
Orion: A Framework for GPU Occupancy Tuning

Ari B. Hayes
Rutgers University

Piscataway, NJ 08854
United States

arihayes@cs.rutgers.edu

Lingda Li
Rutgers University

Piscataway, NJ 08854
United States

lingda.li@cs.rutgers.edu

Daniel
Chavarría-Miranda

Pacific Northwest National Lab
Richland, WA 99354

United States
Daniel.Chavarria@pnnl.gov

Shuaiwen Leon Song
Pacific Northwest National Lab

Richland, WA 99354
United States

Shuaiwen.Song@pnnl.gov

Eddy Z. Zhang
Rutgers University

Piscataway, NJ 08854
United States

eddy.zhengzhang@cs.rutgers.edu

Abstract
An important feature of modern GPU architectures is vari-
able occupancy. Occupancy measures the ratio between the
actual number of threads actively running on a GPU and
the maximum number of threads that can be scheduled on a
GPU. High-occupancy execution enables a large number of
threads to run simultaneously and to hide memory latency,
but may increase resource contention. Low-occupancy exe-
cution leads to less resource contention, but is less capable of
hiding memory latency. Occupancy tuning is an important
and challenging problem. A program running at two differ-
ent occupancy levels can have three to four times difference
in performance.

We introduce Orion, the first GPU program occupancy
tuning framework. The Orion framework automatically
generates and chooses occupancy-adaptive code for any given
GPU program. It is capable of finding the (near-)optimal
occupancy level by combining static and dynamic tuning
techniques. We demonstrate the efficiency of Orion with
twelve representative benchmarks from the Rodinia bench-
mark suite and CUDA SDK evaluated on two different GPU
architectures, obtaining up to 1.61 times speedup, 62.5%
memory resource saving, and 6.7% energy saving compared
to the baseline of optimized code compiled by nvcc.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers, optimization; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

Keywords
GPU Compiler; Occupancy Tuning; Register Allocation; Shared
Memory Allocation; Concurrent Program Compilation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Middleware’16, December 12-16, 2016, Trento, Italy
© 2016 ACM. ISBN 978-1-4503-4300-8/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2988336.2988355

1. INTRODUCTION
GPU performance tuning and optimization is challenging

because of the complexities in GPU architecture and the
massive scale of threads in its simultaneous execution envi-
ronment – a GPU typically runs 10,000s of active threads at
one time.

Previous GPU tuning frameworks exploit different factors
to improve performance. The PORPLE framework [7] helps
programmers determine which type of memory to use with
respect to data access patterns. Liu and others [15] leverage
input-sensitivity to select the best program compilation and
execution parameter. Many studies have focused on domain-
specific performance tuning due to the complexities in tun-
ing general-purpose applications. Anand and colleagues [25]
explored the tuning of computation transformation param-
eters and data representation for sparse matrix code. The
Halide [23] framework targets image processing applications
and focus on tuning the locality and parallelism parameters.

In this paper, we introduce occupancy tuning for GPU
programs. Occupancy is an important performance tuning
factor that is unique to GPU programs. Occupancy [18] is
defined as the ratio between the number of threads active
at one time and the maximum number of threads the GPU
hardware can schedule. A program running at two different
occupancy levels can have up to three or four times differ-
ence in performance. We show an example in Figure 1. We
use the imageDenoising program from CUDA SDK [20] and
show its performance at different occupancy levels. We nor-
malize the performance with respect to the best occupancy
running time (at 50% occupancy). It can be seen from Fig-
ure 1 that the difference in running time between the best
and worst cases can be up to three times, indicating the
importance of occupancy tuning.

Occupancy tuning is tightly coupled with resource alloca-
tion. Efficient occupancy tuning requires efficient resource
allocation. The occupancy level is controlled by tuning the
amount of on-chip memory assigned to every thread [19]
[11]. High occupancy leads to high contention, high latency-
hiding capability, and high resource allocation pressure (ev-
ery thread gets less resources). Low occupancy results in low
contention, low latency-hiding capability, and low resource
allocation pressure (every thread gets more resources). Tun-
ing occupancy and determining the best trade-off point is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2988336.2988355&domain=pdf&date_stamp=2016-11-28

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.13 0.25 0.38 0.50 0.63 0.75 1.00

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

Figure 1: Running time v.s. occupancy for the imageDenois-
ing benchmark on GTX680. Occupancy is between 0.125
and 1.0.

challenging, as it depends on multiple factors including compile-
time resource allocation efficiency, dynamic program behav-
ior, and execution configuration.

In this paper, we design and implement the first occu-
pancy tuning framework for GPU programs – the Orion
framework. Orion determines the most desirable occupancy
level and generates the occupancy-adaptive code for any
GPU program by combining iterative static compilation and
dynamic program adaptation. It has two components: a
compiler that generates and selects binaries at several dif-
ferent occupancy levels, and a runtime adaptation compo-
nent that chooses one of these binaries at execution time.
The Orion compiler narrows down the search of best oc-
cupancy level to five or fewer possibilities, and the runtime
component selects the occupancy level that adapts to dy-
namic program behavior. These two stages work together
to provide users with the code running the best occupancy
level.

Previous work that models the relationship between GPU
occupancy and performance does not address the problem
of determining and achieving the best occupancy. The GPU
performance model proposed by Hong and others [13] uses
off-line profiled information to predict the performance of a
GPU program. While the prediction method by Hong and
others provides satisfactory accuracy, it requires fine-grained
information based on an architecture simulator. And it does
not provide pro-active occupancy tuning solution. Previous
work for GPU resource allocation optimizes per-thread re-
source allocation. The studies in [24] and [11] alleviate GPU
per-thread register allocation pressure via static compile-
time transformation. However, the static optimization does
not adapt to runtime program behavior. Furthermore, while
alleviating register pressure does indirectly increase occu-
pancy, it is not necessarily true that higher occupancy is
always better than lower occupancy [26]. Overall, efficient
GPU program execution requires a systematically explo-
ration of both single thread performance and concurrent
thread dynamics.

In this paper, we develop the occupancy-oriented tuning
and on-chip resource allocation (Orion) framework. We
are not aware of any prior work that systematically explores
the influence of occupancy tuning for GPU programs. Our
contributions are summarized as follows.

• Orion is the first occupancy tuning framework that
taps into both single-thread resource allocation and

concurrent thread interaction.

• It combines static and dynamic occupancy tuning, en-
abling a fast and accurate search for the best occu-
pancy. (Section 3.3 and 3.4).

• Orion’s compiler provides an inter-procedure resource
allocation model that is rigorously proved to be opti-
mal in both memory space and movement cost (Section
3.2).

• Orion not only improves performance – up to 1.61
times speedup – but also resource & energy efficiency,
with up to 62.5% memory resource saving, and 6.7%
energy reduction over the highly optimized code gen-
erated by nvcc (Section 4).

• Orion is immediately deployable on real systems and
does not require hardware modification.

2. BACKGROUND
GPUs deliver high performance via massive multithread-

ing through the single instruction multiple thread (SIMT)
execution model. Every thread runs the same code on differ-
ent input sets. GPU threads are organized into thread warps.
A thread warp, the minimum execution unit, typically con-
sists of 32 threads. Thread warps are further organized into
thread blocks. A GPU is composed of multiple SMs. A
thread block runs on at most one SM. The number of active
threads on one SM is a multiple of the thread block size.

GPU on-chip memory includes registers and cache. Shared
memory is the software-managed cache in NVIDIA termi-
nology. We use NVIDIA terminology throughout the paper.
Access to shared memory is explicitly managed by software.
Every active thread gets an even partition of register file and
shared memory. The amount of registers and shared memory
used by every thread determines how many threads can be
active at one time (the occupancy). The hardware-managed
cache is L1/L2 cache. Unlike registers and shared memory,
hardware cache usage does not impose any constraints on
the occupancy.

GPU occupancy [18] is defined as the ratio between the
actual number of active thread warps and the maximum
number of thread warps the hardware can schedule. The
occupancy can be calculated using per-thread register usage,
per-thread shared memory usage, and thread block size. At
runtime, occupancy is set by the GPU driver, based on these
parameters.

Assume in a program every thread uses Vreg register space
and Vsmem shared memory space. The total register file size
is Nreg and the total shared memory size is Nsmem. The
maximum number of threads the hardware can schedule at
one time is Smax. The formula below gives the occupancy.

Occupancy = Min(Nreg/Vreg,Nsmem/Vsmem)/Smax. (1)

Since the number of active threads needs to be rounded
up to a multiple of thread block size, and the register par-
tition needs to be aligned according to register bank size
constraints, the occupancy may be smaller than above. We
use the formula in NVIDIA occupancy calculator [19] to ob-
tain the accurate occupancy.

A GPU program consists of both CPU code and GPU
code. The code that runs on the GPU side is organized into

GPU kernels. A GPU kernel is a function that runs on the
GPU. Every GPU kernel embodies an implicit barrier since
all threads that are launched by this kernel needs to finish
before the next kernel starts. We perform occupancy tuning
for GPU kernels only.

3. ORION SYSTEM DESIGN
The Orion system automatically tunes occupancy. The

design of Orion addresses two important questions respec-
tively. The first question is how to generate the code given
any occupancy level. Since one occupancy level gives the
number of registers (shared memory) every thread can use
– see Equation (1) – it implies a register allocation and reg-
ister allocation can only be done at compile time. How to
perform register allocation efficiently at compile-time and
adapt it to GPU program characteristics is critical.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.17 0.33 0.5 0.67 0.83 1

N
o
rm

a
liz

e
d

 R
u
n
ti

m
e

Occupancy

Figure 2: Effect of occupancy on performance for matrixMul

The second question is how to choose the best code version
out of all the code versions corresponding to different occu-
pancy levels.We use two-level selection: compile-time tun-
ing and runtime tuning. The Orion compiler selects a set
of candidate occupancy levels that potentially correspond to
the optimal occupancy level. The compiler generates multi-
ple candidate versions because the dynamic factors (such as
inputs, control divergence, irregular memory accesses) might
affect the choice of best occupancy level in a way that no
single occupancy is always the best. Therefore we let the
runtime component chooses the best occupancy code to use
and to adapt to complex runtime program behavior.

The design and implementation of the dynamic occupancy
selection process is based on two principles. Note that we
discovered that there are two patterns of performance vari-
ation with respect to occupancy changes. When concur-
rency increases, the performance increases, until it reaches
a point that benefits from concurrency improvement cannot
offset the performance overhead due to individual thread’s
resource allocation pressure (recall that individual thread
gets less resource when occupancy increases). From this
point, there are two patterns: 1) the performance deteri-
orates, as illustrated in Figure 1, and 2) the performance
plateaus, as illustrated in the matrix multiplication program
in Figure 2, due to the fact that the program itself does not
have much register pressure.

Therefore, the first principle is based on the fact that
the occupancy optimization function is a function that has
only one local minimum in running time. In other words, the
local minimum is also the global minimum, which makes the

optimization problem of occupancy tuning much simpler.
We can start from any initial occupancy level, find the right
tuning direction, and then move step by step, until we reach
the optimal occupancy case.

The second principle is based on the observation for
the matrix multiplication example in Figure 2, that when
we reach best performance occupancy, we should keep tun-
ing until we find the range of occupancy levels that yields
performance similar to the best performance. In Figure 2,
from occupancy 50% to 100%, the performance is similar.
Therefore, we can potentially lower the occupancy, increase
resource usage per thread for other purposes (e.g. caching
or loop unrolling), and improve intra-thread performance
significantly. If we know the range in which performance is
stable, we know the safe occupancy reduction range with-
out hurting performance. This coincides with the discovery
made in [26] in 2010, which demonstrated that by lowering
occupancy and applying optimizations made possible by the
reduced concurrency, matrixMul can achieve superior per-
formance. However, the work in [26] only looked at matrix
multiplication and also it did not give an approach on how
to tune the occupancy levels. In our design of occupancy
tuning, we not only find the point where the performance is
best, but also find the range of occupancies where the perfor-
mance is best, in particular identifying the lowest occupancy
that gives the best performance.

Next, we discuss the detailed design and implementation
of the Orion compiler and runtime adaptation component.

Init Occ. Realize Occ. Test Occ.

Update Occ.?

Multi-version
Binary

(a) Orion Compiler (b) Runtime

1st Level Compiler Selection

Run Org.

Run Next Occ.

Finalized Occ.

Perf. FeedbackInc or dec?

2nd Level Dynamic Selection

Figure 3: The Orion compiler and runtime collaboration

3.1 Overview
The overall Orion framework works as follows (Figure 3).

In the first step, the compiler sets an initial occupancy level,
generate corresponding code and determines the occupancy
tuning direction: increasing or decreasing based on the per-
formance model in Section 3.3. The initial occupancy is
defined such that all live values fit into the minimal number
of registers, or the maximum registers per thread limit (by
hardware) has been reached. Then the compiler performs
occupancy testing, if the occupancy needs to be increased
or decreased, the Orion compiler performs on-chip memory
allocation, assigning register and shared memory per-thread
to achieve the updated occupancy. And we repeat the testing
and updating process until a termination condition is met,
defined by our performance model in Sec 3.3. The compiler
generates and selects ≤ 5 different code versions for a GPU
kernel function and in most cases ≤ 3 versions (in evalu-
ation), which helps the runtime quickly adapt to the best
version. Runtime adaption is shown in Figure 3 (b).

There are three major stages in the Orion framework.

• The realizing occupancy stage (Section 3.2) ensures
that the code generated to achieve a certain occu-
pancy level is efficient. For instance, it avoids exces-

sive spilling from on-chip memory (register and shared
memory) to off-chip memory.

• The compile-time occupancy tuning stage (Section 3.3)
ensures that we select a small set of kernel binaries
with good occupancy levels, ruling out the versions
that are unlikely to perform well.

• The runtime occupancy adaptation stage (Section 3.4)
ensures that we select the best kernel to execute at
runtime, and also that we avoid aggressive optimiza-
tion.

Every stage is important. The first two stages are per-
formed at compile-time, and the last stage is performed at
runtime.

3.2 Realizing Occupancy
To realize a certain occupancy, we bound the number of

registers and the size of shared memory used per thread.
We first represent a program in the Static Single Assignment
(SSA) form, in which every variable is defined once and only
once. Then we generate the pruned SSA form to eliminate φ
functions. Next we start assigning the pruned SSA variables,
first placing them into registers with spills into local memory,
and then reassigning a subet of local memory variables to
shared memory. Since every thread executes the same binary
code, allocating for one thread is equivalent to allocating for
all the threads. We call the commensurate amount of space
for a 4-byte register in on-chip memory (including shared
memory and cache) an on-chip memory slot. A variable can
be placed into register, shared memory, or L1 cache (via
local memory).

Minimizing Space Requirement.
The on-chip memory space to store the variables should be

minimal since if it does not fit into on-chip memory space,
there will be spilling into off-chip DRAM memory, which
is significantly slower. Therefore the first thing we need to
optimize is the on-chip memory space needed for a set of live
variables.

Optimal register allocation for single procedure has been
studied extensively in CPU literature, and the technique
can be applied to on-chip memory allocation. We adopt
the Chaitin-Briggs register allocator [3] and build a variant
of it by taking into consideration the wide variables (64-
bit, 96-bit, or 128-bit) that need consecutive and aligned
registers. We use a stack to track the priority of variables
to be allocated (colored). Our single-procedure allocation
algorithm is detailed in Figure 4.

However, there is limited inter-procedure allocation re-
search on GPUs. While functions can be in-lined, it is not
practical to in-line every function. For instance, after ag-
gressive inlining by the nvcc compiler, the cfd program still
has 36 static function calls (please see Evaluation Section 4
Table 2). Moreover, although certain GPU programs exhibit
no procedure calls in source code, there are still function calls
in the binary. An example is the intrinsic division function,
which is implemented as a function call for GPU architec-
ture. This may appear frequently in scientific programs in
Rodinia [6] benchmark suite that use the floating-point di-
vision function.

We propose an allocation algorithm for multi-procedure
GPU kernels which is optimal in terms of both space
and data movement requirements.

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

cfd dxtc

heartw
all

hotsp
ot

imageD.

partic
les

recursiv
eG.

N
o
rm

a
liz

e
d

 R
u

n
n

in
g

 T
im

e

No Space Minimization
No Data Movement Minimization

Figure 5: Optimized v.s. unoptimized inter-procedure allo-
cation. The benchmarks are from Rodinia benchmark suite
and CUDA SDK.

We describe our inter-procedure allocation algorithm as
a compressible stack. The idea of the compressible stack is
simple. With compressible stack, right before entering a sub-
procedure, we compress the stack by coalescing the used on-
chip slots such that the sub-procedure can use the maximum
number of contiguous on-chip memory slots. Right after
the sub-procedure returns, we restore the location of moved
slots back to their original locations so that the program can
continue execution correctly.

We show how the compressible stack works with an ex-
ample in Figure 6. In Figure 6 (a), we use the column Si

to represent an on-chip memory slot. After single procedure
allocation, one or more variables are mapped to one on-chip
memory slot. We show the live range of every variable using
the vertical black bar in Figure 6 (a). The liveness informa-
tion indicates the used/unused status of an on-chip memory
slot Si at different call points in the program. The left “Pro-
gram” column represents the code of the program including
the procedure calls. If no variable is mapped to an on-chip
memory slot at an execution point, the slot is unused. For
instance, S3 is unused when foo2 is called in Figure 6 (a).

In Figure 6 (a), before calling foo1, we move the slot that
contains variable “var5” into the slot between the slots that
contain variables “var3” and “var1” so that we have larger
contiguous free space for procedure foo1. This is important
since a sub-procedure uses contiguous stack space. Right
after the sub-procedure returns, we restore the location of
variable “var5” to resume execution.

We demonstrate that it is important to minimize space
for inter-procedure allocation by showing the performance
difference between the space minimize version and the space
unoptimized version in Figure 5. The “no-space minimiza-
tion” bar corresponds to the unoptimized version and the
running time is normalized to the optimized one.

Minimizing Data Movement.
The above shows how to minimize on-chip memory space

used across procedure calls. This comes at the cost of in-
creased data movements. Therefore, minimizing data move-
ment is also important.

In CPU single procedure allocation literature, there has
been work that proposes to trade-off data movement for
space. The chordal graph coloring model [21] is a well known
model that minimizes register usage while increasing data

(b) Stack Order:
 S = empty stack
 while G is nonempty
 nextVar = null
 for each variable v in G
 if v.width + v.edges <= C
 if (nextVar==null ||
 nextVar.width > v.width)
 nextVar = v
 if nextVar==null
 nextVar = first variable in G
 for each variable v in G
 if (nextVar.width > v.width ||
 (nextVar.width==v.width &&
 nextVar.edges > v.edges))
 nextVar = v
 S.push(nextVar)
 G.remove(nextVar)

(c) Coloring pseudocode:
 s = S
 while s is nonempty
 v = s.pop()
 usedColors = {}
 for each colored variable u in v.edges
 usedColors = usedColors U u.color
 for c = 0 to C - v.width
 if {c, ..., c + v.width - 1} U usedColors == {}
 v.color = {c, ..., c + v.width - 1}
 break
 if v was colored
 s.remove(v)
 else
 S.remove(v)
 spillList.add(v)
 s = S

(a) Input parameters:
G: the interference graph; each node is a variable.
C: the number of colors (physical registers)

Figure 4: Single procedure multi-class allocation alg.

movements for removing φ-functions. Later work by Hack
and other further optimize data movements caused by re-
moval of φ-functions [9]. However, there is no such work in
minimizing data movements for inter-procedure allocation.
As far as we know, our work is the first one that minimizes
data movement for inter-procedure on-chip memory alloca-
tion.

We first show an example of how data movements can be
reduced. Figure 6 (b) is the same as Figure 6 (a) except that
the addressing of the on-chip memory slots is different. For
the original layout in Figure 6 (a) at the point call(foo1),
the sub-procedure foo1 needs to use three consecutive slots,
thus var5 in S4 needs to be copied to S2. In Figure 6 (a),
altogether three data movements are necessary before enter-
ing three call points call(foo1), call(foo2) and call(foo3) as
indicated by the three arc arrows for “before call”. However,
if we place the variables of the original S2 slot to the lo-
cation of original S4, S3 to S2, S4 to S3, as illustrated in
Figure 6 (b), the total number of data movements is reduced
to 1 at call(foo2) point, while at call(foo1) and call(foo2),
all available on-chip memory slots are contiguous.

Our compressible stack optimizes the layout by changing
the address of physical on-chip memory slots. We provide
a polynomial time algorithm that finds the optimal address
mapping. We achieve this by modeling the problem as a
maximum-weight bipartite matching problem [28].

Let N be the number of static sub-procedures calls in the
procedure of interest. M represents the number of variable
sets, SSi, assigned during the single-procedure graph color-
ing (allocation) process such that i = 0...M − 1 and each
SSi is mapped to one on-chip memory slot.

We denote the number of data movements incurred for
entering/leaving the k-th procedure call as Pmov

k . The ob-
jective is to find the physical on-chip memory slot each vari-

Table 1: Notations

Notation Description
SSi set of variables mapped to the i-th stack

slot
SLOTi i-th slot from the bottom of the stack
Xij mapping between SSi and j-th slot (0 or

1)
Lik liveness of SSi at k-th sub-procedure call
Bk desired stack height at k-th sub-

procedure call
Cijk # of swaps incurred by placing SSi at

j-th slot for k−th sub-procedure
Wij # of swaps incurred by placing SSi at

j-th slot
N # of sub-procedure calls
M maximum # of simultaneously live vari-

ables in this procedure
Pmov

k # of swaps incurred because of k-th sub-
procedure call

able set SSi for i = 0...M − 1 is mapped to such that the
total number of data movements is minimal.

min T mov =

N−1∑
k=0

Pmov
k

We model this problem as a maximum-weight bipartite
matching problem by making use of the following Theorem.

Theorem 1. With the notations defined in Table 1, in
the minimal-mov-assignment (MMA) problem, the total num-
ber of data movements contributed by placing an arbitrary
variable set SSi at an arbitrary location j−th memory slot
SLOTj across all k immediate sub-procedures is a constant.
We define this number as Wij. Assume at the k-th sub-
procedure call we need to bound the compressed caller stack

Time Program

.

call(foo1);

.

.

call(foo2);

.

.

call(foo3);

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

V
a
r
1

V
a
r
2

V
a
r
3

V
a
r
5

V
a
r
1

V
a
r
2

V
a
r
3

V
a
r
5

Free

Var5

Var3

Var1

Before Call After Call

Free

Free

Var3

Var5

Var1

Free

Var5

Var2

Var1

Before Call After Call

Free

Free

Var5

Var2

Var1

Free

Free

Var4

Var1

Before Call After Call

Free

Free

Free

Var4

Var1

Free

Var2

Var5

Var1

1 Move

Before Call After Call

Free

Free

Var5

Var2

Var1

.

(b)

V
a
r
4

No Moves Required

No Moves Required

V
a
r
4

Time Program

.

call(foo1);

.

.

call(foo2);

.

.

call(foo3);

.

(a)

1 Move

1 Move

1 Move

call(foo2);

call(foo3);

call(foo2);

call(foo1);

Figure 6: The impact of on-chip memory slot layout on the
number of data movements for a compressible stack. Every
column Si represents a slot. The vertical blocks in the col-
umn represent the liveness of the variable assigned to the
slot. Bold arrows represent direction of data movement for
entering or leaving a sub-procedure.

to at most Bk slots, we have:

Wij =

N−1∑
k=0

Cijk

while
Cijk = 1 if (Lik == 1 && j ≥ Bk), otherwise

Cijk = 0.

Proof. Since a movement will be invoked if and only if
there is an available stack slot placed beyond the top of the
after-compression stack, we can determine if a placement of
the SSi set will incur a movement by checking its location
(address) in the stack.

If and only if SSi is live during the lifetime of the k-th sub-
procedure (liveness indicated as Lik in Table 1), and placed
at j−th slot (j starts from 0) counting from the current
procedure’s stack bottom is greater than or equal to Bk,
j ≥ Bk, the number of data movements invoked by placing
variable set SSi at SLOTj for k-th sub-procedure Cijk is
1; otherwise, Cijk is 0. Therefore, we get all the movement
contributed by placing SSi into SLOTj by summing up Cijk

for k = 0...N − 1. The theorem is thus proved.

We then transform the problem into a bipartite matching
problem. A bipartite graph is a graph whose nodes can be

Variable set

Stack location

SSi

SLOTj

-Wij

of swaps incurred by
placing SSi at j-th slot

Figure 7: Bipartite matching model for minimal-mov-
assignment problem. SSi represents the i-th set of variables
that can be mapped to one on-chip memory slot, SLOTi

represents the i-th physical on-chip memory slot in the pro-
cedure of interest.

decomposed into two disjoint sets such that no two nodes
within the same set are adjacent as shown in Fig. 7. A
perfect matching in a bipartite graph is a set of pairwise
non-adjacent edges that covers every node in the graph. A
maximum weighted bipartite matching is one where the sum
of the weights of the edges in the matching is maximal as
shown in Fig. 7.

We let one of the two disjoint sets of nodes correspond to
the sets of variables – SSi for i = 0...M−1. The other set of
nodes correspond to the memory slots SLOT0...SLOTM−1

from the bottom of the stack. One edge connects between a
variable set and a stack location (address).

We set the weight of the edge between a set SSi and a j-
th stack slot to negative Wij as defined in Theorem 1. This
value is the total number of movements invoked by placing
SSi at SLOTj . Therefore, a maximum weighted matching
will indicate a minimum number of movements as indicated
in Fig. 7.

We solve the maximum weighted bipartite matching prob-
lem using the modified Kuhn-Munkres algorithm [17], with
O(M3) time complexity, with M being the total number of
variable sets. Once a matching is found, we can infer where
every variable set can be placed.

Our model works for the case where we need not compress
the stack to the minimal size possible. For example, if the
stack can be compressed to allow for four free slots, but we
only need three, then it is sufficient to compress the stack to
allow three slots. Therefore, we avoid extra overhead from
pointless stack compression movements. Let the parameter
Bk be the size the stack needs to be compressed to, such
that Bk is greater than the minimal possible compressed
stack size. Then the optimality and complexity results still
hold.

We demonstrate the effectiveness of the data movement
optimization Figure 5. The bars that correspond to the
case of “unoptimized data movement minimization” are the
case without data movement optimization. Note that with-
out data movement optimization, the performance might be
even worse than not doing stack compression again. There-
fore, minimizing data movement is extremely critical for
minimal space optimization to work well (which is critical

original: the kernel at original occupancy
canTune: true iff benchmark has enough iterations

01 if MAXLIVE >= 32
02 direction = increasing
03 else
04 direction = decreasing
05 if canTune
06 kernels.add(original)
07 if direction = increasing
08 for each occupancy from conservative to max
09 kernels.add(occupancy)
10 else
11 kernels.add(conservative)
12 else
13 kernels.add(get_static_selection())

15 else
16 for each occupancy from original to min
17 if occupancy.warps >= WS * CDI / DL
18 kernels.clear()
19 kernels.add(occupancy)

Figure 8: Occupancy update algorithm

for occupancy tuning).

3.3 Compile-Time Occupancy Tuning
During compile-time tuning, we perform test and update

steps, as shown in Figure 3 (a). The occupancy testing com-
ponent checks the generated kernel binary and determines if
the occupancy needs to be further increased and decreased.
If the occupancy needs to be further updated, shown as the
back loop in Figure 3 (a), then the realizing occupancy com-
ponent will be invoked again to generate a new kernel binary.
If the occupancy does not need to be further updated, then
the previously checked versions will be saved into the can-
didate set of kernel binaries for runtime adaptation. Our
compiler determines and generates a set of kernel versions
in which the optimal occupancy version is most likely to
appear. We are able to narrow down the set of candidate
kernel versions to within six, and in most cases less than
three, making it easy for the runtime component to choose
the right kernel version.

We set the initial occupancy such that all variables fit into
the minimal number of registers, or the maximum number of
registers per thread (by hardware) is reached. We call it the
original version since this is the version for which we decide
the tuning direction (increasing or decreasing). The original
version is not necessarily the best version, but it is a safe ver-
sion. Once the initial occupancy is set, next we decide the
direction of increasing or decreasing occupancy in the itera-
tive selection process. Once the direction is determined, we
keep increasing/decreasing the occupancy levels and testing
the generated code. We stop increasing/decreasing at a cer-
tain point if a termination condition has been met according
to our performance model below. We show the detailed oc-
cupancy test and update algorithm in Figure 8. In Figure
8, we define another version called the conservative version,
which is the version where all variables fit into on-chip mem-
ory. The conservative version usually provides better occu-
pancy than the original version since we fit more threads
using all on-chip memory (register, smem, and cache) than

Final kernel has
been set?

(Set final kernel to
previous kernel.)

(Run final kernel.)

Direction of
increasing occ?

(Run next kernel.)
Worse runtime?

(Run next kernel.)
Slowdown > .02?

(Run first kernel.)First iteration?

Yes

Yes

Yes

Yes

No

No

No

Yes

Tried every occ in
tuning direction?

(Set final kernel
and run it.)

Yes

No

Figure 9: Dynamic occupancy selection algorithm

only using registers.
To determine the direction of tuning, we rely on a met-

ric determinable at compile-time, max-live, which indicates
the total number of registers and memory slots necessary
for the program. The analytical model [12] uses off-line
profiled information, including memory throughput and dy-
namic instruction count, to estimate the performance of a
GPU program. Our approach does not require off-line pro-
filing and yet is lightweight in determining the amount of
memory/computation parallelism.

In cases where the kernel function cannot be tuned (for
example, if it only has a single iteration), the selection pro-
cess will use the static selection algorithm described in [11]
to generate the final kernel function.

Max-live.
We use a metric called max-live, which is equal to the num-

ber of registers necessary to hold all simultaneously live vari-
ables. When this value is low, the on-chip memory resource
demand per-thread is low, and thus a high occupancy is
reached (potentially hitting the maximum number of active
threads that hardware can handle). For this type of appli-
cation, we can tune only by decreasing the occupancy from
the initial original occupancy. We set to max-live thresh-
old to 32 in our experiments, which is the number registers
needed to achieve the hardware maximum occupancy level
for Kepler architecture. If a program’s max-live is less than
the number of registers which allows the hardware maximum
occupancy, then occupancy cannot be increased through al-
location.

Finally, we provide a fail-safe option in case the direc-
tion predicted at compile-time does not work at runtime
(although this has rarely happened in our evaluation). We
generate kernel codes in the increasing occupancy direction

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.17 0.33 0.50 0.67 0.83 1.00

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

Figure 10: Normalized srad performance on Tesla C2075.

(the conservative code and the next occupancy up) if the
direction is predicted to be decreasing, and also generate
code that enables decreasing occupancy (if the direction is
predicted to be increasing). This way, in the rare event that
our initial direction is wrong, we can try the other direction
as a fail-safe. Note that we do not need to generate multi-
ple versions of code to correspond to decreased occupancy
levels, since we can tune occupancy down by dynamically in-
creasing shared memory usage per thread as shown in Figure
8.

3.4 Runtime Occupancy Adaptation
Given the candidate list of kernel binaries generated by

the compiler, the ORION runtime monitors kernel perfor-
mance and dynamically selects the best kernel versions. In a
loop that calls the GPU kernel of interest, we run the origi-
nal kernel in the first iteration. From the second iteration we
start running the next version in the list and updating occu-
pancy level in the predicted tuning direction by the Orion
compiler, until we see performance degradation. If an it-
eration has no performance degradation, then in the next
iteration we simply run the next occupancy in the current
direction. This algorithm is shown in Figure 9.

In practice, we find that the tuner usually only needs three
iterations to adapt to the best occupancy. As long as the
kernel runs for many iterations, the overhead of tuning is
low. The algorithm can be augmented to handle mispre-
diction of the tuning direction, by switching direction if the
original occupancy is selected as the final kernel. We find
that this is not typically necessary.

Most GPU programs contain a loop around the GPU ker-
nel of interest. If there is no loop but there are enough
threads, then we perform kernel splitting [30]. We split one
kernel invocation into multiple invocations, such that every
invocation of the split kernel launches a subset of the threads
and the total threads across invocations is the same as the
original kernel invocation.

It is worth noticing that in certain cases, a decreased oc-
cupancy can yield the same performance while significantly
reducing resource usage. We show the normalized running
time of the srad program on NVIDIA Tesla C2075 in Fig-
ure 10. The performance in Figure 10 is normalized to the
performance when there are maximal active threads on each
SM. In srad, even reducing the occupancy by half yields
nearly the same performance, and so reducing occupancy is
suggested for this program.

4. EVALUATION
Our framework consists of two components. One is the

Orion compiler and the other is the runtime adaptation
component. The Orion compiler’s front end, middle end,
and back end take on different responsibilities. The front
end is responsible for taking a GPU binary file as input,
converting it into assembly code, and analyzing the assembly
to extract a high level intermediate representation (IR). The
middle end utilizes the IR generated in the front end and
transforms the IR. The IR includes the control flow graph
and the call graph. The middle end obtains a single static
assignment (SSA) form of the code, extracts live ranges,
performs resource allocation, updates the control flow graph,
and writes back to the assembly code. The static multi-
kernel selection and generation is in the middle end of the
Orion compiler. The back end converts the transformed
assembly code back to binary code.

Candidate kernels are generated at multiple different oc-
cupancy levels. For evaluation, we let the Orion compiler
generate code at all occupancy levels, allowing for identifica-
tion of the best and worst cases. We compare these with the
Orion selected occupancy and the default code generated
by nvcc.

The runtime adaptation component performs the feedback-
based tuning algorithm as described in Section 3.4. The
runtime component works with the compiler component, as
it can only choose the kernel binaries that are generated
from the multi-kernel binary generation stage in the Orion
compiler.

We perform transformation directly on the binary code
(SASS) rather than PTX so that the transformation effects
can immediately be reflected in the final binary code. Using
PTX requires a further compilation using ptxas from PTX
to binary, and the changes made in PTX may be lost since
ptxas may perform another level of register allocation.

We build the Orion framework upon the following tools.
The front end of Orion compiler is built upon the parser
generator tools flex and bison. To encode and decode bi-
nary, we use the binary instruction set architecture (ISA)
of NVIDIA GPUs documented in the open-source project
asfermi [14] for cuda computing capability 2.0, and we also
extended the ISA support by reverse engineering the ISA
using the same approaches in asfermi [14].

While the Orion framework currently only supports a
subset NVIDIA GPU architectures, it can easily be extended
to support additional GPU architectures if we add a new
front-end and back-end to decode and encode the binary,
since the middle-end and the transformation algorithms re-
main the same.

Platform.
We perform experiments on two different machine plat-

forms. One is equipped with an NVIDIA GTX680 GPU. It
has 8 streaming multi-processors (SMs) with 192 cores, for
a total of 1536 cores. Every SM has 65536 registers, and
64KB of combined shared memory and L1 cache. The max-
imal number of active thread warps on one SM is 64, and
the maximal number of active threads per SM is 2048.

The second machine platform is configured with an NVIDIA
Tesla C2075 GPU. It has 14 streaming multi-processors (SM)
with 32 cores, for a total of 448 CUDA cores. Each SM has
32768 registers and 64KB of combined shared memory and
L1 cache. The maximal number of active thread warps on

Table 2: Detailed benchmark information. Reg is the num-
ber of registers needed to avoid spilling. Func is the number
of static function calls. Smem indicates whether there is
user-allocated shared memory.

Benchmark Domain Reg Func Smem

cfd [6] Fluid dynam. 63 36 No
dxtc [20] Image proc. 49 11 Yes

FDTD3d [20] Numer. analysis 48 0 Yes
hotspot [6] Temp. modeling 37 6 Yes

imageDenoising [20] Image proc. 63 2 Yes
particles [20] Simulation 52 0 No

recursiveGaussian [20] Numer. analysis 42 21 No
backprop [6] Machine learning 21 0 No

bfs [6] Graph traversal 16 0 No
gaussian [6] Numer. analysis 11 2 No

srad [6] Imaging app 20 7 Yes
streamcluster [6] Data mining 18 0 No

every SM is 48 and the maximal number of active threads
is 1536.

For both platforms, each register is 4 bytes. If there are
wide variables (i.e., 64-bit, 96-bit, or 128-bit variables), then
they must be placed in aligned, consecutive 32-bit registers.
We refer to the first machine configuration as GTX680, and
the second one as Tesla C2075.

Benchmarks.
We evaluate the effectiveness of the Orion framework on

benchmarks shown in Table 2. These benchmarks are chosen
to cover GPU programs from various domains with different
characteristics: high register pressure v.s. low register pres-
sure, with and without function calls, and with and without
user-defined shared memory. Note that the number of func-
tion calls is counted after function inlining. In GPU program
compilation, function calls are inlined as much as possible
since there is a local stack for every thread, which needs to
be minimized for a large number of threads running at the
same time. However, as shown in Table 2, there is still a
non-trivial number of function calls that are not practical
to be inlined. This confirms the necessity of efficient inter-
procedure register allocation. These benchmarks come from
the Rodinia [6] benchmark suite and the CUDA Computing
SDK [20].

Metrics.
We evaluate the Orion occupancy tuning framework us-

ing three different metrics. The first metric is performance -
in particular, the effectiveness of the Orion compiler at gen-
erating good code, as well as the effectiveness of the tuner to
adapt to the best occupancy as compared with exhaustive
search. The second metric is the resource usage efficiency
of Orion: whether it uses minimal resources (registers) to
achieve the best performance, where the best performance is
defined as the best running time for all different occupancy
levels. The third metric is energy usage. We discovered that
there is also energy saving when there is resource usage sav-
ing. The reason is that when occupancy decreases (while
maintaining the same performance), the power usage of the
register file (and/or cache) is also reduced, thus effecting
energy saving.

4.1 Performance
We show performance evaluation results first, using the

seven benchmarks which the Orion compiler determined
would benefit from increased occupancy. For comparison
purpose, we let the Orion compiler generate code for ev-
ery occupancy level. Figure 11 shows the worst performance
across different occupancy levels (longest running time – the
Orion−Min bar), the best performance across all occupancy
levels (shortest running time – the Orion−Max bar), and the
performance of the code generated by nvcc. For all of these
benchmarks, the difference between the best performance
and worst performance across occupancy levels is significant
- in some cases, more than 75% - demonstrating the im-
portance of occupancy selection. It is not clear how nvcc
chooses the occupancy since the nvcc compiler backend is
not open source. We can observe from Figure 11 that the
version selected by nvcc typically is not the worst case sce-
nario among all occupancy levels, but it certainly has missed
performance optimization opportunities for most cases. The
nvcc selected version is rarely the best occupancy, as illus-
trated in Figure 11, except in the case of recursiveGaussian.

We also show the occupancy selection result of our Orion
framework. Figure 11 shows Orion performance – the Orion-
Select bar. This bar includes the overhead of dynamic tun-
ing. We can see that Orion-Select is close to the best per-
formance obtained by exhaustively searching all occupancy
levels. The performance of Orion-Select come from two as-
pects – static selection that narrows down the possible ker-
nel versions and dynamic selection that chooses the best
kernel version at runtime. The static selection ensures that
there are no more than five different kernel versions selected
at compile-time. During runtime selection, Orion required
less than three iterations on average to to tune each bench-
mark. We find that in most benchmarks, either there are
sufficiently many iterations to perform dynamic tuning, or
there are sufficiently many threads that we can split the ker-
nel call into multiple, smaller invocations in order to create
additional iterations. The particles benchmark, however, is
an exception to this, and so Orion chooses the compiler-
picked, statically-tuned kernel version as described in Sec-
tion 3.3, which still provides significant speedup over the
default code generated by nvcc.

On average, Orion achieves 26.17% speedup on C2075
and 24.94% speedup on GTX680.

Another factor which affects the performance is cache con-
figuration. On both Tesla C2075 and GTX680 devices, the
shared memory and the L1 cache can be reconfigured to use
a different size ratio. In Table 3, we show the compara-
tive speedup of using a small cache configuration (16KB L1
cache and 48KB shared memory) versus using a large cache
configuration (48KB L1 cache and 16KB shared memory)
for the Orion-Select occupancy level. Note that the results
presented in Figure 11 are all for small cache configuration.

With different cache configurations, we distribute vari-
ables differently. For the smaller shared memory configu-
ration, we fit fewer variables into the shared memory but
spill more variables into local memory, which can reside in
on-chip memory using L1 cache. To determine how many
shared memory slots to use for a given occupancy, we use
the formula described in Section 2).

From Table 3, we can see that performance is often similar
for both configurations. However, cases such as FDTD3d on
Tesla C2075 show more degradation in the large cache per-
formance. When we spill the variables to local memory, due
to the non-deterministic feature of thread interleaving, it is

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

cfd dxtc
FDTD3d

hotsp
ot

imageD
partic

les

recursiv
eG

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Orion-Min
nvcc

Orion-Max
Orion-Select

(a) Tesla C2075

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

cfd dxtc
FDTD3d

hotsp
ot

imageD
partic

les

recursiv
eG

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Orion-Min
nvcc

Orion-Max
Orion-Select

(b) GTX680

Figure 11: Normalized speedup over nvcc version. We show the best/worst performance at all occupancy levels. Orion-Max
is the best performance. Orion-Min is the worst. Orion-Select is the performance with tuning. nvcc is the performance
by nvcc generated code.

Table 3: Speedup with Small Cache (SC) vs Large Cache
(LC) at Orion’s selected occupancy. In some cases, hard-
ware constraints prevent the LC case from running.

Benchmark C2075 GTX680
SC LC SC LC

cfd 1.3230 1.2939 1.1656 1.1588
dxtc 1.5409 - 1.3980 -

FDTD3d 1.5674 1.2811 1.2605 1.2552
hotspot 1.1834 1.1780 1.1175 -
imageD 1.1229 1.1225 1.0834 1.0850
particles 1.1608 1.1492 1.6045 1.6774

recursiveG 1.0000 1.0002 1.0008 1.0001

difficult to guarantee that the L1 cache will behave as ex-
pected. For example, cache thrashing may happen when
thread execution is interleaved at different times. Overall,
it is safer to use shared memory to explicitly store live vari-
ables than to use hardware cache. Note that for programs
that use a significant amount of user-defined shared mem-
ory per thread block, the large cache configuration cannot
be used due to the occupancy requirement, and therefore
three entries in Table 3 are empty.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

backprop bfs gaussian srad streamc.

N
o
rm

a
liz

e
d

 C
h

a
n

g
e

Registers Runtime

(a) Tesla C2075

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

backprop bfs gaussian srad streamc.

N
o
rm

a
liz

e
d

 C
h

a
n

g
e

Registers Runtime

(b) GTX680

Figure 12: Results of downward occupancy tuning.

4.2 Resource & Energy Usage
For five of our benchmarks, the Orion compiler predicts

that dynamic tuning should lower occupancy, since these
benchmarks have small register pressure (small max−live as
described in Section 3.3). They have already reached the
maximum occupancy supported by hardware, therefore the

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

backprop bfs gaussian srad streamc.

N
o
rm

a
liz

e
d

 E
n

e
rg

y

Selected Ideal

Figure 13: Energy usage of selected kernel.

only potential tuning direction is downwards. The register
file utilization and runtime for these five benchmarks are
shown in Figure 12. These values are normalized to those
of the program generated by nvcc. The normalized occu-
pancy is the same as the register file utilization, and so we
exclude it from the figure. Overall, we decrease occupancy
and register usage by 19.17% on average, with little loss in
performance.

We are unable to tune the backprop benchmark, due to
the simplicity of its kernel function, which contains less than
100 binary instructions and has no loops or subroutines. At-
tempting to tune this benchmark’s kernel function would
lead to significant overhead, as the runtime of the kernel
function is similar in scale to the overhead of launching an
empty kernel function, especially if kernel splitting is em-
ployed. In such cases, it makes more sense to simply default
to the original version of the kernel. Orion is also unable to
get significant reduction of occupancy for bfs, despite lower
occupancy being advantageous in this benchmark, because
bfs does different amounts of work in each iteration, making
it difficult to compare consecutive invocations. Even so, we
do get some reduction for bfs on the GTX 680 architecture.
In future work, we may be able to improve tuning for such
cases by calculating the amount of work at each iteration
and applying a multiplicative factor to the runtime.

Besides saving registers, lowering concurrency has the ad-
ditional benefit of reducing power consumption due to the

reduced utilization of the register file. We measured this
using NVIDIA’s CUPTI API. GTX680 does not allow for
power measurement in this manner, and so we show the en-
ergy savings only for Tesla C2075 in Fig. 13. We include
both the energy saving at the selected occupancy level, and
the ideal energy saving determined via exhaustive search.

It is demonstrated in Figure 12 that we can sometimes at-
tain speedup when lowering occupancy, due to the decreased
resource contention that results from fewer active threads.
We find that this occurs more easily on Tesla C2075, where
the L1 cache is used for both global memory and local mem-
ory, than on GTX680 where the L1 cache is used exclusively
for thread-private local memory. Overall, we get an average
speedup of 3.24% for these five benchmarks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.167 0.333 0.500 0.667 0.833 1.000

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

(a) gaussian

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0.167 0.333 0.500 0.667 0.833 1.000

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

(b) streamcluster

Figure 14: Effects of occupancy on performance for C2075.

 0

 0.5

 1

 1.5

 2

 2.5

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

(a) backprop

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000

N
o
rm

a
liz

e
d
 R

u
n
ti

m
e

Occupancy

(b) bfs

Figure 15: Effects of occupancy on performance for
GTX680.

Finally, in Figure 14 and Figure 15, we show in detail
how performance varies as occupancy changes. We show two
benchmarks for each architecture since the performance vari-
ation pattern is similar. In Figure 14(a), we show the bench-
marks gaussian, which is insensitive to occupancy tuning.
Its performance changes very little across occupancy lev-
els, demonstrating significant potential for resource saving
and energy saving. Figure 14(b) (streamcluster) and Figure
15(a) (backprop) show skewed bell curves, with performance
being best at around 75% occupancy but not changing sig-
nificantly above 50%. In 15(b) (bfs), performance is best
at highest occupancy, but again changes only a little when
above 50%.

In all four of these cases, performance as a function of
occupancy plateaus, demonstrating a range of occupancy
values between which performance is very similar. This ob-
servation confirms the advantage of dynamic tuning: even
when the performance is the best, we can still keep tuning
and obtain potential saving for resources and energy usage.
Further, in such programs, we can use this information for
additional optimization. For example, loop unrolling is a
common technique which reduces branch penalties, but may

increase register pressure and therefore lower occupancy. By
finding this range of similar occupancies, however, we can
determine the amount of leeway available with which to per-
form such optimizations without experiencing slowdown.

5. RELATED WORK
In this paper, we propose an occupancy tuning framework

for GPU programs. There have been GPU performance tun-
ing frameworks that focus on different factors. The POR-
PLE framework [7] determines which type of memory to use
according to different data access patterns. Liu and col-
leagues [15] utilize input-sensitivity to select the best pro-
gram compilation and execution parameter for every input.
Yang and others [29] have developed a GPU compiler that
focus on static-time memory optimization and parallelism
management. There are also domain-specific program tun-
ing studies by compiler designers. Anand et al. [25] explores
the dimension of data representation methods for sparse ma-
trix code. The Halide [23] framework tunes the locality and
parallelism parameters for image processing pipeline. How-
ever, none of the tuning frameworks exploited the impact of
occupancy tuning on general-purpose GPU programs.

Since GPU program occupancy tuning is correlated with
resource allocation, we also compare our work with previ-
ous resource allocation studies. Register allocation for CPU
programs has been extensively studied [4] [5] [22] [1] [10] [21]
[2] [8] [27] [16]. For GPU register allocation, Sampaio and
others [24] identified the opportunities in saving registers for
control flow statements in GPU programs. Our prior work
[11] places the spilled register variables by nvcc into avail-
able shared memory, however it does not perform register
allocation and it does not handle wide variable registers.
Further it is purely static compile-time approach and does
not adaptively tune the occupancy (downwards or upwards)
based on runtime program behavior. None of the above work
thoroughly explores the relations between register (resource)
allocation and occupancy tuning.

6. CONCLUSION
We propose the first framework for GPU occupancy tun-

ing, Orion. The Orion framework performs two-level oc-
cupancy selection. The Orion compiler performs the first-
level occupancy selection and generates a set of kernel bi-
naries for dynamic tuning. The Orion runtime performs a
second-level of occupancy selection which adapts to dynamic
program behavior. It is able to find the best occupancy or
an occupancy close to the best one within three iterations on
average. The Orion compiler and runtime not only improve
performance – achieving up to 1.61 times speedup – but also
resource & energy efficiency, with up to 62.5% memory re-
source saving, and 6.7% energy reduction over the highly
optimized code generated by the nvcc compiler.

Acknowledgement
We thank Thomas Gross for his insightful comments on the
draft of the paper. We owe a debt of gratitude to the anony-
mous reviewers for their invaluable comments. This work is
supported by NSF Grant NSF-CCF-1421505, Google Fac-
ulty Research Award, Rutgers University Research Council
Grant, and the DOE ASCR CESAR Project. Any opinions,
findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily
reflect the views of our sponsors.

7. REFERENCES
[1] Appel, A. W., and George, L. Optimal spilling for

cisc machines with few registers. In Proceedings of the
ACM SIGPLAN 2001 conference on Programming
language design and implementation (New York, NY,
USA, 2001), PLDI ’01, ACM, pp. 243–253.

[2] Baev, I. D. Techniques for region-based register
allocation. In Proceedings of the 7th annual
IEEE/ACM International Symposium on Code
Generation and Optimization (Washington, DC, USA,
2009), CGO ’09, IEEE Computer Society, pp. 147–156.

[3] Briggs, P., Cooper, K. D., and Torczon, L.
Improvements to graph coloring register allocation.
ACM Trans. Program. Lang. Syst. 16, 3 (May 1994),
428–455.

[4] Chaitin, G. J. Register allocation & spilling via
graph coloring. In Proceedings of the 1982 SIGPLAN
symposium on Compiler construction (New York, NY,
USA, 1982), SIGPLAN ’82, ACM, pp. 98–105.

[5] Chaitin, G. J., Auslander, M. A., Chandra,
A. K., Cocke, J., Hopkins, M. E., and
Markstein, P. W. Register allocation via coloring.
In Computer Languages (1981), vol. 6, pp. 47–57.

[6] Che, S., Boyer, M., Meng, J., Tarjan, D.,
Sheaffer, J. W., Lee, S.-H., and Skadron, K.
Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the 2009 IEEE
International Symposium on Workload
Characterization (IISWC) (Washington, DC, USA,
2009), IISWC ’09, IEEE Computer Society, pp. 44–54.

[7] Chen, G., Wu, B., Li, D., and Shen, X. Porple: An
extensible optimizer for portable data placement on
gpu. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture
(Washington, DC, USA, 2014), MICRO-47, IEEE
Computer Society, pp. 88–100.

[8] Choi, Y., and Han, H. Optimal register reassignment
for register stack overflow minimization. ACM Trans.
Archit. Code Optim. 3, 1 (Mar. 2006), 90–114.

[9] Hack, S., and Goos, G. Copy coalescing by graph
recoloring. In Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and
implementation (New York, NY, USA, 2008), PLDI
’08, ACM, pp. 227–237.

[10] Hack, S., Grund, D., and Goos, G. Register
allocation for programs in ssa-form. In In Compiler
Construction 2006, volume 3923 of LNCS (2006),
Springer Verlag.

[11] Hayes, A. B., and Zhang, E. Z. Unified on-chip
memory allocation for simt architecture. In
Proceedings of the 24th ACM International Conference
on Supercomputing (New York, NY, USA, 2014), ICS
’14, ACM.

[12] Hong, S., and Kim, H. An analytical model for a
gpu architecture with memory-level and thread-level
parallelism awareness. In Proceedings of the 36th
Annual International Symposium on Computer
Architecture (New York, NY, USA, 2009), ISCA ’09,
ACM, pp. 152–163.

[13] Hong, S., and Kim, H. An integrated gpu power and
performance model. In Proceedings of the 37th Annual
International Symposium on Computer Architecture
(New York, NY, USA, 2010), ISCA ’10, ACM,
pp. 280–289.

[14] Hou, Y., Lai, J., and Mikushin, D. asfermi: An
assembler for the nvidia fermi instruction set.

[15] Liu, Y., Zhang, E., and Shen, X. A cross-input
adaptive framework for gpu program optimizations. In
Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on (May 2009),
pp. 1–10.

[16] Lueh, G.-Y., Gross, T., and Adl-Tabatabai,
A.-R. Fusion-based register allocation. ACM Trans.
Program. Lang. Syst. 22, 3 (May 2000), 431–470.

[17] Munkres, J. Algorithms for the assignment and
transportation problems. Journal of the Society for
Industrial & Applied Mathematics 5, 1 (1957), 32–38.

[18] NVIDIA. Cuda c programming guide.

[19] NVIDIA. CUDA occupancy calculator.

[20] NVIDIA. GPU computing sdk.

[21] Palsberg, J. Register allocation via coloring of
chordal graphs. In Proceedings of the thirteenth
Australasian symposium on Theory of computing -
Volume 65 (Darlinghurst, Australia, Australia, 2007),
CATS ’07, Australian Computer Society, Inc., pp. 3–3.

[22] Poletto, M., and Sarkar, V. Linear scan register
allocation. ACM Trans. Program. Lang. Syst. 21, 5
(Sept. 1999), 895–913.

[23] Ragan-Kelley, J., Barnes, C., Adams, A., Paris,
S., Durand, F., and Amarasinghe, S. Halide: A
language and compiler for optimizing parallelism,
locality, and recomputation in image processing
pipelines. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation (New York, NY, USA, 2013), PLDI
’13, ACM, pp. 519–530.

[24] Sampaio, D. N., Gedeon, E., Pereira, F. M.
Q. a., and Collange, S. Spill code placement for
simd machines. In Proceedings of the 16th Brazilian
conference on Programming Languages (Berlin,
Heidelberg, 2012), SBLP’12, Springer-Verlag,
pp. 12–26.

[25] Venkat, A., Hall, M., and Strout, M. Loop and
data transformations for sparse matrix code. In
Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and
Implementation (New York, NY, USA, 2015), PLDI
2015, ACM, pp. 521–532.

[26] Volkov, V. Better performance at lower occupancy.
Proceedings of the GPU Technology Conference, GTC
10 (2010), 16.

[27] Wang, J., Krall, A., Ertl, M. A., and Eisenbeis,
C. Software pipelining with register allocation and
spilling. In Proceedings of the 27th annual
international symposium on Microarchitecture (New
York, NY, USA, 1994), MICRO 27, ACM, pp. 95–99.

[28] West, D. B. Introduction to Graph Theory, 2 ed.
Prentice Hall, September 2000.

[29] Yang, Y., Xiang, P., Kong, J., and Zhou, H. A
gpgpu compiler for memory optimization and

parallelism management. In Proceedings of the 31st
ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY,
USA, 2010), PLDI ’10, ACM, pp. 86–97.

[30] Zhang, E. Z., Jiang, Y., Guo, Z., Tian, K., and
Shen, X. On-the-fly elimination of dynamic
irregularities for gpu computing. In ACM SIGARCH
Computer Architecture News (2011), vol. 39, ACM,
pp. 369–380.

