputs, Dynamic optimizations, Java

Virtual Machine, Proactivity, Seminal behaviors, Dynamic

version selection, Just-In-Time compilation

1. Introduction

The goal of program behavior analysis is to uncover the pat-

terns in a program’s dynamic behaviors (e.g., cache require-

ment, function calling frequency) so that the future behav-

iors of the program can be accurately predicted. As program

optimizations rely on accurate predictions of program be-

haviors, program behavior analysis is essential for the max-

imization of computing efficiency.

The inputs to a program refer to all the data that are not

generated but accessed by the program, including command

line arguments, interactively input data, files to read, and so

on. Many studies have reported strong influence program

inputs impose on the program’s behaviors [6, 21, 25, 27,

28, 40, 42]. Such influence has been commonly regarded

a hurdle for program optimizations: Static compilers have

to optimize conservatively through transformations that fit

all possible inputs [1, 2]; profiling-based optimizers often

encounter cases that an optimization they apply based on

some training runs work inferiorly on an execution of the

program on a new input [5, 6, 27, 28].

The work described in this paper comes from a differ-

ent perspective: The strong influence from program inputs,

although causing challenges, may meanwhile provide valu-

able hints and opportunities for program behavior predic-

tion and program optimizations. The rationale is that because

of the decisive role of program inputs, the knowledge about

them may offer important clues on how the program would

behave, and because in many cases (although not always)

program inputs become known when an execution starts, the

clues they offer may help produce a large-scope prediction

of the execution at its early stage, offering important guid-

ing information for dynamic optimizers. In the experiment to

be reported in Section 4.1, for example, the clues indirectly

derived from program inputs lead to accurate prediction of
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Figure 1. The components of input-centric program behav-

ior analysis and optimizations. They form a pyramid, with

the top level exerting the power of the analysis conducted by

the lower levels.

the appropriate optimization level for each Java method at

the early stage of an execution. The prediction helps the

JIT (Just-In-Time) compiler appropriately optimize the Java

method earlier than it does by default, yielding 10–29% per-

formance improvement.

A few previous studies [25, 40, 43] have used certain fea-

tures of program inputs for optimizations. But they have con-

centrated on several scientific kernels (e.g., sorting, FFT),

and the exploitation of program inputs mainly relies on

domain-specific knowledge (e.g., the data distribution is a

feature important for sorting). A recent work [27] attempts

to generalize the idea to a broader class of applications, but

still with manual characterization of inputs required. It re-

mains an open question how to exploit program inputs for

optimizing general applications in a systematic and auto-

matic manner. As a result, program input, a deciding factor

for program behaviors, remains outside the focuses of most

optimizers.

In this work, we aim to bring program inputs into the

center of program optimizations by answering the following

questions.

• First, is it worthwhile? In another word, are there any

distinctive opportunities that an exploitation of program

inputs can bring to program optimizations?

• If so, how to expose such opportunities, especially given

the remarkable complexities of program inputs and pro-

gram behaviors?

• Finally, if those opportunities can be exposed, how to

capitalize on them for performance improvement? What

changes need to be done to optimizers for the capitaliza-

tion? How much performance improvement can be pro-

duced?

Our efforts for answering these questions yield a set of

techniques forming a three-layer pyramid as shown in Fig-

ure 1. The bottom layer, program input characterization

(Section 3.1), is fundamental. It extracts important features

from raw, often complex, program inputs by taking advan-

tage of statistical correlations among program behaviors.

The second layer, input-behavior modeling (Section 3.2),

recognizes and models the statistical relations between the

features produced by the first layer and various program be-

haviors. The process is based on machine learning theory

and techniques, with a systematic treatment to some special

features of program behavior analysis (e.g., identification of

categorical features, the tension between many input fea-

tures and limited training runs). These two layers constitute

input-centric program behavior analysis, through which, the

runtime system is able to predict from the program inputs

the behaviors of a large scope of the current execution, (ide-

ally) as soon as the execution starts. The prediction opens

many novel opportunities for the enhancement of dynamic

optimizations. The third layer, input-centric adaptation

(Section 3.3), helps overcome some inherent limitations—

specifically, a proactivity-adaptivity dilemma—in current

dynamic optimizers and converts the opportunities created

by the first two components into performance improvement.

These three layers together form a new paradigm, namely

the input-centric program behavior analysis and optimiza-

tions. Its central theme is the exploration and exploitation

of program inputs. The techniques developed in this work

address the key difficulties in each of its components, elimi-

nate the needs for manual efforts, and for the first time, make

automatic input-centric program optimizations feasible and

profitable.

To examine the potential of the new paradigm, we apply

it to two optimizers (Section 4). One is the JIT optimizer

in Jikes RVM for Java programs, the other is the optimizer

in a product compiler (IBM XL compiler) for C programs.

Both experiments show that input-centric optimizations con-

sistently outperform existing techniques. In the Jikes RVM,

the speedups are up to 81% with average ranging from 10%

to 29%; in the IBM XL compiler, the speedups are up to 58%

with averages between 5% and 13%.

In summary, this work makes the following major contri-

butions.

• It develops the first input-centric paradigm for program

behavior analysis and optimizations. Some recent stud-

ies [21,27] have tackled certain challenges in some layers

of the input-centric paradigm, offering the basis for this

study. But none of the previous studies has proposed such

a paradigm, or offered a completely automatic solution to

realize the paradigm.

• This work systematically explores the special challenges

existing in the construction of the statistical models be-

tween input features and program behaviors. Some re-

lated studies have employed machine learning tools for

program optimizations but without considering the spe-

cial properties of program behavior analysis. This work

demonstrates that a systematic treatment to these prop-

erties may significantly improve the learning results and

yield substantial enhancement to the optimization results.
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• This work demonstrates input-centric adaptation by de-

veloping two example schemes. Meanwhile, it assesses

the potential of input-centric optimizations by compar-

ing them with both manual endeavors and the state-of-art

optimization techniques.

2. Qualitative View on the Importance of

Program Inputs for Program Optimizers

Before describing the techniques in detail and reporting their

quantitative results, we first give a qualitative discussion to

convey some intuition for the importance of program inputs

and the distinctive opportunities they may bring to program

optimizations.

2.1 A Deciding Factor for Program Behaviors

The importance of program inputs for program optimiza-

tions stems from their important role in determining program

behaviors. Formally, program behaviors in this paper refer to

the operations of a program and the ensuing activities of the

computing system in relation to the program input and run-

ning environment. Examples include dynamic call graphs,

data access patterns, memory requirement, cache usage, and

so forth. The various factors deciding the behaviors of a pro-

gram may be qualitatively expressed by the following pro-

gram behavior equation:

Prog. Behaviors = Inputs + Code + Environments.

(1)

The program code determines the set of instructions that may

be executed in a run; the running environments consist of all

the elements in the execution platform, including the OS,

virtual machine, architecture, system workload, and so on;

program inputs determine the exact set of instructions to be

executed, their execution order and frequencies, as well as

the data to be accessed.

As shown by the behavior equation, for a given program

in a given environment, program inputs are the single impor-

tant factor that decides the behaviors of the program in the

execution. Many quantitative measurements have confirmed

this strong connection on various kinds of program behav-

iors, including data locality [47], sorting algorithm selec-

tion [25,40], computation offloading [42], and memory man-

agement [28]. This connection is the intuition for program

inputs to serve as clues for program behaviors prediction—

the essence of input-centric program behavior analysis.

2.2 Implications to Program Optimizations

Conceptually, the benefits of exploiting program inputs for

optimizations may be summarized as its potential to ad-

dress a proactivity-adaptivity dilemma that limits existing

program optimizers.

Existing approaches to program behavior analysis fall

into three categories as illustrated in Figure 2. Static compi-

lation [1, 2] focuses on code analysis, considers certain run-
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Figure 2. Insufficient treatments to program inputs causes a

dilemma between the proactivity and adaptivity of program

optimizations.

time environments (e.g., the number of registers), but mostly

ignores inputs. They conservatively limit themselves to the

properties holding for all inputs.

Offline profiling-based techniques typically choose sev-

eral inputs as representatives for profiling and optimize the

program accordingly. Their optimizations are limited to the

behaviors exposed in the profiling runs, hence impairing

their adaptivity to new inputs.

Finally, runtime behavior analysis [4, 8, 24, 31, 46] in dy-

namic optimizers (e.g., the runtime systems of Java and C#),

overcomes the limitations of static and profiling techniques

by sampling and analyzing program executions on the fly.

It has good adaptivity—being able to adapt to the changes

in running environments and program inputs. But it does not

model or exploit program inputs: It simply uses the observed

behaviors in a recent interval as the prediction for the fu-

ture. As a result, runtime behavior analysis lacks the proac-

tivity that the static and offline profiling techniques have—

referring to that they analyze and predict the behaviors of the

entire program before the start of any production run of the

program.

The importance of proactivity may be less straightfor-

ward than that of adaptivity, but no less important. Its ab-

sence in existing dynamic optimization systems has resulted

in three limitations. First, without a large-scope prediction

of the behaviors of the current execution, an optimizer has

to go through a behavior-monitoring phase periodically to

learn about the execution before optimizing it. The delay

impairs the benefits the optimizations may bring. Second,

what the reactive way to learn about program behaviors re-

gards is the execution in only some recent intervals. Conse-

quently, the corresponding optimizations may be suitable to

those intervals but inferior to the entire execution. For exam-

ple, some Java methods that are heavily used in initialization

stages may be rarely invoked in the main execution. Without

a large-scope view, the JIT compiler in existing Java Virtual

Machines may be misled to optimize those methods sophis-

ticatedly, bringing virtually no benefits to the main execu-

tion, but considerable slowdown to the start-up [17]. Finally,

the lack of proactivity limits the applicability of dynamic

optimizations. For instance, a reactive way to dynamically
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overcome the difficulty in making decisions for optimiza-

tions (e.g. unrolling levels for a loop, registers to spill) is to

generate a version for each possible option and then try them

one by one to select the best. The approach is hard to apply

when the option space is large as the whole process happens

during the current run. Even for small option space, the ap-

proach may have limited effectiveness especially when the

segment of code (e.g. a subroutine) to be optimized has few

invocations (as confirmed in Section 4.2).

Prior studies have revealed some evidences to those draw-

backs of reactivity. In a study by Arnold and others [5], on a

commercial Java Virtual Machine (IBM J9 [16]), programs

may run 17-49% faster if the delay in optimizations is just

partially removed. A later study [27] shows that enhanced

proactivity increases performance even further. Other studies

have seen similar benefits in memory management [28], lo-

cality phase prediction [35] and library development [25,40].

As a side note, the limitations of reactive approaches

are not only for dynamic program optimizations, but also

for dynamic adaptations in other levels, including operat-

ing systems and architectures. For instance, reactive co-

scheduling [38] on chip multiprocessors requires the trials of

possible co-runs (multiple jobs running on a single chip) to

find the schedule that minimizes the effects of shared-cache

contention. It is hard to scale as the number of possible co-

runs is exponential in the numbers of jobs and computing

units [20]. By providing a proactive way for large-scope

program behavior prediction, the techniques presented next

are potentially beneficial to those levels as well. Detailed

discussions are out of the scope of this paper.

3. Input-Centric Behavior Analysis and

Optimizations

Driven by the potential benefits of exploiting program inputs

for optimizations, we have developed a set of techniques en-

capsulated in the pyramid in Figure 1. They are designed to

tackle some critical obstacles to input-centric optimizations,

including the characterization of complex program inputs,

the construction of predictive models mapping from input

features to program behaviors, and the capitalization of these

models for program optimizations. This section presents the

three layers of the pyramid in a bottom-up order.

3.1 Input Characterization

One of the major hurdles to exploiting program inputs is

their complexity. An application may allow hundreds of

options; those options may overshadow each other; input

files may contain millions of data elements, organized in

complex structures and representing various semantics (e.g.,

trees, graphs, videos).

The goal of input characterization is to address these

complexities in a systematic and fully automatic manner.

Specifically, it tries to reduce the raw, complex program in-

puts to a set of features. These features critically determine

the behaviors of the program that are essential to its perfor-

mance. Consider the GNU compression tool, Gzip. Its core

includes a loop that applies Lempel-Ziv coding to a 32 KB

segment of the input file in each iteration. Although the cod-

ing results and some fine-grained behaviors may differ on

different input files, the major behaviors (loop trip-counts,

function calling frequencies, etc.) of the program do not as

long as the input files are of a similar size and some critical

compression options remain the same [34]. Similarly, for a

quick-sort program, the distribution rather than the values of

input data determines the sorting process [25, 40]. As to be

presented in Section 4, our examination of 10 Java and 14

C applications shows that for most of them, it is enough to

predict their main behaviors from a small number of input

features.

However, automatically extracting the critical features

directly from program inputs is a remarkably challenging

task. An input data file may have arbitrary structures and

semantics, ranging from a graph to an audio to a database

or even a program. It may have a large number of attributes,

from as simple as the values of some special numbers in a

file to as concealing as the density of a graph, the frequency

range of an audio signal, the distribution of a bag of data,

and the numbers of various constructs in a program.

In this work, we employ a technique, named seminal-

behavior analysis, to circumvent the difficulties. Seminal-

behavior analysis is a technique proposed recently by Jiang

and others [21]. It is enlightened by the strong correlations

among program behaviors. Such correlations are statistical

properties. For instance, in five runs of the program mcf on

five different inputs, one of its loops (denoted as loop-1)

has iterations (15, 41, 52, 89, 101), and another (denoted

as loop-2) has iterations (69, 173, 217, 365, 413). Statistical

analysis can easily determine that the trip-counts (i.e., the

numbers of iterations) of these two loops have a linear rela-

tion as C2 = 4 ∗ C1 + 9 (C1, C2 for the trip-counts of the

two loops). Jiang and others show that such statistical cor-

relations widely exist both among loop trip-counts and from

loop trip-counts to other types of behaviors, including func-

tion invocations, data values, and so on.

Based on those observations, they developed a three-step

automatic approach to recognizing a small set of behaviors

in a program, named a seminal behavior set. These behaviors

satisfy two properties. First, they have strong correlations

with many other behaviors in the program so that knowing

their values would lead to accurate prediction of the values

of other behaviors. Second, the values of those behaviors be-

come known in an early stage in a typical execution of the

program. The seminal behavior set of the program mcf, for

example, is composed of 10 behaviors: the trip-counts of five

of its loops, the values of four of its variables whose values

come directly from command line arguments or input files,

and its input file size. In all measured runs, the values of

most seminal behaviors become explicit during the first 10%
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portion of an execution. Their values show strong statistical

correlations with the trip-counts of most loops and the call-

ing frequencies of most functions in the programs.

The entire process for finding seminal behaviors is through

a fully automatic tool; no manual efforts are necessary.

The tool is composed of a compiler (specifically, a modi-

fied GCC [21]), a profiling component, and a data analysis

component. Given a program and a set of inputs, during the

compilation stage, the compiler inserts some instructions

into the program to prepare for program behavior collection.

Then the profiling component runs the program on each of

the inputs; the behaviors reported by the inserted instruc-

tions form a database. After the profiling step finishes, the

data analysis component analyzes the content of the database

(using regression techniques) to examine the statistical rela-

tions among observed behaviors, and then determines which

of those behaviors may serve as seminal behaviors based on

their earliness (i.e., how early their values become known

in an execution) and the strength of their correlations with

other behaviors. The previous paper [21] contains the formal

definition of seminal behaviors and the detailed design and

implementation of the tool.

In this work, we adopt seminal behaviors for program in-

put characterization. The basic rationale is that because sem-

inal behaviors have strong correlations with many other be-

haviors, their values essentially capture the important fea-

tures of the current program inputs and offers clues for pro-

gram behavior prediction. For instance, in the 2-loop exam-

ple mentioned in the earlier paragraph, suppose loop-1 is

identified as a seminal behavior. In a new execution, as soon

as its loop trip-counts (C1) become known, we may imme-

diately predict the trip-counts of loop-2 by plugging C1 into

the linear equation C2 = 4 ∗ C1 + 9.

By using seminal behaviors, we avoid the needs for direct

attacks to the complexities in program raw inputs. It offers

an indirect way to characterize program inputs in a fully

automatic manner.

3.2 Input-Behavior Modeling

Input-behavior modeling is the second component of input-

centric behavior analysis. Its goal is to construct mod-

els, namely input-behavior models, that capture the con-

nections between input features—represented by seminal

behaviors—and program behaviors. With such models, the

prediction of program behaviors from an arbitrary input be-

comes possible.

The modeling is through cross-run incremental learning.

For a given application, during each of its executions, the

runtime system records the values of seminal behaviors and

(sampled) program behaviors in a database. After a certain

number of runs, a learning agent applies statistical learning

to the database to construct input-behavior models. For a

run on a new input, the runtime system uses the constructed

models to predict how the program will behave, preparing

for proactive dynamic optimizations. The learning occurs

repeatedly for continuous enhancement of the models.

In this section, we first describe the formulation of the

problem of input-behavior modeling as a statistical learning

problem and outline the basic solutions. We then concentrate

on several challenges in the learning process that are special

to input-behavior modeling and describe our answers. Sec-

tion 4 will show that treating these special challenges is crit-

ical for the quality of the produced input-behavior models.

3.2.1 Problem Formulation

The input-behavior modeling is a statistical learning process.

Its objective is to determine a function that maps inputs,

characterized by seminal behaviors (denoted by V ), to target

behaviors (denoted by B). The mapping function is repre-

sented as B = f(V ), where V is a vector with each element

corresponding to one seminal behavior. The learning target,

B, can be one behavior or a vector of multiple target behav-

iors. In the latter case, the learning process builds a mapping

function between V and each of the target behaviors.

During the learning process, on every run of the program

on an input data set, we obtain the values of both V and

B. After a number of runs, we accumulate a database {<
Vi, Bi >} (i = 1, 2, · · · , N ). Determining the function f

from such a database is a typical statistical learning problem.

Specifically, when the target behavior has categorical values

(i.e., its value set has a limited number of members), the

problem is a classification problem; when the target behavior

has continuous values, it is a regression problem [18]. The

function f can be in a form of mathematical formulas or in a

less structured form, such as Decision Trees, Support Vector

Machines, Neural Networks.

To give a concrete explanation, we take the compilation

of Java methods in Jikes RVM [3] as an example. In Jikes

RVM, the JIT compiler may optimize a Java method at 4

levels (-1, 0, 1, 2). Due to the tradeoff between compila-

tion time and execution time, the appropriate optimization

level differs for different methods. Moreover, for a specific

method, the best level may vary across program inputs. To

apply input-centric analysis and optimizations to this exam-

ple, we may build a model between program input features

and the appropriate optimization level for each Java method.

So, in this example, B is not a single behavior, but a set of

target behaviors, each member of which is the appropriate

optimization level of a Java method. Correspondingly, f is a

set of functions, with each member mapping from input fea-

tures to one member of B. Because optimization levels are

categorical, all functions in f are classifiers, the determina-

tions of which may proceed independently from one another.

3.2.2 Classification and Regression

Many classification and regression methods are applicable

to input-behavior modeling. In this work, we select Deci-

sion Trees as the primary approach for both classification

and regression, because of its simplicity and other appealing
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Figure 3. A training dataset (o: class 0; x: class 1) and the

classification tree. Each leaf node is labeled with a class

number.

properties to be listed at the end of this section. The spe-

cific forms of Decision Trees for classification and regres-

sion are named Classification Trees and Regression Trees

respectively.

A classification tree is a hierarchical data structure im-

plementing the divide-and-conquer strategy [18]. It divides

the input space into local regions, and assigns a class label to

each of those regions. Figure 3 shows such an example. Each

non-leaf node asks a question on the input features. Each leaf

node has a class label. For a new input, going through the

tree with its features would lead us to a leaf node. The label

of that leaf node is the prediction on the new input. The key

in constructing a classification tree is in selecting the appro-

priate questions to ask in each non-leaf node. The goodness

of a question is quantified by purity: A question is desirable

if after the split based on the question, the data in each sub-

space has the same class label. Many techniques have been

developed to automatically select the appropriate questions

based on the entropy theory [18].

A regression tree shares with a classification tree in the

form of the data structure and the construction process. The

primary differences exist in the calculation of purity and the

final label of a leaf node. Both differences are due to the nu-

merical rather than categorical values of the learning targets.

By default, a leaf node in a regression tree is labeled as the

average value of all the instances contained in the node. In

our implementation, we add an extension to enhance the pre-

dictive capability by applying Least Means Square (LMS) to

the instances in the leaf node to produce a linear function of

the input features.

We adopt Decision Trees as the main learning technique

for its five-fold appealing properties. First, the construction

and use of Decision Trees are simple, efficient, and fully au-

tomatic. Second, Decision Trees has excellent interpretabil-

ity. Unlike Neural Networks or other learning models work-

ing as a black box to users, a decision tree is essentially a set

of “if...else...” rules. This interpretability can not only help

users analyze and verify the results easily, but also increase

the understanding to the problem. Third, Decision Trees han-

dle both categorical and numerical input features smoothly.

Both kinds of features are common in program behavior

analysis. Fourth, its tree structure is a natural match with

non-linear relations. The combination with linear regression

techniques (e.g., LMS) makes it capable to handle various

relations between input features and the learning targets. Fi-

nally, it automatically selects important input features. It is

possible that some input features are either constant across

all inputs or irrelevant to the learning targets. During the con-

struction of decision trees, because questions on those fea-

tures cause no impurity reduction, they will not appear in the

trees. The reduction of features helps reduce the dimension-

ality of the problem, preventing certain noises from hurting

the quality of the constructed decision trees.

Our strategy for the statistical leaning is a two-level strat-

egy. For a given target behavior, before applying Decision

Trees, we first try LMS to fit the training data set with poly-

nomial (linear or quadratic) functions. Using cross valida-

tion [18] (i.e., part of data for training and others for testing),

we estimate the quality of the fitting. We resort to Decision

Trees only when the linear models cannot fit the data well;

such cases typically suggest the existence of non-linear rela-

tions. The entire learning process involves no manual inter-

vention.

3.2.3 Challenges Special to Input-Behavior Modeling

Input-behavior modeling imposes several special challenges

to the classification and regression techniques. A systematic

treatment to these challenges in the modeling process turns

out to be critical for the quality of the modeling results.

Categorical Features. The first challenge is on the pres-

ence of categorical features, referring to the features whose

values can only be one of a limited number of values. Ex-

amples include the optimization levels in Jikes RVM, the

options that control which compression algorithm to select

in a compression tool, the type of an input file, and so forth.

In many statistical learning problems, categorical features

are marked beforehand along with their value ranges. But

in input-behavior modeling, such knowledge typically does

not exist. Consequently, special operations are necessary for

identifying and utilizing such features during the statistical

learning process.

For identification of categorical features, we exploit two

heuristics. First, if the data type of a feature is not a number

(integer, float, etc.), the feature is considered as categorical.

Otherwise, if the number of unique values of the feature

contained in the training data set is smaller than a threshold,

the feature is considered as categorical as well. The threshold

is defined as 10% of the total number of the occurrences of

the feature in the training data set. The intuition is that the

large number of repetitive values suggest that the value of

the feature in a new run is likely to be one of its values

that have appeared in the training runs. So even if it is

not categorical, treating it as a categorical feature would

typically work well in terms of the predictive capability of

the produced model. Note, if the new value happens to be

something not covered by the training set, the risk control (to

130



be presented) would prevent the mistaken predictions from

causing inferior consequences.

During the model construction process, we deal with cat-

egorical features via the use of indicator matrices [18]. A

feature with k categories, is converted to a vector of k − 1
binary features. If an observed value of this feature is the ith

(i = 1, 2, · · · , k − 1) category, the ith binary feature is set

to 1, and all the others are set to 0. When the feature value

equals the kth category, all k − 1 features are set to 0.

Feature Selection. The second special challenge resides in

the tension between the many seminal behaviors and the lim-

ited number of training runs. A large number of seminal be-

haviors form a high-dimensional input space with each sem-

inal behavior as one dimension. Learning in such a space

demands a large number of training data. However, collect-

ing many representative inputs and then conducting profiling

runs are time consuming and not always feasible.

We alleviate that tension through feature selection tech-

niques. As mentioned earlier in this section, Decision Trees

can automatically filter out unimportant features. Moreover,

during the LMS regression, we apply a standard stepwise

method to further filter out important features. The method

works as follows. It first builds an initial model based on the

observations in the training runs with a minimum number of

features included in the model. It then examines each fea-

ture that does not show up in the current model. It adds a

feature into the model only if it finds out that the addition

improves the predictive capability of the model substantially

(evaluated through F-statistic analysis [18]). This process

continues until no more features can be added. In addition

to the feature reduction, a risk control scheme (presented

next) helps reduce the tension between the number of fea-

tures and the number of training runs as well. The scheme

distinguishes the subspaces in the input space that are pre-

dictable from those that are not, hence pruning the learning

complexity.

An alternative to the stepwise method for feature selec-

tion is the Principle Component Analysis (PCA). It casts fea-

tures to the orthogonal axes of a principle component space

and selects only those directions along which the values of

the data show large variations. The use of PCA allows no

presence of categorical features. We apply PCA only when

all features are numerical, and use the stepwise method oth-

erwise.

Risk Control and Model Evolvement. It is important to

prevent wrong predictions from hurting program optimiza-

tions. Discriminative prediction is an approach proposed in

a recent work [27] for risk control. The learner keeps assess-

ing the confidence level of the input-behavior models and

predicts only if the confidence level is higher than a pre-

set threshold. (The optimizer falls back to the default reac-

tive strategy when the confident is low.) The confidence is

measured through cross-validation on the collected behav-

iors of history runs stored in the database. This risk control is

coarse-grained in that the whole program has only one confi-

dence value, regardless of the variations in the input feature

space and the behaviors to predict.

In this work, we extend the approach to allow fine-grained

control. The motivation is that the predictive capability of a

model often varies in different regions in the input feature

space. It also depends on the behaviors to predict. The fine-

grained risk control maintains a confidence value for each

input sub-space to capture such differences. When Decision

Trees are constructed in the model training process (Sec-

tion 3.2), the tree leaf nodes, along with the value ranges

of training seminal behaviors, form the input sub-spaces.

Otherwise, there is only one subspace, outlined by the value

ranges of all seminal behaviors in the training data set. All

confidence values are compared against a single predefined

confidence threshold (0.7 in our experiments, the same as

previous work uses [27]). If a new input falls outside of the

confident sub-spaces, the prediction is shut down automat-

ically and the system falls back to the default optimization

scheme.

The behavior models and the confidence values may

evolve on newly conducted training runs. The observed sem-

inal behaviors and target behaviors in a new run may be

added into the training data set so that the safe region can be

continuously expanded. The models may be retrained using

the expanded data set, with the confidence levels updated

accordingly.

3.3 Input-Centric Adaptation

The large-scope prediction of program behaviors, enabled

by input-centric behavior analysis, opens many new oppor-

tunities for program optimizations. We name the new way of

optimization input-centric adaptation. Two features, proac-

tivity and holism, distinguish input-centric adaptation from

existing dynamic optimizations.

3.3.1 Proactivity and Holism

Being proactive means that the optimizations happen at the

early stage of a program’s execution, no need to wait for

the finish of periodical monitoring phases. The direct advan-

tage is that it can determine and apply suitable optimization

decisions early, avoiding the optimization delays in reactive

schemes. In addition, it expands the applicability of dynamic

optimizations to the scenarios where reactive schemes can-

not work well, such as the job co-scheduling problem men-

tioned in Section 2.2.

The holism has two-fold meanings. On the program level,

it means that input-behavior models predict the behaviors

of the entire program (or a large portion of it) rather than

a small window of the execution. With that view, optimizers

may make more accurate decisions so that many issues, such

as the JIT compilation problem mentioned in Section 2.2,

can be resolved. The second meaning of the holism is that

the large-scope proactive behavior prediction makes cross-

layer optimization more feasible than before. The predicted
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behaviors may be passed across software execution layers,

facilitating the coordination among compilers, OS, and vir-

tual machines. Detail in this cross-layer aspect is yet to be

explored in our future work.

3.3.2 Example Uses

In this section, we describe two uses of input-centric adap-

tation to explain how it may be integrated into existing dy-

namic optimizers. The next section reports the resulting per-

formance improvement, showing the quantitative benefits

brought by the proactivity and holism of the input-centric

adaptation.

Use 1: JIT Optimizations in Jikes RVM. The first use is on

the enhancement of Java program performance through JIT.

We implement a prototype of seminal-behavior-based proac-

tive dynamic optimizations in Jikes RVM [3]. Like most Java

Virtual Machines, Jikes RVM is reactive: During an exe-

cution, the RVM observes the behaviors of the application

through sampling, whereby, it determines the importance of

each Java method in the application, and invokes the JIT

compiler to (re)optimize the method accordingly. As com-

pilation incurs runtime overhead, the JIT in RVM offers four

compilation levels. The high-level optimizations (more so-

phisticated and hence taking more time) are supposed to be

used only for important Java methods, and low-level opti-

mizations for others.

Complexities reside in the determination of the impor-

tance of a method. At each time point, Jikes RVM assumes

that the time a method will take in the rest of the execution

is the same as the time it has already taken; the longer that

time is, the more important the method is. In reality, this as-

sumption often does not hold, causing inaccurate prediction

of the importance. The JIT compiler may be hence misled

to optimize an unimportant method sophisticatedly. On the

other hand, RVM may not recognize the importance of a re-

ally critical method until the late stage of the execution due

to the reactivity of the scheme. As a result, the compiler may

compile the method multiple times in increasing levels grad-

ually, rather than in the highest level at the early encounter of

the method. These issues cause extra compilation overhead

and impair the effectiveness of the dynamic optimizations.

We integrate input-centric behavior analysis into Jikes

RVM 2.9.1 to enable proactive dynamic optimizations. First,

we identify seminal behaviors through offline training and

build the models between seminal behaviors and the appro-

priate optimization levels for every Java method in a pro-

gram. The appropriate optimization levels used in the train-

ing process come from the default cost-benefit model in the

Jikes RVM. The cost-benefit model determines the appropri-

ate optimization level from the hotness (i.e., invocation times

and length) of a Java method. By feeding the cost-benefit

model with the hotness of all Java methods obtained at the

end of a training run, we get the appropriate optimization

levels to be used in the training process.

After that, as soon as the values of seminal behaviors be-

come explicit in an execution, Jikes RVM can plug those

values into the constructed predictive models to predict the

appropriate optimization levels of the Java methods (if the

input falls into the safe regions and the confidence level is

high enough). Specifically, when a Java method is encoun-

tered for the first time, it is compiled using the basic op-

timizer (at the lowest optimization level), but meanwhile,

a recompilation event is pushed into the Jikes RVM event

queue so that the method will quickly be recompiled at the

level predicted from the seminal behaviors. (Not using the

predicted level for the first-time compilation is to avoid im-

mature optimizations because many references are possibly

not resolved yet. This scheme is consistent with those used

in previous studies [5, 27].)

Compared to the default dynamic optimization schemes

in Jikes RVM, the new approach avoids unnecessary recom-

pilations and tends to generate high-quality code at the early

stage of the program execution. Section 4.1 reports the re-

sulting performance improvement.

Use 2: Proactive Dynamic Version Selection. The second

use is on C program optimizations through dynamic version

selection. Dynamic code version selection is a technique for

enabling the adaptation of program optimizations on input

data sets. Our study is particularly based on the work by

Chuang and others [10]. In that work, for each function, the

compiler generates several versions using different optimiza-

tion parameters. During runtime, those versions are used and

timed in the first certain number of invocations of a function;

the version taking the shortest time to run is selected for the

rest of the execution.

The technique shows promising results. But as the au-

thors point out, the way a version is selected is subject to

some limitations. First, the timed execution of the different

versions may operate on different parts of a data set, caus-

ing unfairness in the comparison, and leading to an inferior

selection result. Second, the technique is unlikely to bene-

fit the functions that have only a few invocations, because

of the requirement of runtime trials. This limitation is espe-

cially serious when such functions contain large loops and

dominate the entire execution time.

Seminal behaviors offer a solution to these issues. The

key insight is that because seminal behaviors capture the

dominant influence of program inputs on the program exe-

cution, if we can build a mapping from the values of seminal

behaviors to the suitable versions during training time, we

can immediately predict the best version to use for a new

run as soon as the values of seminal behaviors become ex-

plicit in that run. In this way, we do not need the trials of

the different versions during runtime, hence circumventing

both limitations of the previous work. Details of the imple-

mentation will be presented in Section 4.2 along with the

performance results.
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Discussions. As a short summary, to apply input-centric

analysis and optimizations to a program, the user needs to

do the following two-step operations: prepare a set of pro-

gram inputs and conduct a profiling run on each of the input,

and then apply the input-centric analysis tool to the data col-

lected during the profiling runs. During the second step, the

tool automatically recognizes seminal behaviors and builds

up predictive models that map from seminal behaviors to

some behaviors of interest (e.g., calling frequencies). Af-

ter that, when the program runs with a modified optimizer

(e.g., the modified Jikes RVM in our implementation), the

program will be automatically optimized in a proactive, dy-

namic fashion based on the predictive models.

Proactive optimizations do not conflict with the presence

of program phase shifts. Pior studies [35,36] have shown the

predictability of phase shifts. The proactive optimizations

in input-centric adaptation can thus be applied before each

phase.

Despite that proactive dynamic optimizations overcome

some limitations of existing (reactive) optimization schemes,

we view the proactive scheme as a complement rather than a

replacement to existing dynamic optimizations. The runtime

sampling in existing reactive schemes is important for the

assessment of the quality of the behavior prediction, and the

reactive optimizations serve as a fall-back option when the

proactive schemes cannot work well. Moreover, in the sce-

narios where cross-run learning is not desirable for overhead

or other reasons, reactive schemes are especially valuable.

4. Evaluations

In this section, we report the results of the two input-centric

adaptation techniques described in the previous section. The

comparisons of these results with those from the default

dynamic optimizers in an open-source Java Virtual Machine

(Jikes RVM), a product compiler (IBM XL compiler), and

previous manual endeavors, demonstrate the potential of the

input-centric paradigm for program optimizations.

In all the experimental results, the input sets for train-

ing and testing have no overlaps. Specifically, we employ

the standard cross-validation scheme [18] in all experiments.

The scheme evaluates a predictive model iteratively. In each

iteration, it takes out some inputs (e.g., 90% in our experi-

ment) from the input sets for the training of the model and

then uses the rest inputs for testing. The overall average of

the prediction accuracies of all the iterations are taken as the

final result.

The seminal behaviors used in all experiments are ob-

tained in the way described in a previous study [21]. The

earliness threshold is 0.9, meaning that the trip-count of a

loop cannot serve as a seminal behavior if its value cannot

be determined (directly or indirectly) in the first 10% of an

execution. It is worth noting that because the trip-counts of

many loops can be determined from their iteration upper-

bounds and lower-bounds, they often become known much

earlier than the executions of the loops finish.

4.1 Optimizations by JIT

In this section, we first report the effectiveness of seminal

behaviors in predicting the behaviors of 10 Java benchmarks,

and then present the performance improvement coming from

the JIT compilations guided by the predicted behaviors.

Methodology. The machine we use is equipped with In-

tel Xeon E5310 processors, running Linux 2.6.22. All ex-

periments use Jikes RVM as the virtual machine. Table 1

reports the used benchmarks, which come from three bench-

mark suites. They have been used in a previous study [27], in

which, manually characterized input features are employed

for proactive optimizations1. So using this set of benchmarks

makes it convenient to compare with the previous results. In

the previous work [27], the authors collected a number of

extra inputs for each of the programs for their experiments.

Those inputs are used in this current work as well.

Behavior Prediction Accuracy. The fourth to sixth columns

in Table 1 report the accuracies of three types of behav-

iors predicted from seminal behaviors. We select these three

types of behaviors for prediction because of their relevance

to program optimizations and memory management. The

first type is method calling frequency, a type of behaviors

critical for inter-procedure optimizations (e.g., function in-

lining). The second type is minimum heap size, referring to

the minimum size of the heap on which a Java program can

execute successfully. This property is important for deter-

mining the heap pressure and has been used for the selection

of garbage collectors [28,37]. The third type is the appropri-

ate optimization level of each Java method, a key decision

affecting the optimization results by the JIT compiler in

Jikes RVM as mentioned in Section 3.3.

The results show that the seminal behaviors can predict

most of those behaviors with over 94% accuracy. The right-

most two columns in Table 1 list the results from a previous

work [27]. It uses manually characterized input features to

help proactive dynamic optimizations. The numbers of fea-

tures are not as large as the numbers of recognized semi-

nal behaviors for half of the programs. The average accu-

racy of the predictions from seminal behaviors is 9% higher

than the previous results. The higher accuracy comes from

two sources. The first is that the recognized seminal be-

haviors characterize the input features better than those fea-

tures manually produced. This is not surprising: Given the

high complexity in some of those programs (especially those

from JVM 98 and Dacapo suites) and their inputs, it is hard

for manual characterization to determine all the input fea-

tures that are critical to the programs behaviors. On the other

hand, even when the manual characterization finds all im-

1 We exclude one program named fop because of some implementation

limitation of the current seminal behavior analysis tool.

133



Table 1. The Numbers of Seminal Behaviors and Prediction

Accuracies
Program # Through seminal behaviors Manual approach [27]

of # of Pred accuracy # of Pred accuracy

inputs sem. call min opt. features opt.

beh. freq heap level level

Compressj 20 2 0.93 0.99 0.99 1 0.94

Dbj 54 4 0.98 0.96 0.84 2 0.86

Mtrtj 100 2 0.89 0.84 0.97 2 0.82

Antlrd 175 39 0.95 0.96 0.95 3 0.83

Bloatd 100 7 0.76 0.99 0.96 2 0.85

Eulerg 14 1 0.99 0.98 0.99 1 0.91

MolDyng 15 2 0.83 0.98 0.98 1 0.81

MonteCarlog 14 1 0.98 0.99 0.99 1 0.83

Searchg 9 2 0.97 0.99 0.99 2 0.96

RayTracerg 12 1 0.9 0.98 0.98 1 0.85

Average 51.3 6.1 0.92 0.97 0.96 2 0.87

j: jvm98; d: dacapo; g: grande

portant features (e.g., for most of the Grande benchmarks),

the enhanced statistical learning algorithms, as described in

Section 3.2, improves the prediction accuracy substantially

by systematically handling categorical features and reducing

the dimensionality of the input space through PCA and step-

wise selection. These results demonstrate the importance of

a systematic treatment to the special properties of the input-

behavior modeling during the learning process.

Performance Comparison. We modify the Jikes RVM

to enable proactive optimizations guided by the seminal-

behaviors–based prediction, as described in Section 3.3.

Compared to the default dynamic optimization scheme in

Jikes RVM, the new optimization strategy saves compilation

time by avoiding unnecessary recompilations of a method,

and saves execution time by generating efficient code early.

We compare the resulting performance with the perfor-

mance of the default executions and with the performance

(denoted as “Manual”) of the programs optimized [27] us-

ing the previously proposed proactive optimizations based

on manually characterized input features.

Figure 4 shows the results. The baseline is the perfor-

mance of the default executions. As the speedup differs

on different inputs, each bar shows the average and maxi-

mum speedup of all the runs of a program. On average, the

seminal-behavior–based proactive optimizations yield 10.2–

29.4% speedup over the default executions. Because of the

improved prediction accuracies, they outperform the Manual

results by 1.9–5.3%. These results, for the first time, demon-

strate that proactive optimizations based on automatic in-

put characterization may produce even higher speedup than

manual endeavors do.

4.2 Proactive Dynamic Version Selection

Our experiments of proactive dynamic version selection are

based on the PDF (profile-driven-feedback) compilation of-

fered by the IBM XL C compiler. The default PDF compila-

tion works in two steps. For a given application, the compiler

first instruments it (through the option “-qpdf1”) and lets

users run it on a training input. That run generates a file, con-

taining three sections that correspond to the node, edge, and

data profiles, reflecting the dynamic behaviors of the pro-

gram on basic block frequencies and function return values.

The compiler then recompiles the application using the pro-

filing results as feedback (through the option “-qpdf2”) and

generates a specialized executable for the input. We conduct

this experiment on an IBM server equipped with Power5

processors and AIX v5.3.

In this experiment, as a preparation, for each program, we

first select five representative inputs to do five independent

PDF compilations, generating five versions of the program.

During that process, we also record the values of the seminal

behaviors in each of the five runs.

Next, we run the programs with different inputs. We col-

lect following running times of the programs to compare

the performance improvements of different version selection

techniques.

• default: the default static compilation at the highest opti-

mization level.

• def-pdf: the default PDF compilation. As default PDF

compilation does not adapt to inputs, we obtain the per-

formance of a program on an input by running each of the

five versions on this input and getting the average running

time of the five runs.

• dyn-trial: corresponding to the previous version selection

technique [10]. The five versions of each function are

tried in its first five invocations and the one with the

shortest running time is used for the rest of the run. This

scheme is a typical reactive scheme for runtime version

selection.

• dyn-sem: seminal-behavior-based version selection. In

each testing run, its seminal behavior values are com-

pared against the seminal behaviors of the five training

runs. The highest similarity determines which of the five

versions will be used for the rest of the execution. The

similarity comparison is in terms of Euclidean distance

(normalized to remove the differences of value ranges

among dimensions).

• ideal: the ideal case, in which, the real profile of a run is

used for the PDF optimization of that run.

The performance in the first case, default, is taken as the

baseline.

Methodology. Table 2 lists the programs we’ve used in this

experiment. They include 14 C programs in SPEC CPU2000

and SPEC CPU2006. We include no C++ or Fortran pro-

grams because the instrumenter we implement currently

works for C programs only. We exclude those programs that

are either similar to the ones included (e.g., bzip2 versus

gzip) or have special requirements on their inputs and make

the creation of extra inputs (which are critical for this study)

difficult.
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is mcount. Although it takes 41% time of an execution, it

is invoked only once. This limitation explains the distance

of the resulting performance from the full speed. 4) By cir-

cumventing both issues facing dyn-trial, dyn-sem boosts the

speedup to 5–13%, about 3% from the ideal. The essential

reason for the promising results is that seminal behaviors

make it possible to get both proactivity and cross-input adap-

tivity, gaining the strengths of both the offline profiling (def-

pdf) and the runtime adaptation (dyn-trial).

Given that the baseline is a highly tuned commercial

compiler and the speedups come from a fully automatic

process, the results demonstrate the promise of input-centric

dynamic optimizations.

As a side note, the results illustrate the imperfectness

of the compiler implementation. On some programs (e.g.,

h264ref), sometimes the ideal case is worse than the default

or other cases. This imperfectness is no surprise given the

complexity and the use of heuristics in compiler implemen-

tation.

The majority of the overhead of our technique is on the

training process, including the identification of seminal be-

haviors and the construction of predictive models. But since

the training happens offline, the overhead is not critical. The

prediction of a behavior using the predictive models takes

little time, as it only requires the computation of a linear ex-

pression and possibly several conditional checks (for regres-

sion trees). In our experiments, the prediction of the 7,615

loops of gcc takes the longest time, but still finishes within

11 milliseconds.

5. Related Work

Prior research in program optimizations falls into three cat-

egories in light of the treatment to program inputs. First,

static compilation either limits itself to the properties hold-

ing for any input, or uses ad-hoc estimation for dynamic be-

haviors [1, 2]. For example, a loop is considered ten times

more frequently accessed than others [11].

Second, offline profiling-based methods typically choose

several inputs as the representatives to conduct profiling runs

and optimize the program accordingly. Such empirical opti-

mization methods have been adopted in the construction of

some numerical libraries or kernels, such as ATLAS [43],

PHiPAC [7], SPARSITY [19], SPIRAL [33], FFTW [14],

STAPL [40]. However, the lack of cross-input adaptivity im-

pairs the effectiveness of offline profiling-based techniques

on optimizing programs with input-sensitive behaviors.

The third category includes run-time optimizations that

transform a program during its execution. Some of them

exploit runtime invariants through programmers’ annota-

tions or other efforts; examples include ‘C from Kaashoek’s

group [32], Tempo from Consel’s group [29], and DyC

from Chambers and Eggers’ group [15]. Others monitor ex-

ecution through runtime profiling to optimize a program;

examples include the dynamic feedback work by Diniz

and Rinard [12], the continuous program optimizations by

Kistler and Franz [22], the ADAPT project by Voss and

Eigenmann [41], the CoCo project by Childers, Davidson

and Soffa [9], the continuous program optimization (CPO)

project by Wisniewski and his colleagues [44], the dynamic

optimizations on LLVM [23], the runtime support for man-

aged languages like Java and C# [4, 8, 24, 31, 39, 46]. These

techniques observe runtime behaviors directly, and typically

employ reactive optimization scheme. They do not treat

inputs explicitly; their effectiveness is limited by the con-

straints discussed in Section 2.2. There has been some work

that uses input features, such as the computation offloading

by Wang and Li [42], the adaptive algorithm selection from

Li and his colleagues [25] and from Rauchwerger and oth-

ers [40]. Their explorations are mainly on a specific class of

applications and use manually defined input features. Ama-

ral and others have investigated the influence of inputs on

benchmark design [6].

A recent work [27] also uses input features as the clue to

predict the best optimization levels for a Java method to en-

able proactive optimizations. Our current study differs from

the previous work substantially. To the best of our knowl-

edge, this current work is the first that proposes and system-

atically develops the three-layer paradigm of input-centric

program behavior analysis and adaptations. The previous

work [27] is a case study showing the potential of cross-run

information for Java method optimizations. It is preliminary

in all the three aspects of the input-centric paradigm. First,

for input characterization, it relies on programmers to pro-

vide a specification of input features, which adds extra bur-

den to programmers and introduces possible errors. Second,

it uses classification trees for input-behavior modeling but

without systematically considering categorical features, fea-

ture selection (the stepwise method), and fine-grained risk

control. Finally, for runtime adaptation, this current work ex-

plores optimizations for not only managed environments but

also traditional imperative languages.

This current study draws on the observations on behav-

ior correlations and the concept of seminal behaviors con-

tributed by Jiang and others [21]. That previous work shows

the existence of the correlations and seminal behaviors, but

contains no use of them either for systematic input charac-

terization, or for any kind of proactive dynamic optimiza-

tions. There are some other studies [30] that have exploited

the connections between loops and method hotness. They

mainly use loop upperbounds as heuristics, with no system-

atic exploration conducted into the statistical correlations

among a broad range of program behaviors.

In the realm of software testing, there has been a body

of work on input specification and generation. Those tech-

niques focus on the interface to program modules such as

procedures or classes. They do not characterize the hidden

attributes for the prediction of runtime behaviors.
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