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a b s t r a c t

We present the KPC-Toolbox, a library of MATLAB scripts for fitting workload traces into
Markovian Arrival Processes (MAPs) in an automatic way based on the recently proposed
Kronecker Product Composition (KPC) method. We first present detailed sensitivity
analysis that builds intuition on which trace descriptors are the most important for
queueing performance, stressing the advantages of matching higher-order correlations of
the process rather than higher-order moments of the distribution.
Given that the MAP parameterization space can be very large, we focus on first

determining the order of the smallest MAP that can fit the trace well using the Bayesian
Information Criterion (BIC). The KPC-Toolbox then automatically derives a MAP that
captures accurately the most essential features of the trace. Extensive experimentation
illustrates the effectiveness of the KPC-Toolbox in fitting traces that are well documented
in the literature as very challenging to fit, showing that the KPC-Toolbox offers a simple and
powerful solution to fitting accurately trace data into MAPs. We provide a characterization
of moments and correlations that can be fitted exactly by KPC, thus showing the wider
applicability of the method compared to small order MAPs.
We also consider the fitting of phase-type (PH-type) distributions, which are an

important specialization of MAPs that are useful for describing traces without correlations
in their time series. We illustrate that the KPC methodology can be easily adapted to PH-
type fitting and present experimental results on networking and disk drive traces showing
that the KPC-Toolbox can also match accurately higher-order moments of the inter-arrival
times in place of correlations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Markovian Arrival Processes (MAP) are a general class of Markov-modulated processes [1] used for fitting real workload
traces with time-varying characteristics, e.g., for approximating workloads with short-range or long-range dependent
behavior [2,3]. Traces of this type are commonly found innetworks and computer systems, such as disk drives or e-commerce
applications [4,5].
The main advantage of MAPs over other workload models is that, being based on Markov chains, they can be easily

integrated within queueing systems to describe arrival or service processes. These queueing systems are then used in the
computation of performance metrics such as mean response time or server utilization [5]. However, it is often prohibitive
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to derive MAPs that can reproduce the characteristics of real workloads with temporal dependence. The main reason for
this difficulty is the large parameterization space of MAPs. Matching accurately traces with time-varying characteristics
may require assigning the jumping rates between several tens of states, a task that must be supported by proper software
tools.
In this paper, we propose the KPC-Toolbox, a library of MATLAB scripts for automatic fitting of real workload traces

using MAPs. The KPC-Toolbox takes as input a trace of inter-arrival times, typically describing arrivals or service times,
automatically searches for the best order of theMAP that can fit the trace accurately, and then derives aMAPwhich captures
the most essential statistical features of the real workload. The underlying technology is the recently proposed Kronecker
Product Composition (KPC) fitting method for MAPs [6].
KPC reduces fitting problems to determining the characteristics of small MAPs composed by no more than two phases.

These MAPs can be easily fitted with closed-form formulas and are later composed into a large MAP by Kronecker products.
A similar compositional approach based on process superposition defined by Kronecker sums has been widely used in the
MAP fitting literature [2]. The novelty of KPC is that this method is able to impose moments or correlations of any order to
the resulting MAP, while superposition methods are mostly limited to first-order and second-order statistical descriptors
(e.g., mean arrival intensity, variance-time curve) that can be insufficient for accurate queueing prediction [7].
Compared to [6], the present paper further elaborates the design and the implementation of the toolbox for automatic

trace fitting. Fundamental decisions prerequisite to any automation of trace fitting is deciding on the MAP order as well
as on which are the most important statistic descriptors to be fitted. We illustrate how these decisions can be taken based
on quantitative criteria rather than on using the intuition that often guides manual fitting approaches. We also develop
characterization results for KPC processes that extend the theoretical work in [6].
A first fundamental problem in automatic fitting is determining which trace descriptors to fit in the target MAP. To give

intuition on this problem,weperforma sensitivity analysis of aMAP/M/1queue in order to determine the bestmoments and
correlations to bematched by KPC.We observe that higher-order statistical descriptors that are changed by amodification of
the higher-order properties of inter-arrival times such as skewness, tail of the distribution, or higher-order correlations, can
result in dramatic performance changes. Instead,we find caseswhere performance can bequite insensitive to the coefficient-
of-variation and to the autocorrelation values of the inter-arrival times. We also give evidence that it is the higher-order
correlations (i.e., joint moments [8]), rather than the tail or the higher-order moments of the distribution, which drive the
performance differences between these cases. Guided by the above observations, the KPC algorithm focuses on matching
higher-order correlations rather than higher-order moments of the trace.
An important innovation of the KPC-Toolbox is to determine automatically the order of the MAPs used in fitting (i.e., the

number of phases to be used in the underlying CTMC). Order selection in MAPs is an important issue because the MAP order
can significantly affect the running times of fitting. To the best of our knowledge, no criteria have been proposed in previous
work for determining the size of a MAP. The KPC-Toolbox tackles this issue with an order selection technique based on the
Bayesian Information Criterion (BIC) [9], that is a widely used method for determining the best order-accuracy trade-off
in ARIMA processes. We use the recursive characterization of MAP autocorrelations given in [6] as an input to the BIC to
evaluate the best MAP order to use.
To complement our analysis on the applicability of the KPC-Toolbox, we give a theoretical characterization of processes

obtained by KPC of twoMAP(2)s, i.e., MAPs with two states. We find KPC processes to be much less restrictive, with respect
to MAP(2)s, on conditions on third-order moments and to support the exact matching of autocorrelation coefficients with
values up to 23 . The latter exceeds the maximum threshold of

1
2 for the autocorrelation in a MAP(2).

Finally, to illustrate the versatility of the KPC-Toolbox, we present experimentation on a set of processes with different
temporal characteristics and illustrate that the tool provides a robust solution to fitting traces intoMAPs. To further illustrate
the generality of themethodology, we also present results on fitting processes that do not exhibit any temporal dependence,
i.e., phase-type (PH-type) distribution [10]. We show that the KPC-Toolbox can be used for fitting several moments into a
PH-type renewal process.
The paper is organized as follows. Background on MAPs and KPC is given in Section 2. Section 3 presents a sensitivity

analysis on theMAP/M/1 queue that guides KPC to decidewhichmoments and autocorrelations are themost important and
should be matched in fitting studies. Section 4 introduces the KPC-Toolbox and the new BIC-based order selection method.
We illustrate the effectiveness of the tool using the case studies in Section 5. Section 6 discusses how the KPC-Toolbox can
be used for PH-type fitting of processes that do not exhibit any autocorrelation. Section 7 provides a characterization of KPC
processes with the aim of illustrating applicability of the methodology. Finally, Section 8 concludes the paper and outlines
futurework. The KPC-Toolbox, togetherwith related papers and technical reports, are available for download at http://www.
cs.wm.edu/MAPQN/kpctoolbox.html.

2. Markovian Arrival Processes

This section provides a simple introduction to Markovian Arrival Processes (MAPs) and explains some fundamental
difficulties of MAP fitting. We provide background on the Kronecker Product Composition (KPC) approach for defining large
MAPs, while keeping the focus of the paper on the tool implementation of the KPC fitting methodology as well as on new
results that aid the tool user in finding an accurate MAP fitting in an automatic way.
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Fig. 1. Example of Markovian Arrival Process (MAP).

2.1. A primer on MAPs

Markovian Arrival Processes (MAPs) [1] may be seen as a generalization of continuous-time Markov chains (CTMC) used
for fitting workload traces. A MAP differs from a CTMC in that transitions between states are classified by the user either as
background transitions, which only change the active state as in CTMCs, or as completion transitions, which both change the
active state and are conventionally associated to an arrival event. An inter-arrival time sample ∆Tk of a measured trace is
modeled in a MAP as the time elapsed between successive activation of any two completion transitions.
A MAP can be specified by the (D0,D1) representation [11] which provides the exponential rates of each state of the

underlying CTMC together with the jumping probabilities of background and completion transitions. For instance, a two-
phase MAP may be specified as

D0 =
[
−λ1,1 λ1,2
λ2,1 −λ2,2

]
, D1 =

[
µ1,1 µ1,2
µ2,1 µ2,2

]
,

where the inverse of λ1,1 = λ1,2 + µ1,1 + µ1,2 (resp. λ2,2 = λ2,1 + µ2,2 + µ2,1) is the mean time spent in phase 1 (resp.
2) before a jump; the off-diagonal elements λi,j, i 6= j, are such that λi,j/λi,i is the probability that the MAP will jump from
the active state i to state j using a background transition. Similarly, µi,j/λi,i is the probability of jump from i to j following
a completion transition. This also allows one to specify the probability µi,i/λi,i of having a completion in state i and then
returning instantaneously to state i.

Example 1. The MAP in Fig. 1 gives an example of a possible job execution in a computer system: after a loading phase that
lasts for a time exponentially distributed withmean λ−1load, the job alternates CPU-intensive phases and I/O-intensive phases,
each having exponentially distributed lengths with mean λ−1CPU and λ

−1
I/O, respectively. With probability p the MAP jumps

from the I/O-intensive phase to the loading phase through the completion transition and we may associate this event with
a job completion, i.e., the departure of the previous job and the arrival of a new job into service. This semantically defines
the inter-arrival time∆Tk between two jobs as the time elapsed between returns to the loading phase.
For the model in this example, the (D0,D1) description would be

D0 =

[
−λload λload 0
0 −λCPU λCPU
0 (1− p)λI/O −λI/O

]
, D1 =

[ 0 0 0
0 0 0
pλI/O 0 0

]
.

Example 2. Consider a trace of inter-arrival times following an Erlang-2 distribution with mean 2λ−1. This can be modeled
as a MAP

D0 =
[
−λ λ
0 −λ

]
, D1 =

[
0 0
λ 0

]
,

where D1 specifies that inter-arrival times are taken when the active state changes from state 2 to state 1. Note that after
each completion the MAP restarts from state 1, which models correctly the initialization behavior of the Erlang-2 process.

Example 3. Consider a two-state hyper-exponential distribution with rates λ′1 and λ
′

2 and probability p of selecting the first
phase. This can be fitted by a MAP with the following representation

D0 =
[
−λ′1 0
0 −λ′2

]
, D1 =

[
pλ′1 (1− p)λ′1
pλ′2 (1− p)λ′2

]
.
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This MAP specifies that each visit to a state of a hyper-exponential process is followed by a completion (no background
transitions in D0) and, in order to generate the next inter-arrival time sample, the MAP needs to be re-initialized in state 1
with probability p and in state 2 with probability 1− p.

In the (D0,D1) notation, Q = D0+D1 is the infinitesimal generator of the CTMC that describes the evolution of the active
phase over time. The discrete-time Markov chain (DTMC) with probability matrix

P = (−D0)−1D1, (1)
and equilibrium state probabilities Eπe = EπeP describes the probabilities pi,j of activating a completion transition that jumps
to state j conditioned on theMAP being initialized in state i. Thus, phase j is the state in which theMAP restarts from in order
to generate the next inter-arrival time sample. According to this property, P implicitly describes the temporal dependence
between consecutive inter-arrival times by probabilistically relating the initialization conditions of successive samples. For
instance, a process

D0 =
[
−λ1 0
0 −λ2

]
, D1 =

[
0 λ1
λ2 0

]
,

has inter-arrival times that are taken alternatively fromphase 1 and phase 2 in a cyclicmanner because of the structure ofD1.
This introduces a regular temporal dependent structure that cannot be represented bymodels of uncorrelated (i.e., renewal)
processes, such as PH-type renewal processes where the order of inter-arrival times is completely random. The support for
temporal dependence is the main advantage of MAPs over other workload fitting models such as PH-type distributions.
A useful property of the (D0,D1) representation is the simplicity of evaluating MAP feasibility [6]. This amounts to

assuring that Q = D0+D1 is a valid irreducible infinitesimal generator and that the entries of D1 are all nonnegative. These
conditions can be easily checked. Other representations that admit a meaningful probabilistic interpretation are possible,
e.g., (Q , P), but it is hard with these descriptions to assess MAP feasibility without computing explicitly D0 and D1. This is
because there exist pairs (Q , P) that define valid Markov chains, but upon computing the related D0 and D1 matrices these
include one or more negative off-diagonal rates which make the MAP unfeasible. Therefore, we focus throughout the paper
on the (D0,D1) representation.We also indicate withMAP(N) a process composed byN phases, e.g., a MAP(2) is a two-state
process.

2.2. Moment matching

Fitting a trace requires to capture the properties of a time series in terms of its distribution and correlations between
samples, which jointly summarize the observed patterns. Correlations capture probabilistically the relative ordering of the
samples in the trace, while the distribution describes the actual values assumed by each sample irrespectively of its position
in the time series.
Because of the difficulty in obtaining robust estimates of the probability density function, moment matching is largely

used in fitting distributions [12,8]. The distribution of inter-arrival times in a MAP is always PH-type, thus moments are
obtained from basic theory of PH-type distributions as

E[Xk] = k! Eπe(−D0)−kEe, k = 1, 2, . . . , (2)
where EπeP = Eπe. For this reason, fitting algorithms for PH-type distributions can be also applied to MAP distribution
fitting [13,12], although they need to be complemented by techniques for correlation matching in order to fit traces with
temporal dependence.
A popular approach to match the temporal dependence structure is to use second-order properties of the trace [2], such

as the correlations

E[XjXj+k] = Eπe(−D0)−1Pk(−D0)−1Ee, k = 1, 2, . . . , (3)
where Xj and Xj+k are inter-arrival times spaced by k − 1 arrivals. The autocorrelation function is a normalization of these
values, i.e.,

ρk =
Eπe(−D0)−1Pk(−D0)−1Ee− E[X]2

E[X2] − E[X]2
, k = 0, 1, . . . .

A related descriptor of particular interest for a two-state MAPs is the decay rate of the autocorrelation, which is constant
and equal to γ = ρk+1/ρk.
Note that Eq. (3) is more difficult to fit to real data than (2) because of the Pk term that accounts for the temporal

dependence. In addition, imposing a certain distribution using (2) reduces the degrees of freedom for manipulating the
matrices in (3), because D0 and Eπe have been already constrained to fit a set of moments E[Xk] according to (2). This
builds intuition on the main issue of fitting workload traces with MAPs: we need to control the properties of moments
and correlations by simultaneously manipulating products of matrices appearing in (2)–(3), which is a difficult nonlinear
problem. Separate fitting of moments and correlations has been recently attempted [12] and can work successfully on small
andmediumsizedprocesses, but the underlying optimization can becomeharder on largerMAPs. TheKPCmethodpresented
in the next section provides instead a simple divide-and-conquer approach for fitting both (2)–(3) in large MAPs.
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2.3. Fitting large MAPs: Kronecker Product Composition (KPC)

This section reviews the Kronecker Product Composition (KPC) method proposed in [6]. KPC is a new technique for
imposing moments and correlations of arbitrary order to a MAP. The idea is to use fundamental properties of the Kronecker
(or tensor) product operator [14] to simplify the control of the matrix products and inversions appearing in (2)–(3). The
aim of KPC is to provide a simple way to match a set of moments and autocorrelations by composing together small MAPs,
typically MAP(2)s that can be fitted easily by closed-form formulas [15]. This approach has been deeply investigated in
process superposition based on the Kronecker sum operator [2], which is effective for manipulating the counting process of
a MAP, however the extension to fitting inter-arrival times is difficult because of the different structures of Eqs. (2)–(3). KPC
overcomes this difficulty by generalizing the superposition approach to inter-arrival times based on a Kronecker product
operator that is constrained to generate a feasible MAP.
GivenMAPa = {Da0,D

a
1} andMAP

b
= {Db0,D

b
1}, we define the KPC of the two processes as the process

MAPa ⊗MAPb = {D0,D1} = {−Da0 ⊗ D
b
0,D

a
1 ⊗ D

b
1}, (4)

where ⊗ denotes the Kronecker product operator. If MAPa has Ka phases and MAPb has Kb phases, then the process
MAPa ⊗ MAPb has KaKb phases. This suggests that the KPC operator should be used parsimoniously to avoid generating
models that have too many states. As an example of Kronecker product, if the original MAPs have D0 matrices

Da0 =
[
−a1,1 0
0 −a2,2

]
, Db0 =

[
−b1,1 b1,2
b2,1 −b2,2

]
,

where ai,j ≥ 0 and bi,j ≥ 0 are nonnegative real numbers, then KPC yields a process with D0 = −Da0 ⊗ D
b
0 where

D0 =

−a1,1b1,1 a1,1b1,2 0 0
a1,1b2,1 −a1,1b2,2 0 0
0 0 −a2,2b1,1 a2,2b1,2
0 0 a2,2b2,1 −a2,2b2,2

 (5)

is a feasible D0 matrix, having negative elements on the main diagonal only. The last feasibility condition is always enforced
by KPC if at least one matrix between Da0 and D

b
0 is a diagonal matrix (e.g., D

a
0 in the previous example), otherwise the

zero entries in −Da0 ⊗ D
b
0 are replaced by negative values that make the MAP infeasible. Note that this condition does

not place strong constraints on the generality of the KPC method since one of the two matrices can always be arbitrary.
The composition Da1 ⊗ D

b
1 instead generates always a valid D1 matrix structured according to the general properties of the

Kronecker product.We remark that if KPC is used to composeM MAPs,M−1 of theseMAPsmust have a diagonalD0matrix.
The main motivation behind (4) is that the Kronecker product satisfies the algebraic relations [14]

(A⊗ B)(C ⊗ D) = AC ⊗ BD
(A⊗ B)−k = A−k ⊗ B−k

which allow one to decompose matrix products and inversions in terms of similar operations on smaller matrices. For
instance, in a KPC process it is

(−D0)−k = (−Da0)
−k
⊗ (−Db0)

−k

and from this relation it can be shown with simple passages that similarly

P = Pa ⊗ Pb, Eπe = Eπ
a
e ⊗ Eπ

b
e ,

where the indexes a and b refer to MAPa and MAPb. We point to [6] for proof of the above formulas. It is also possible to
show in a similar way that moments and correlations are decomposed as well. For example, the mean of the KPC process
MAPa ⊗MAPb is immediately decomposed as

E[X] = Eπe(−D0)−1Ee = (Eπ ae ⊗ Eπ
b
e )(−D

a
0 ⊗−D

b
0)
−1(Eea ⊗ Eeb)

= (Eπ ae (−D
a
0)
−1
Eea)(Eπ be (−D

b
0)
−1
Eeb) = E[Y ]E[Z], (6)

where Eea and Eeb are column vectors of all ones of the same length of Eπ ae and Eπ
b
e , while Y and Z are random variables denoting

the inter-arrival times of the processesMAPa andMAPb, respectively. Based on passages similar to the one shown above, it
is easy to derive the following decomposition formulas [6]

E[Xk] =
E[Y k]E[Zk]

k!
, (7)

E[XjXj+k] = E[YjYj+k]E[ZjZj+k]. (8)

which generalize to joint moments as

E[Xuj X
v
j+kX

z
j+k+h] =

E[Y uj Y
v
j+kY

z
j+k+h]E[Z

u
j Z

v
j+kZ

z
j+k+h]

u!v!z!
. (9)



878 G. Casale et al. / Performance Evaluation 67 (2010) 873–896

Since jointmoments are insufficient to uniquely specify aMAP [8],we conclude that (9) provides a complete characterization
of the theoretical properties of the KPC operator.We also remark that, from (7)–(9), it has been derived in [6] that the squared
coefficient-of-variation of the KPC process, henceforth denoted SCV , is related to SCVa and SCVb by

SCV = (1+ SCVa)(1+ SCVb)/2− 1 (10)

and that the autocorrelation coefficients are

ρk =
SCVa
SCV

ρak +
SCVb
SCV

ρbk +
SCVaSCVb
SCV

ρakρ
b
k . (11)

The KPC technique, reviewed above for the case of two MAPs, generalizes in a recursive fashion to KPC of several processes.
For example, the mean of the composition MAPa ⊗ MAPb ⊗ MAPc is given by E[X] = E[Y ]E[Z]E[W ], with W being the
random variable denoting the inter-arrival times ofMAPc . A similar extension holds also for all other formulas [6].
Relations (7)–(9) explain that KPC creates processes with statistical descriptors that are in simple relation with those of

the original MAPs used in the composition. This allows one to define arbitrarily large MAPs without losing control on their
moments and correlations. These descriptors can be assigned to desired values by properly adjusting the characteristics of
the MAPs composed by KPC. These MAPs have much smaller order than the KPC process, hence they can be manipulated
easily; specifically, in this paper we focus on the case where all MAPs used in the composition are MAP(2)s. However, the
general approach works also with other processes such as MAP(3)s [6].
Summarizing, (7)–(9) state that the MAP fitting of real traces can be essentially reduced to the following divide-and-

conquer problem: assign moments and correlations of small MAPs such that their KPC composition by (4) defines a MAP with the
desired values of the moments and the correlations in (7)–(9). The KPC-Toolbox presented in Section 4 defines an automatic
fitting scheme, based on the general KPC fitting approach of [6], to achieve this result.

2.4. Kronecker product composition and process superposition

The definition of large MAPs by composition of smaller processes has been extensively explored in the literature
of Markov-modulated processes using the process superposition technique [1,2]. In this subsection, we introduce a
probabilistic interpretation of KPC that allows a comparison between KPC and superposition.
Given two processes MAPa = {Da0,D

a
1} and MAP

b
= {Db0,D

b
1}, the superposition MAP

a
⊕ MAPb = {Da0 ⊕ D

b
0,D

a
1 ⊕ D

b
1}

describes the inter-arrival times between activation of completion transitions in any of the processes MAPa and MAPb,
where ⊕ denotes the Kronecker (tensor) sum operator. This is particularly appealing for network traffic modeling, where
completion transitions represent the arrivals of new packets over a channel and therefore the superpositionMAPa ⊕MAPb
represents inter-arrival times of packets originating from two independent traffic sources MAPa and MAPb. Thus, the
counting process specified by the number of arrivals nt of MAPa ⊕ MAPb at a timescale t is immediately defined as the
sum of the number of arrivals due toMAPa and those due toMAPb, i.e., nt = nat + n

b
t . This implies that the counting process

ofMAPa ⊕MAPb has mean E[nt ] = E[nat ] + E[n
b
t ], and variance Var[nt ] = Var[n

a
t ] + Var[n

b
t ], being Cov[n

a
t , n

b
t ] = 0 thanks

to the independence ofMAPa andMAPb. This allows one to control first-order and second-order properties of the counting
process of MAPa ⊕ MAPb in a straightforward manner by simply changing the mean and variance of the counting process
of the superposed MAPs, which can be done by simple analytical formulas if the superposed MAPs have two states [2].
Nevertheless, no explicit formulas exist for skewness or higher-order moments of the counting process of a MAP and this
makes it difficult to fully control the properties of the superposed process.
The solution proposed by KPC to control MAP properties is to use a hierarchical Markov modulation in which the

compositionMAPa⊗MAPb is interpreted asMAPamodulating the rate of transitions ofMAPb. For example, suppose thatMAPa
is the hyper-exponential process of Example 3 andMAPb is the Erlang-2 process of Example 2. Then their KPCMAPa⊗MAPb
has representation

D0 =

−λ · λ
′

1 λ · λ′1 0 0
0 −λ · λ′1 0 0
0 0 −λ · λ′2 λ · λ′2
0 0 0 −λ · λ′2

 , D1 =

 0 0 0 0
pλ · λ′1 0 (1− p)λ · λ′1 0
0 0 0 0

pλ · λ′2 0 (1− p)λ · λ′2 0

 .
According to the active state of MAPa, the transition rates of MAPb are scaled by different multipliers λ′1 or λ

′

2. Thus, MAP
a

essentially modulates the frequency of arrivals fromMAPb.
Since KPC allows one to compose together an arbitrary number of MAPs, we immediately conclude that the approach

described above generalizes to the definition of a hierarchy of different arrival intensities. Thus, the flexibility of KPC lies in
the creation of a hierarchy ofMarkovmodulations where one can easily control the properties of distribution and burstiness
at each level of the hierarchy by simply operating on the corresponding MAP that modulates that level.
Summarizing, the superposition approach allows the definition of complex processes by summing independent MAPs

and this is effective to control mean and variance of the counting process. Conversely, KPC uses a hierarchical composition
of MAPs and formulas (7)–(9) describe the simple effects of this modulation on moments and correlations of inter-arrival
times. In the following sections, we examine how to best use this flexibility of KPC for fitting traces with complex temporal
dependence.
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Fig. 2. Inaccurate queue-length predictions of a MAP(2) fitted by exact matching of the trace’s most important moments and correlations.

3. What is important for MAP fitting?

In the design of the KPC-Toolbox, we have focused our attention on a challenging, but fundamental, question: which
statistical descriptors are the most important for fitting traces using MAPs? A common approach in the current literature
is to match the most important moments and correlation coefficients using the simplest available model, often a MAP(2).
For example, the first three moments E[X], E[X2], E[X3], and the lag-1 correlation E[XjXj+1], which determines the lag-1
autocorrelation ρ1, are sufficient to fully parameterize aMAP(2) [16,15]. Matching these four parameters is often considered
a viable approach to fit a trace; however, we argue that this frequently results in models with poor predictive capabilities.
For example, Fig. 2 shows the simulated queue-length probabilities for a Trace/M/1 queue driven by the Bellcore pAug89
(BC-pAug89) trace inter-arrival times1 [17] and compares them with the probabilities of a MAP(2)/M/1 queue, where the
MAP(2)matches exactly the first threemoments and the lag-1 autocorrelation of the Bellcore trace. The results clearly show
the poor modeling accuracy of the MAP(2) fitted with this approach.
The experiment in Fig. 2motivates the investigation in this section:we study numerically the sensitivity of theMAP/M/1

queue-length distribution to the parameters used in MAP fitting. The aim is to derive qualitative recommendations for the
best moments and correlations to be matched in MAP fitting.

3.1. Evaluation methodology

We perform a sensitivity analysis in two phases. We first evaluate theMAP(2)/M/1 queue sensitivity and later confirm
our observations using a larger process defined by the KPC of two MAP(2)s, henceforth called a KPC(4) process. In the first
analysis on the MAP(2), queue performance is studied as a function of its first three normalized moments (mean inter-
arrival time MEAN , squared coefficient-of-variation SCV , and skewness SKEW ) and the lag-1 autocorrelation coefficient ρ1
of inter-arrival times. A fundamental difficulty in the analysis is that a variation of a single parameter results in changes to
the process, e.g., any variation of SKEW results in a simultaneous change of the skewness of the distribution, of the tail of the
distribution, of higher-ordermoments, and of higher-order correlations (e.g., the bicorrelations E[XjXj+kXj+k+z] in (9)). This is
a consequence of linear dependencies that relate moments and correlations in a general MAP(N) [6]. Only first- and second-
order moments and correlations are unaffected by changes of SKEW . Our conjecture is that higher-order correlations, such
as the bicorrelations (9), rather than the tail of the distribution or the skewness, are the main determinant of queueing
performance under correlated workloads. We provide evidence of this claim in Section 3.3; before, we generically call
‘‘higher-order properties’’ the moments and correlations changed in a MAP(2) by a variation of SKEW for fixed MEAN ,
SCV , and ρ1.
The sensitivity analysis is performed as follows. Recall that for aMAP/M/1 queue, the queue-length probabilities decay

asymptotically as P(n = k) ∼ c0ηk,where η is a decay rate called caudal characteristic [1] and c0 is a positive constant [1].
We investigate the sensitivity of theMAP/M/1 results by determining the queue-length value x such that ηx < 10−8. Results
for other values of the threshold are qualitatively similar. Intuitively, x represents a position of the queue-length distribution
after which the probability values should be too small to affect performance. If the MAP/M/1 queue is nearly insensitive
to a MAP parameter such as a moment, we expect x to change slightly under variations of that parameter and the shape
of P(n = x) should not be altered in a dramatic way. Therefore, we check sensitivity to a fitting parameter by evaluating
changes of the ‘‘threshold’’ x; the analysis is done for different server utilization levels ρ ∈ [0.1, 0.9] by varying the rate of
the exponential service process.

1 The Bellcore pAug89 trace is often used in the MAP literature for the evaluation of accuracy of fitting techniques, for example in [2,3].
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(a) Sensitivity to SKEW ; SCV = 10. (b) Sensitivity to SCV ; SKEW = 5.

(c) Sensitivity to SCV ; SKEW = 15. (d) Sensitivity to SCV ; SKEW = 100.

Fig. 3. Impact of SKEW and SCV on the decay rate of theMAP/M/1 queue-length probabilities for different utilization values.

3.2. MAP(2) fitting

We first investigate the sensitivity of theMAP(2)/M/1 queue to SCV , SKEW , and ρ1. We focus on the cases SCV > 1 and
autocorrelations ρk > 0, which are among the most common in real traces.
Sensitivity to SKEW and higher-order properties. We consider a MAP(2) with mean MEAN = 1, SCV = 10, and ρ1 = 0.446
which corresponds to an autocorrelation decay rate γ = ρk/ρk−1 = 0.99. We evaluate the cases SKEW = 5 and
SKEW = 100. The value SKEW = 100 represents a distribution with light tail, since the large asymmetry places most
of the probability mass around small values; conversely, SKEW = 5 has a fat tail. Similar considerations hold for the higher-
order correlations. It is easy to verify numerically that SKEW = 5 has a considerably larger temporal dependence than
SKEW = 100.
Fig. 3(a) shows the impact of SKEW on the threshold x. For all utilization levels, the threshold is about 1000 times larger

if SKEW = 5 instead of SKEW = 100. That is, performance degrades dramatically for SKEW = 5 with the tail of the queue-
length probabilities becoming orders of magnitude longer than for SKEW = 100. It is striking to see that the impact of SKEW
is considerable also at utilizations as low as 0.1, where the variation of x appears maximal.
The result indicates that the higher-order properties affected by a change of SKEW can have a remarkable influence on

queueing predictions. We have observed that if the same experiment is performed after setting all autocorrelations to zero,
the variations of x under changes of SKEW are not nearly as dramatic. This is an indication that either a long tail in the
distribution or higher-order moments may be insufficient to capture alone the MAP/M/1 queueing performance. This is
consistent with our claim that higher-order correlations are the main determinants of queueing performance.
Sensitivity to SCV . We have performed several experiments for different values of SCV , SKEW , and ρ1, and found that for large
skewness (e.g., SKEW = 100), the queue-length probabilities are weakly sensitive to SCV ; see Fig. 3(d). From now on, we
focus on the more difficult cases SKEW = 5 and SKEW = 15. The 99th percentile of SKEW = 5 is in the range [11.7, 16.2],
while for SKEW = 15 it is in [5.6, 9.6]; in the previous subsection, for SKEW = 100 the 99th percentile is in [4.4, 4.5].
The sensitivity to the SCV is evaluated by setting SCV = 5 or SCV = 10 for each choice of SKEW . Since in general a

change of SCV implies also a change in the autocorrelations, we illustrate the effects of keeping the same autocorrelation
decay rate of the model or the same index of dispersion IDC = SCV (1 + 2

∑
∞

k=1 ρk). The results of the experiments are
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Table 1
MAP input parameters used in the KPC experiment in Section 3.3.

Process MEAN SCV SKEW ρ1

MAPa 1 19 19.82 0.468
MAPb 1 4 85.88 0.371
MAPc 1 19 77.51 0.468
MAPd 1 4 210.8 0.371
MAPa ⊗MAPb 1 49 57.77 0.482
MAPc ⊗MAPd 1 49 57.77 0.482

shown in Fig. 3(b–d). We find that for each choice of SKEW , the value of this parameter implies fundamental performance
differences: if SKEW = 5, the impact of SCV is mostly at low utilization, otherwise for SKEW = 15 only the high utilization
is affected by a change of SCV , for SKEW = 100 the impact of SCV is instead negligible at all utilizations. The choice of
fixing the autocorrelation decay rate or IDC impacts only at larger loads and suggests that the differences at heavy load
between the two figures cannot be attributed to the autocorrelations only. Explaining the different results in Fig. 3(b) and
(c) is difficult and the tail of the distribution does not give any clear intuition behind these effects. Instead, a more detailed
analysis of temporal dependence reveals that the distance between bursty arrival periods is dramatically changed by SCV
and SKEW , e.g. for SKEW = 5 the autocorrelation in counts [18] between consecutive bursty periods of length T = MEAN
is ρc1 = 0.91 for SCV = 10 and ρ

c
1 = 0.57 for SCV = 5, while for SKEW = 15 the two cases are similar. This suggests that

the busy period of the queue may be substantially affected by the SCV and SKEW changes and this could reasonably explain
the very different results in Fig. 3(b)–(c). Once again, this stresses the importance of matching correlations to fit processes
that can be used in queueing modeling.
Sensitivity to ρ1. We have also evaluated MAP(2)s for SCV = 10, SKEW = 5, and ρ1 ∈ [0.0, 0.446]. The results indicate the
following properties: if SKEW = 15, then ρ1 mostly impacts for utilization values larger than 70% with a gap of two orders
of magnitude for x between the extreme cases ρ1 = 0.0 (x ≈ 103) and ρ1 = 0.446 (x ≈ 105). For utilization values smaller
than 30% and SKEW = 15 the queue is almost insensitive to changes in ρ1. Conversely, for SKEW = 5 the threshold x varies
up to two order of magnitude under changes of ρ1 and for all utilization values. This is consistent with our previous findings
that the higher-order properties are critical for a good fitting, but also stresses that for medium–high utilizations a good
match of the autocorrelations is fundamental.
Summary. The experiments performed in this section indicate that it may be difficult to fit real traces by relying on first-
and second-order properties of the trace only. The higher-order properties controlled by SKEW affect dramatically the
performance of aMAP(2)/M/1 queue. Also SCV and autocorrelations remain very important, although we have found some
insensitivity for certain combinations of utilization and SKEW values; in light of this last observation, it also appears quite
difficult to discriminate which is more important between SCV and ρ1, as their relative impact changes with the utilization
and the SKEW values. In the next section, we complete our analysis on higher-order properties by investigating which
between higher-order moments and higher-order correlations is the most important for queueing performance.

3.3. General MAP fitting

We use KPC to try to discriminate whether higher-order correlations are more important than higher-order moments in
fitting traces with temporal dependence. We consider two MAP(2) processes MAPa and MAPb such that the resulting KPC
MAPa⊗MAPb has fat tail and temporal dependence and we study the resulting threshold x as a function of the utilization ρ.
Then, we repeat the experiment using two differentMAP(2) processesMAPc andMAPd such that the resultingMAPc⊗MAPd
has sameMEAN , SCV , SKEW , and approximately the same tail of the distribution and higher-ordermoments asMAPa⊗MAPb.
Table 1 gives the parameters of theMAPs used. The key difference is thatMAPa⊗MAPb andMAPc⊗MAPd have considerably
different higher-order correlations.
Since the two distributions are virtually identical in terms of tail decay, wewould expect reasonably similar performance

if the distribution would be the main determinant of the MAP/M/1 queue performance. However, Fig. 4 shows that the
variation of the threshold x in the two cases is extreme. Except for the high-utilization case, where the resultsmust converge
because of the identical value of the index of dispersion IDC of the two MAPs, the performance of MAPc ⊗ MAPd is orders
of magnitude worse than for MAPa ⊗ MAPb. This provides a strong example in favor of our claim that fitting higher-order
correlations is of critical importance.
Summary. Matching higher-order correlations in the KPC-Toolbox has priority over matching higher-order moments or
the tail of the distribution. In practice, it may be reasonable to assume that matching the first two or three moments of
the distribution of temporal dependent traces may be sufficient for capturing the impact of the distribution on queueing
performance under temporal dependence. All residual degrees of freedom of the model should be spent into matching
correlations of different orders. Due to the cost of computing on a real trace a large number of correlations with more than
three terms, the correlations E[XjXj+k] and E[XjXj+kXj+k+z] are often the most practical descriptors to be matched. Note also
that higher-order correlations of the type E[X2j Xj+k] are included as special cases of E[XjXj+kXj+k+z].
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Fig. 4. Effects of higher-order temporal dependence on the KPC(4)/M/1 queue performance.

4. The KPC-Toolbox

The KPC-Toolbox is a set of MATLAB scripts for fitting real traces into MAPs. The toolbox implements the algorithmic
solution of the divide-and-conquer fitting problemdefined byKPC based onMAP(2)s presented in [6]. Several design choices
have beenmade to strike a good balance between simplicity of use and accuracy of fitting. Noticeably, the underlying fitting
paradigm is based on the sensitivity analysis results in Section 3. In the next subsections we outline the key ideas behind
the design of the KPC-Toolbox.

4.1. Order selection

The KPC-Toolbox approach to MAP order selection is based on the recursive characterization of MAP autocorrelation
coefficients presented in [6]. We consider the trace autocorrelations and use this characterization to bound from above the
goodness-of-fit of a MAP(N)model for different choices of the order N . From these values, we select the target MAP order
for the KPC process using an information-theoretic approach.
We begin by recalling that MAPmoments and correlations satisfy simple linear recurrence expressions [6]. For example,

the autocorrelations ρk of a MAP with N phases satisfy

ρk = a1ρk−1 + a2ρk−2 + · · · + aNρk−N , k ≥ N, (12)

where the ak coefficients are computed from the eigenvalues of P = (−D0)−1D1. Therefore, a necessary condition for a good
matching of themeasured trace autocorrelations ρ̂k is that they can be fitted accurately by (12) for a choice of the coefficients
ak. This is not a sufficient condition, unless the ak’s are constrained in sign and magnitude to be generated from a feasible
MAP(N); unfortunately, feasibility expressions for the ak are prohibitive to obtain for large MAPs because of the high order
of the nonlinear equations involved. For this reason, our order selection approach relies only on necessary conditions.
We select the target MAP order N∗ by (12) as follows. For a trace where we consider m autocorrelation coefficients ρ̂k,

we give a preliminary evaluation of a MAP(N) fitting by defining a linear system of equations (12)
ρ̂k+1 = a1ρ̂k + a2ρ̂k−1 + · · · + aN ρ̂k−N+1,
ρ̂k+2 = a1ρ̂k+1 + a2ρ̂k + · · · + aN ρ̂k−N+2,
...
ρ̂k+m = a1ρ̂k+m−1 + a2ρ̂k+m−2 + · · · + aN ρ̂k−N+m.

(13)

The linear system is solved efficiently by linear regression to compute the residual sum of squares RSS =
∑
k(ρ̂k − ρk)

2.
Linear regression of hundreds of equations (12) can be solved with small time and space requirements, usually in a few
seconds. In particular, the KPC-Toolbox usesm = 500 logarithmically spaced autocorrelations ρ̂k, k ∈ [1, L/10]with L being
the trace length, to parameterize the linear system (13). If the trace has low RSS, then a MAP(N) is a suitable candidate for
matching the trace correlation structure.
After this first evaluation, we use the computed RSS values for different choices of themodel sizeN ∈ {2, 4, 8, 16, 32, 64}

and select the best trade-off between accuracy and model size as follows. We adopt the Bayesian Information Criterion
(BIC) [9] as a quantitative method to estimate the best MAP order. This is defined as

BIC(N) = m log
(
RSS
m

)
+ N logm, (14)
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where, in our application,m is the number of autocorrelations ρ̂k used in the regression. According to its definition, the BIC
should be intended as a cost function, i.e., lower values of BIC denote better trade-offs. Thus, the best order is immediately
selected as

N∗ = {N : min
N
BIC(N)},

and it is used by the KPC-Toolbox as the best choice for the MAP order. Indeed, similar criteria may be defined by replacing
BIC with similar cost-accuracy objective functions, such as the Akaike Information Criteria (AIC). However, the BIC is known
to be better than AIC as the number of available observations becomes asymptotically large [9].

4.2. KPC degrees of freedom for MAP(2)s

The KPC-Toolbox defines MAPs of large order by composition of MAP(2)s. The advantage of this approach is that each
composing MAP(2) can be generated efficiently using closed-form fitting formulas and enforced to be feasible using simple
analytical constraints2 [15].
The composition of J MAP(2)s by KPC defines a MAP(2J) that has at least 4J degrees of freedom, because the original

MAP(2)s are each defined by four parameters. Starting from the results of the sensitivity analysis in Section 3, the KPC-
Toolbox uses 3 degrees of freedom to match the basic moments of the trace (mean exactly, second- and third-order
moments approximately), while the residual 4J − 3 degrees are used for temporal dependence fitting of autocorrelations
and bicorrelations. For example, in order to fit a MAP(16), the KPC-Toolbox uses no less than 13 degrees of freedom for
autocorrelations and bicorrelations.
In addition to these 4J − 3 degrees of freedom, the KPC-Toolbox leverages on the following property of KPC that further

increases fitting flexibility. The concept is introduced with an example. Consider two processes MAPa and MAPb, and let
us impose the 4J = 8 degrees of freedom such that: Ea[X] = 1, Eb[X] = 1, Ea[X2] = 20, Eb[X2] = 30, Ea[X3] = 2000,
Eb[X3] = 3000, ρa1 = ρ

b
1 = 0. Then the KPCMAP

a
⊗MAPb has fourth moment

E[X4] = 4.7876 · 109.

Let us now swap the values of the second moments between MAPa and MAPb, i.e., Ea[X2] = 30, Eb[X2] = 20, without
altering the other parameters. Then, the first threemoments of the KPC process are unchanged because of (7), but the fourth
moment becomes

E[X4] = 4.7964 · 109,

since the fourth moments of MAPa and MAPb are affected by the swapping of the second moments because of the
linear dependencies between moments found in [6]. If the MAPs have temporal dependence, the change also affects the
correlations at all orders. This experiment tells us that a permutation of the assignment of the MAP(2) parameters, rather
than of their values, provides additional flexibility to improve fitting accuracy. A combinatorial analysis reveals that the
above property provides up to

4
(
J
J − 1

)
= 4J

degrees of freedom for temporal dependence fitting in addition to the 4J−3 left aftermatching the first three tracemoments.
The KPC-Toolbox is able to use implicitly such additional degrees of freedom thanks to the optimization approach discussed
in the next section. This brings the maximum number of degrees of freedom available to the analysis to 8J , however in
practice the number may be less since certain combinations of second and third moments are not feasible for a MAP(2). We
also remark that, in general, the number of degrees of freedom offered by a KPC process is much smaller than the maximum
number of degrees of freedom offered by a general MAP with identical number of states. However, fitting methods are
lacking for general MAPs in order to exploit such extra degrees of freedom.

4.3. KPC-Toolbox fitting algorithm

The pseudo-code in Fig. 5 provides an algorithmic overview of the KPC-Toolbox execution. The KPC-Toolbox first
performs the BIC order selection and determines the optimal number J = log2 N∗ of MAP(2)s to be composed by KPC. Then,
the tool searches for an actual set of J MAP(2)s that can match accurately the first three moments, the autocorrelations,
and the bicorrelations of the trace. This search is performed by the KPC fitting algorithm presented in [6]. The KPC-Toolbox
uses by default up to 500 logarithmically spaced autocorrelation coefficients and up to 25 bicorrelation values, the latter
obtained from a grid of 5 × 5 logarithmically spaced points. The range of sampling is set by default in [1, L/10] for the
autocorrelations and to lags in [1, L/10] × [1, L/10] for the bicorrelations, where L is the trace length. Lags where the

2 On the other hand, restricting to MAP(2)s reduces generality. For example, fitting variable bit-rate (VBR) traffic traces requires imposing complex
eigenvalues in the spectrum of P , but this cannot done using MAP(2)s or their KPC.
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Fig. 5. KPC-toolbox pseudo-code.

measured autocorrelations decay below 10−6 are ignored. These parameters can be changed by the user if needed. Other
parameters of interest that can be modified by the user are numerical tolerance of the optimization program, expected size
of the final MAP to override the BIC order selection, and maximum number of optimization programs to be carried out and
their maximum iterations.
The KPC-Toolbox fitting algorithm is organized around three stages: SCV and autocorrelation KPC fitting (stage 1); mean,

skewness and bicorrelation KPC fitting (stage 2); generation of the final MAP (stage 3).
In the first stage, the KPC-Toolbox fits the measured autocorrelations ρ̂k by searching the values of SCV and

autocorrelation decay rate γ for each MAP(2) with the aim of minimizing the residual sum-of-squares (RSS) between the
ρ̂k set and the autocorrelation ρk of the KPC process. From (11) it follows that the autocorrelation ρk of the KPC process can
be computed directly from the values of SCV and autocorrelation decay rate of each composing MAP(2) without the need
of imposing at this stage mean and skewness for each of the MAP(2)s. This is a fundamental result because it allows one
to decouple fitting of second-order properties from fitting of all other statistical descriptors and thus significantly reduces
computational costs. The optimization program used in stage 1 also includes a constraint which imposes that themaximum
error between the measured SCV and the KPC process SCV must be less than 10%. Further, it uses constraints that assure
MAP feasibility based on the feasibility ranges of SCVj and γj found in [15,19].
Mean and skewness of the J MAP(2)s are determined during stage 2 of the fitting algorithm, where we match with

a nonlinear least-squares approach bicorrelations, mean and third moment of the trace. The only significant difference
with respect to the previous stage is that we also impose constraints on the feasible mean and skewness values for
the composing MAP(2)s. This is because, upon fixing the SCV and autocorrelation decay values found in stage 1, not all
combinations of mean and skewness evaluated in stage 2 would result in feasible MAP(2)s. This issue is tackled by adding to
the optimization program the feasibility constraints found in [15]. Note also that, throughout the entire stage 2, each output
couple (E[Xj], E[X3j ]) has a one-to-one mapping with a single couple (SCVj, γj) determined in the previous stage and thus
allow one to uniquely identify the underlying MAP(2) processes.
In the final stage 3, we use the values of the first three moments and autocorrelation decay rate found in the first two

stages to determine the (D0, D1) representation of each MAP(2) using the closed-form formulas in [16,15]. The resulting
MAP(2)s are finally composed by KPC into a MAP(N∗) that is returned to the user.
Overall, the three stages described above are run several times to find the most accurate MAP fitting to be returned to

the user. The selection algorithm operates as follows. The KPC-Toolbox first runs several times stage 1 while keeping stored
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(a) Bellcore pAug89. (b) SWeb.

Fig. 6. Order selection for the BC-pAug89 and SWeb traces.

the solutions that produced the top q = 10 RSS values of the stage 1 optimization. Then, stage 2 is run several times for
each of the solutions selected in stage 1. The KPC-Toolbox returns as best MAP the stage 2 solution associated to the overall
lowest RSS for the bicorrelations. According to this selection approach, the final MAP should have a high-quality fitting of
the autocorrelations (stage 1) and a good fitting of the bicorrelations (stage 2) and it is thus consistent with the sensitivity
analysis conclusions presented in Section 3.

5. Numerical experiments

We now discuss experiments on the accuracy of the KPC-Toolbox in fitting both real and synthetic traces. Consistently
with the sensitivity analysis, we focus our evaluation on the queueing prediction accuracy for a−/M/1/FCFS queue and fit
two traces:

• BC-pAug89 trace: this is a benchmark case for evaluating the quality of long-range dependent trace fitting approximations
[2,3,12]. The trace consists of 1 million inter-arrival time samples collected in 1989 at the Bellcore Morristown Research
and Engineering facility.
• SWeb trace: This trace is composed by 3.6 · 106 inter-arrival times of requests at the disk drive of a Web server, see [6]
for a description of this trace and related analyses of its temporal dependence structure.

We remark that the two traces are used also in the manually performed fitting experiments in [6]. However, the results
presented here are generated automatically, using the KPC-Toolbox, and not manually.

5.1. Order selection results

For each of the three traces, the KPC-Toolbox runs the BIC order selection for different orders. The results of the BIC order
selection are shown in Fig. 6. For the Bellcore pAug89 trace, the BIC selection in Fig. 6 indicates that order 16 is the best
choice, order 32 is a close candidate, while the other orders are significantly worse in terms of BIC . Similarly, for the SWeb
trace, the BIC criterion indicate a best order of 16 phases. These results are consistent with our manual fitting experience,
since it is difficult to fit MAPs with less than 16 phases and composed byMAP(2)s that could reproduce effectively the SWeb
and Bellcore traces queueing performance. In particular, the best availableMAPs fitting in the literature for the Bellcore trace
have either 16 or 32 states [2,3] which is consistent with the BIC results in Fig. 6.

5.2. Queueing results

In Figs. 7 and 8,we present the complementary cumulative distribution function (CCDF) of the queue-length probabilities
for a MAP/M/1 queue and the empirical CCDF obtained by simulating the Trace/M/1 queue. The CCDFs of the MAP/M/1
queue are obtained by solving the underlying quasi-birth–death process using MAMSolver (http://www.cs.wm.edu/
MAMSolver/). The service rate of the exponential server is adjusted to tune the load of the server at different utilization
levels. We plot the queueing distributions at utilizations ρ = {0.2, 0.5, 0.8} representing low, medium and high load,
respectively.
The Bellcore pAug89 trace has been identified as a difficult trace to fit and thus extensively used in the literature to assess

fitting accuracy. For utilization ρ = 0.2, the fitted MAP(16) overestimates the queueing probabilities. When the utilization
increases, the queueing probability prediction improves. For utilization ρ = 0.5, the fitted MAP captures the small and
medium queue lengths probabilities better than in the ρ = 0.2 case level. At utilization ρ = 0.8, the fitted MAP(16)
almost overlaps the trace up to the queue-length value of 8 · 103. Further, as shown in comparison with the manual fitting,

http://www.cs.wm.edu/MAMSolver/
http://www.cs.wm.edu/MAMSolver/
http://www.cs.wm.edu/MAMSolver/
http://www.cs.wm.edu/MAMSolver/
http://www.cs.wm.edu/MAMSolver/
http://www.cs.wm.edu/MAMSolver/
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Fig. 7. Queueing results for comparison between the Bellcore pAug89 trace and the fitted MAP.

Fig. 8. Queueing results for comparison between the SWeb trace and the fitted MAP.

the queueing prediction accuracy for the KPC is comparable with the best in the literature [6] with the additional benefit
that KPC automatically generates the MAP while other methods require exhaustive manual tuning to obtain a good MAP.
Similarly to the SWeb trace, as utilization increases, the fitted MAP(16) captures more accurately the queueing behavior
of the Trace/M/1 queue. For utilization levels 0.5 and 0.8, the fitted MAP captures the probabilities of the smallest queue
lengths very well. The result is again comparable with the manually fitted MAP determined in [6] and also plotted in the
figure. The manually fitted MAP in [6] is the best result of experimentation over an extended period of time with models of
several sizes. Thus, it is slightly better than the automatically generated MAP that has been produced in less than an hour
by the KPC-Toolbox. Still the results are quite close, and this provides intuition on the effectiveness of the automatic fitting
approach we have developed.

6. PH-type distribution fitting

The analysis presented in the previous sections provides fitting guidelines for traces characterized by temporal
dependence and correlations between samples. Indeed, there exist many traces of practical interest where samples are
nearly independent, i.e., uncorrelated with each other, and in these cases the analysis focuses on fitting distribution or
moments of inter-arrival times rather than correlations. Since inter-arrival times inMAPs are always PH-type distributed [1],
we explain in this section how the KPC-Toolbox can be used to fit uncorrelated traces into PH-type distributions using a
moment-matching approach.3 We also present numerical results on several traces showing the effectiveness of the KPC-
Toolbox in PH-type fitting.
Let J be the number of MAPs used for KPC PH-type fitting and denote by Xj, j = 1, . . . , J , the random variable standing

for the inter-arrival times of the jth MAP that will be used in the KPC. By recursive application of (7) we can write the kth
moment of the KPC process as

E[Xk] = k!1−J
J∏
j=1

E[Xkj ],

3 Since we use the (D0,D1) notation, we still refer in this section to the PH-type distributions as MAPs, but we implicitly assume that all correlations in
the defining MAP(2)s are set to zero.
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Fig. 9. KPC PH-type fitting.

or equivalently, by taking the logarithm of both sides,

log E[Xk] = (1− J) log k! +
J∑
j=1

log E[Xkj ],

where E[Xk] denotes the kth moment of the KPC process obtained by composition of the J MAPs.
The problem under consideration is to impose the firstM moments of the KPC process such that they closely match the

trace moments Mk = E [̂Xk], k = 1, . . . ,M , where X̂ is the random variable denoting a measured inter-arrival time in the
trace. Since the J MAPs used in KPC-Toolbox are all MAP(2)s, it is straightforward to impose the first three moments of the
KPC process by setting for the arbitrary MAP(2)

log E[X1] = logM1 −
∑
j=2,...,J

log E[Xj] (15)

log E[X21 ] = logM2 − (1− J) log 2! −
∑
j=2,...,J

log E[X2j ] (16)

log E[X31 ] = logM3 − (1− J) log 3! −
∑
j=2,...,J

log E[X3j ] (17)

which can be done easily since the first three moments of a MAP(2) can be imposed analytically without the need of
specialized algorithms. As we show in Section 7, even in the basic case where only J = 2 MAPs are composed, KPC fitting is
more flexible than two-phase PH-type fitting, since KPC imposes much less restrictive requirements on the feasibility of the
third moment E [̂X3]. Additionally, the first J − 1 MAPs can be used to match higher-order moments of the distribution. In
particular, since a MAP(2) has 3 degrees of freedom for fitting moments, the KPC process used in PH-type fitting has no less
than 3J degrees of freedom, among which 3(J − 1) can be spent for fitting higher-order moments, e.g., E[X4], E[X5], E[X6].
Fig. 9 summarizes the PH-type fitting algorithm implemented in the KPC-Toolbox. This is a nonlinear optimization program
in the variables E[Xkj ], j = 1, . . . , J , k = 1, . . . , 3, which are the first three moments that uniquely define the distribution of
the J MAP(2)s used in KPC. The correlations of these MAP(2)s are all set to zero. At each iteration of the nonlinear program,
the MAP(2)s are generated using the closed-form fitting formulas of [19] and, whenever an infeasible MAP(2) is obtained,
this is immediately corrected to restore feasibility by setting the second and third moments to the closest feasible values
according to the MAP(2) characterizations in [15,19]. This allows one to have feasible MAPs throughout all stages of the PH-
type fitting, thus if the programdoes not find an optimal solution it can still return the best feasibleMAPobtained throughout
the iterations. For each iteration, given the set of J feasible MAP(2)s, the KPC process is assembled and its firstM moments
computed according to (2). The PH-type fitting program seeks with the constraint (20) to obtain a KPC process which has
the firstmmoments identical to those of the trace and further uses as objective function the difference in moments of order
betweenm+ 1 andM . An experimental validation of the PH-type approach used in the KPC-Toolbox is reported below.

6.1. Experimental validation

We present an experimental validation of the KPC-Toolbox PH-type fitting capabilities. We have considered a set of
workload traces with the characteristics reported in Table 2. Characterization of the SWeb and SDev traces is reported in [4].
The SWeb∗ and BC-pAug89∗ traces used in the queueing experiments are obtained by randomly shuffling the SWeb and
BC-pAug89 traces to remove temporal dependence.
For each trace, the KPC-Toolbox returns a MAP with PH-type distribution fitting the inter-arrival time samples and that

is generated as follows. Since the time for solving the optimization program in Fig. 9 is typically less than 1 min, the toolbox
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Table 2
Trace characteristics.

Trace length Description

SWeb∗ 3,639,838 Disk drive inter-arrival times (web server)
SDev∗ 425,114 Disk drive inter-arrival times (development server)
BC-pAug89∗ 999,999 LAN traffic

Table 3
Experimental results of KPC-PH method. The moment values between KPC-PH(k) and MAP(2) that are closest to the measured ones are underlined.

Basic moments Higher-order moments
E[X] E[X2] E[X3] E[X4] E[X5] E[X6]

SWeb∗ 1 4.329 58.42 5520.9 9.798 · 105 1.996 · 108

KPC-PH(4) 1 4.329 58.42 5520.9 1.294 · 106 3.868 · 108

MAP(2) 1 4.329 58.42 1294.6 37032 1.277 · 106

SDev∗ 1 135.86 1.813 · 105 4.269 · 108 1.102 · 1012 2.924 · 1015

KPC-PH(4) 1 135.86 1.813 · 105 4.266 · 108 1.275 · 1012 4.579 · 1015

MAP(2) 1 135.86 1.813 · 105 3.262 · 108 7.334 · 1011 1.979 · 1015

BC− pAug89∗ 1 4.224 64.76 1862.6 82474 5.136 · 106

KPC-PH(4) 1 4.224 64.76 1862.6 82472 5.742 · 106

MAP(2) 1 4.224 64.76 1734.2 60332 2.530 · 106

is able to evaluate alternativesmuch faster than in the case of correlated traces. Therefore, a whole sequence of experiments
for increasing values of J can be considered without the need of a BIC order selection. The toolbox selects as optimal order of
the PH-type process the smallest order such that the fourthmoment E[X4] is matched by the KPC process within a tolerance
of 1%; this is the first moment that cannot be matched exactly by a MAP(2). After performing 30 trials on the current value
J , the KPC process increases J by one unit. On all experiments considered in this section, we have found that using J = 2
MAPs was always sufficient to fit the fourth moment within the 1% tolerance constraint.
Table 3 reports experimental results of the KPC PH-type fitting for the traces in Table 2. Each experiment reports the

values of the first six moments of each trace, for the PH-type fitting obtained by KPC, and for the MAP(2) which fits
analytically the first threemoments of the trace. The results indicate that the KPC PH-type fittingmatches the fourthmoment
very well on all traces and this requires only the composition of J = 2 MAPs. The gap on higher-order moments between
the KPC PH-type fitting and the MAP(2) is up to two orders of magnitude. The largest deviations appear in the SWeb∗ trace,
where the KPC process is quite close to the trace, whereas the MAP(2) is far less accurate and two orders of magnitude
smaller in the estimate of the sixth moment E[X6]. This can be explained by the fact that a MAP(2) with assigned first
three moments has higher-order moments which are uniquely determined as linear combinations of the first three [6]. As a
result, the MAP(2) does not offer any ability of imposing higher-order moments such as E[X6]. In the following subsection,
we investigate the benefits of fitting higher-order moments with KPC PH-type fitting.

6.2. Impact of higher-order moments on distribution

We first evaluate how fitting higher-order moments of inter-arrival times helps in approximating the CDF and the CCDF
of the traces. Figs. 10–12 present fitting results of the three traces in Table 2. The plots compare the inter-arrival time
distribution of the original trace with that of the KPC PH-type processes and of the MAP(2)s shown in Table 3. The results
indicate that, by increasing with KPC the number of matched moments in the MAP, the largest accuracy improvements are
obtained on the tail of the distribution, shown by the CCDF, rather than on the body of the distribution, shown by the CDF. For
example, the CDF of the SWeb∗ trace in Fig. 10(a) is rather insensitive to the additional moments fitted by the KPC process
compared to the MAP(2); however, if one looks at the CCDF in Fig. 10(b), the accuracy of the KPC process is immediately
visible and dramatically better compared to the one of the MAP(2).
Similar conclusions follow also from the SDev∗ trace in Fig. 11. In the CCDF plot, MAP(2) and KPC both achieve good

accuracy, with the latter being the closest to the trace; the CDF of the KPC process again does not improve significantly over
the one of the MAP(2) process. The results for the BC-pAug89∗ trace in Fig. 12 are also consistent with the observations for
the SWeb∗ and SDev∗ traces. Here, the KPC and the MAP(2) approximations of the CDF and of the CCDF are very close and
the KPC is more accurate in both cases and in particular on the CCDF, where the KPC plot is indistinguishable from the trace
for most of the graphs.
Summarizing, fitting higher-order moments of the distribution using KPC helps in achieving a much improved

approximation of the tail of the distribution. A direct approximation of the body of the CDF may instead require
methods other than moment matching, which appears to be rather ineffective in improving the accuracy of the CDF body
approximation. In the following subsection, we investigate to which extent a better approximation of the tail, rather than
of the body, can improve the quality of the queueing prediction for PH-type arrivals.
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(a) CDF. (b) CCDF.

Fig. 10. PH-type fitting of SWeb∗ trace.

(a) CDF. (b) CCDF.

Fig. 11. PH-type fitting of SDev∗ trace.

(a) CDF. (b) CCDF.

Fig. 12. PH-type fitting of Bellcore pAug89∗ trace.

6.3. Queueing results

Weevaluate the practical impact of the KPC PH-type fitting in improving the prediction accuracy of queueingmodels.We
consider, for each trace, a FCFS queue fed by a PH-type distributed inter-arrival process and with exponential service times,
i.e., a PH/M/1 queue. Similarly to the experiments for the correlated traces, we focus on utilization levels ρ = 0.2, 0.5, 0.8
and evaluate the approximation accuracy of the overflow probability for different values of the overflow threshold x.
Experimental results are shown in Figs. 13–15.
The results strongly indicate that a better fitting of the tail leads to strong improvements in the accuracy of queuing

prediction for almost all utilization levels and all traces. For the SWeb∗ trace in Fig. 13, both the KPC and theMAP(2) process
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(a) util. 20%. (b) util. 50%. (c) util. 80%.

Fig. 13. PH-type fitting of SWeb∗ trace — Queueing results.

provide optimistic estimates on the overflow probabilities, with the KPC approximation being much closer to the trace
results than the MAP(2), especially for ρ = 0.2 and ρ = 0.5.
The SDev∗ trace in Fig. 14 presents a case that illustrates the importance of fitting accurately moments such as E[X4] and

E[X5] rather than higher-order moments such as E[X6]. The dramatic difference in the results in Fig. 14 suggests that it is far
more important to approximate accurately medium- and low-order moments rather than very high-order ones, since the
MAP(2) is unable to follow the overflow probability trend for utilizations ρ = 0.5 and ρ = 0.8. Also for utilization ρ = 0.2
there is a significant deviation with respect to the KPC process, thus suggesting that E[X4] and E[X5] can be important also
at low utilization.
Finally, the results in Fig. 15 for the Bellcore pAug89∗ trace show a case where the KPC and the MAP(2) results are both

pessimistic with respect to the trace overflow probability curve. At all utilization levels, there is a minor deviation between
the KPC curve and the empirical one. Instead, the MAP(2) curve converges slowly to the trace results, with the tail value
remaining quite apart from the empirical one at all utilization levels.

6.4. Comparison with other PH fitting methods

We have compared the results presented in the previous section with other PH-type distribution fitting methods,
specifically the PH(3) moment matching algorithm presented in [20] and the G-Fit tool introduced in [10]. PH(3)s are
currently the only general phase-type models with more than two states that can be fitted exactly using analytical
techniques [20]. We have used the fitting methods presented in [21,20] to first fit a matrix exponential process (MEP) and
then transform this model into a PH(3) distribution. This transformationmay lead either to a feasible or to an infeasible PH-
type process. We have reported in the Appendix the MEPs that fit exactly the first five moments of the SWeb∗, SDev∗, and
BC-pAug89∗ traces. These MEP processes have been obtained by the exact fitting algorithm described in [22]. The algorithm
in [20] has been then used to transform a MEP into a PH(3) distribution.
Using the above methodology we have found that two of the three considered traces do not seem to admit a feasible

PH(3) representation that matches exactly the first five moments. For instance, for the SWeb∗ trace, we have found the
following PH(3)model in the (π,A) notation of [20]

π = [−2.9346−678.07 682.00], ASWeb
∗

=

[
−0.5468 0 0
0.0274 −0.0274 0
0 −4.7228 4.7228

]
,

which is clearly infeasible. This illustrates a case where more than three states should be used to fit accurately a sample
distribution. We have instead obtained nearly identical results with the PH(3) and KPC-PH(4) models on the BC-pAug89∗
trace distribution.
We have also compared the KPC-PH fitting results with the G-Fit tool version 1.1 [10] on the same set of traces considered

above. The BC− pAug89∗ trace fitted using the same log-aggregation parameters recommended in [10], we considered 100
random runs of G-Fit with different number of Erlang stages and assuming a 4 state model as in KPC-PH. The best result
with respect to the SCV matching error is E[X] = 1.0, E[X2] = 4.2467 (error −0.55%), E[X3] = 53.9286 (+16.72%),
E[X4] = 1.0736 · 103 (+42.35%), E[X5] = 2.6626 · 104 (+67.71%), E[X6] = 7.7471 · 105 (+84.91%). This result has higher
errors than the KPC-PH(4) model. This further suggests that the KPC-PH fitting methodology provides a useful alternative
to existing PH-type fitting approaches.

7. Characterization of MAP(2)-based KPC processes

Finally, in order to illustrate the range of feasible moments and autocorrelations that can bematched exactly by the KPC-
Toolbox, we investigate from a theoretical standpoint the characterization of KPC processes obtained by composition of two
MAP(2)s, i.e., KPC(4) processes. This represents the case where the KPC process has the least degrees of freedom, hence the
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(a) util. 20%. (b) util. 50%. (c) util. 80%.

Fig. 14. PH-type fitting of SDev∗ trace — Queueing results.

(a) util. 20%. (b) util. 50%. (c) util. 80%.

Fig. 15. PH-type fitting of Bellcore pAug89∗ trace — Queueing results.

characterization results we obtain in this section describe the minimum possible advantages achieved by the KPC processes
over MAP(2)s.
Throughout this section,wedenote byX the inter-arrival times of the KPCprocessMAPa⊗MAPb. Based on theKPCprocess

requirements, we always assume thatMAPa is an arbitrary MAP(2), whileMAPb has diagonal D0 such that its distribution is
exponential or hyper-exponential. All statistical descriptors ofMAPa andMAPb are marked with indexes a and b.
The main results we obtain in this section are as follows:

• By studying analytically the first three moments of the KPC(4) process we find it much more flexible than a MAP(2).
Specifically, we show that the range of variability of E[X3] is significantly larger than in a MAP(2) both in the hypo-
exponential and hyper-exponential cases. We stress that these results apply both to MAP fitting and PH-type fitting.
• We study numerically the feasibility range of the lag-1 autocorrelation coefficient ρ1 of the KPC(4) process and find that
it can achieve autocorrelation values upper bounded by 23 , whereas the MAP(2) autocorrelation is upper bounded by

1
2 .

The lower bounds on ρ1 of KPC(4) and MAP(2) are instead often identical. Since bursty traces typically have positive
autocorrelations, we believe the extension of the upper bound of ρ1 to be useful for practical fitting of such traces.

7.1. Characterization of moments

We first focus on the derivation of the feasibility ranges for E[Xk], k = 1, 2, 3, based on the equivalentHankel determinant
notation hk, k = {1, 2, 3}, [22,19]. Since the first three hk values uniquely identify E[Xk], k = {1, 2, 3}, studying the feasibility
ranges of Hankel determinants immediately characterizes also the feasibility range of moments by simple algebra.

Lemma 1. Consider the first three normalized Hankel determinants

h1 = E[X], h2 =
E[X2]
2E[X]2

− 1, h3 =
E[X3]
6E[X]3

− h22.

Then, any KPC process MAPa ⊗MAPb composed by two MAPs of arbitrary size has

h1 = ha1h
b
1, (24)

h2 = ha2h
b
2 + h

a
2 + h

b
2, (25)

h3 = ha3h
b
3 + h

a
3(1+ h

b
2)
2
+ hb3(1+ h

a
2)
2, (26)
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where hak and h
b
k , k = {1, 2, 3}, are the Hankel determinants of the processes MAP

a and MAPb, respectively. In particular, h2
satisfies the relation

(1+ h2) = (1+ ha2)(1+ h
b
2), (27)

which is equivalent to (25).

Proof. Define by Xa and Xb the random variables denoting the inter-arrival times in MAPa and MAPb, respectively. By the
given definitions it is

ha2h
b
2 =

(
E[X2a ]
2E[Xa]2

− 1
)(

E[X2b ]
2E[Xb]2

− 1
)
=
E[X2a ]E[X

2
b ]

4E[Xa]2E[Xb]2
− ha2 − h

b
2 − 1,

and using (7) for E[X2] and E[X]we get the formula for h2. Eq. (27) is verified by expanding the products and noting that the
terms simplify to (25).
The proof of the formula for h3 is similar. Consider the following derivation:

ha3h
b
3 =

(
E[X3a ]
6E[Xa]3

− (ha2)
2
)(

E[X3b ]
6E[Xb]3

− (hb2)
2
)

= h3 − ha3(1+ h
b
2)
2
− hb3(1+ h

a
2)
2
− (1+ h2)2 + (1+ ha2)

2(1+ hb2)
2

where we used again (7) for E[Xk], k = {1, 2, 3}. Noting that the last two terms are identical by (27), the final expression for
h3 is obtained immediately. �

The advantage of working with Hankel determinants is that the MAP(2) feasibility ranges for the first three moments have
much simpler analytic expressions with this notation than with the E[Xk] moment notation. In particular, the sign of h2
immediately discriminates between the MAP(2) distribution being exponential (h2 = 0), hyper-exponential (h2 > 0), or
hypo-exponential (h2 < 0). Feasibility ranges for AMAP(2)s have been characterized in [19] and the stationary behavior of
AMAP(2)s and MAP(2)s has been shown to be identical in [23]. Thus, in a MAP(2) it is always− 14 ≤ h2 and for h3 is [19]

h2(1− h2 − 2
√
−h2) ≤ h3 ≤ −(h2)2, for −

1
4
≤ h2 < 0 (hypo)

h3 = 0, for h2 = 0 (exp)
0 ≤ h3 < +∞, for h2 > 0 (hyper).

We now obtain a similar characterization for the KPC(4) process.

Theorem 1. In a KPC(4) process, the feasibility ranges of the first two moments are characterized as h1 > 0 and h2 ≥ 1
4 , for the

third moment it is
−
1
9
(1+ h2)2 ≤ h3 < +∞, for −

1
4
≤ h2 < 0 (hypo)

h3 = 0, for h2 = 0 (exp)

−
1
9
(1+ h2)2 ≤ h3 < +∞, for h2 > 0 (hyper).

In particular, the minimum h3 value is obtained when the arbitraryMAP(2) describes an Erlang-2 distribution.

Proof. For the KPC(4) process MAPa ⊗ MAPb, MAPa is an arbitrary MAP(2), while MAPb is either exponential or hyper-
exponential. Thus, ha1, h

a
2, and h

a
3 feasibility ranges are identical to a general MAP(2), while it is h

b
2 ≥ 0 and h

b
3 ≥ 0 forMAP

b

and these are equalities if and only ifMAPb is exponential.
The ranges for h2 are proved easily by observing that h2 in (25) is monotonically increasing with ha2 and h

b
2, thus h2 is

unbounded since hb2 is always unbounded. Conversely, it is trivial to see that the lower bound is achieved for the minimum
values ha2 = −

1
4 and h

b
2 = 0 which give h2 = −

1
4 .

The ranges for h3 are characterized by assuming h1 and h2 as constant and then studying the feasibility range of h3 as
a function of the other determinants. We begin by noting that for the hyper-exponential MAPb the values of hb2 and h

b
3

are independent since they need only to be nonnegative for MAPb feasibility, hence the derivative of h3 with respect to hb3
simplifies to

∂h3
∂hb3

∣∣∣∣ h1=const
h2=const

= ha3 + (1+ h
a
2)
2
≥ ha2(1− h

a
2 − 2

√
−ha2)+ (1+ h

a
2)
2
≥
1
2
> 0

where we have used that in the arbitrary two-phase MAPa it is ha3 ≥ h
a
2(1 − h

a
2 − 2

√
−ha2) and that h

a
2 ≥ −

1
4 . Thus, the

minimum of h3 is obtained in the limit hb3 → 0 and we have that

min h3| h1=const
h2=const

= lim
hb3→0

h3 = ha3(1+ h
b
2)
2
=

ha3
(1+ ha2)2

(1+ h2)2
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where the last passage follows by (27). Now, observe that a feasible h2 ≥ − 14 can always be obtained by first setting h
a
2 = −

1
4

and then setting

hb2 =
(1+ h2)2

(1+ ha2)2
− 1 >

16
9
(1+ h2)2 − 1 >

16
9

(
1−

1
4

)2
− 1 ≥ 0

which is always feasible. Therefore, regardless of the h1 and h2 values, it is always possible to have ha3 set to its lower bound
ha3 = h

a
2(1− h

a
2 − 2

√
−ha2). Without loss of generality, this implies that the worst case

min h3| h1=const
h2=const
ha2=−1/4

=
ha3

(1+ ha2)2
(1+ h2)2 =

ha2(1− h
a
2 − 2

√
−ha2)

(1+ ha2)2
(1+ h2)2

is always feasible and this provides a lower bound on min h3| h1=const
h2=const

. Noting that the right-hand side is minimum for

ha2 = −
1
4 , this gives the final result

min h3| h1=const
h2=const

≥
ha2(1− h

a
2 − 2

√
−ha2)

(1+ ha2)2
(1+ h2)2 ≥ −

1
9
(1+ h2)2.

Note in particular that in the hypo-exponential case h2 = − 14 the minimum converges to the MAP(2) minimum min h3 =
−
1
4 , however for h2 → 0 it is min h3 → −1/9 which is a lower bound on h3 for the KPC(4) process. Conversely, for

SCV →+∞ it is h2 →+∞ and h3 becomes unbounded. �

The last result immediately implies that a KPC(4) supports a wider range of feasibility values for the third moment E[X3]
compared to the MAP(2) process. In particular, also hypo-exponential processes can have positive h3 values, and for both
hyper-exponential and hypo-exponential cases h3 is lower bounded by− 19 (1+h

2)while no upper bound exists. This means
that for sufficiently large h2 any positive or negative h3 value can always be matched by the KPC(4)model.

7.2. Characterization of autocorrelations

We now focus on the characterization of the autocorrelation function ρk for the KPC(4) processMAPa⊗MAPb. Due to the
properties of KPC, we have that the relation between the autocorrelations ofMAPa andMAPb is summarized by (11), where
for MAP(2)s we have, e.g., ρak =

1
2 (1 − 1/SCVa)γ

k
a , being γa the smallest eigenvalue of P

a
= (−Da0)

−1Da1. This immediately
implies that, differently from aMAP(2), in a KPC(4) process the autocorrelation function decays according to the rates γa, γb,
and γaγb. Indeed, this gives greater flexibility in fittingmeasured autocorrelation coefficients since, by properly selecting the
values of γa and γb, one can represent different decaying trends at low and high lags. This is impossible in MAP(2)s where
the decay rate is constant throughout all the trace whereas in KPC(4) the KPC-Toolbox can help in automatically selecting
the desired γa and γb values that match a given trace.
In practice, since the absolute value of the decay rates γa and γb is strictly less than 1, ρk eventually decays4with k and the

characterization of which autocorrelation coefficients can be fitted is mostly determined by the value of ρ1. This is also the
case of MAP(2)s, where studying ρ1 as a function of SCV fully characterizes the MAP(2) autocorrelation function. Thus, in
this subsectionwe provide a numerical study on the achievable ρ1 values for the KPC(4) process in comparison to aMAP(2).
Fig. 16 illustrates the feasibility range of ρ1 as a function of the squared coefficient of variation of the KPC(4) andMAP(2)

processes. The figure has been generated by evaluating over 50,000 pairs (MAPa,MAPb) spanning all range of feasible γa,
γb, SCVa, and SCVb values that guarantee the considered SCV value. In these experiments, we set the third moments of both
MAPa andMAPb to the values that provide maximal feasibility in theMAP(2) autocorrelation coefficients; these values have
been studied in [19].
The results in Fig. 16 indicate that the KPC(4) has much greater flexibility than the MAP(2) process in matching exactly

autocorrelation coefficients, especially for positive values of ρ1. Remarkably, KPC(4) is able to match ρ1 values much larger
than the 12 upper bound of theMAP(2) andwhich are significantly large also for the hypo-exponential case SCV ≤ 1. This last
property address a known issue ofMAP(2)s, which have very limited feasible autocorrelation ranges for low SCV values [15].
Conversely, for negative autocorrelations KPC(4) and MAP(2) have very similar ranges, except in the neighborhood of
SCV = 1 where KPC(4) is slightly more flexible.
We conclude the characterization in this section by studying the maximum asymptotic value of the autocorrelation ρ1

under an increase of SCV which proves that a KPC(4) can reach autocorrelation values up to 23 that are much greater than
the maximum 1

2 value of a MAP(2).

4 This is always true when k is not too small and γa and γb are not both equal to −1. For very small values such as k = 2, 3 some effects due to
degenerate Jordan form of the P matrix may result in increasing autocorrelation values [6], however these are usually degenerate cases that affect only
low lag autocorrelation coefficients.
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Fig. 16. Feasibility range of the lag-1 autocorrelation coefficient ρ1 . Dotted lines indicate MAP(2) ranges, dash-dotted lines are for KPC(4) ranges.

Theorem 2. In the limit SCV → +∞ the maximum value assumed by the lag-1 autocorrelation coefficient is ρ1 = 2
3 obtained

by setting MAPa as an Erlang-2 distribution and MAPb with γb → 1 and SCVb →+∞. The minimum value is ρ1 = 0.

Proof. From (10), taking the limit of ρk for SCV → +∞ implies that either SCVa or SCVb or both become infinite. Since
MAPa is arbitrary, we can assume without loss of generality that SCVb → +∞ and consider both cases where SCVa is finite
or infinite. Let us first observe that

ρ∞1 = lim
SCVb→∞

ρ1 =
γb(2+ γa(SCVa − 1))

2(SCVa + 1)

where the formula already accounts for (10). Note that since γb for large SCV becomes lower bounded by γb = 0 [19], we
conclude immediately that the lower bound of the asymptotic lag-1 coefficient is ρ∞1 = 0.
In determining the upper bound, consider first the case SCVa → +∞, we have that ρ1 → γbγa/2 which is immediately

upper bounded by 12 as in a MAP(2) [19]. Let us then focus on the case where SCVa is finite, we distinguish between the two
sub-cases SCVa ≥ 1 and SCVa < 1. If SCVa ≥ 1

∂ρ∞1

∂γa
=
γb(SCVa − 1)
2(SCVa + 1)

≥ 0

since for SCVb → +∞ it is always 0 ≤ γb ≤ 1. We therefore conclude that for SCVa ≥ 1 the autocorrelation coefficients
are maximized for γa → 1 which yet yields again an upper bound of 12 . Note that the case SCVa = 1 does not yield an
improvement because it again corresponds to the upper bound of 12 since the resulting autocorrelation is identical to that
ofMAPb.
Conversely, for SCVa < 1 it is easy to see that ρ∞1 is maximized by setting γa to its minimum feasible value that is a

function of SCVa according to the expression [19]

min γa = −
(
ha3
ha2
+ ha2

)
≥ −

(
ha2(1− h

a
2 − 2

√
−ha2)

ha2
+ ha2

)
= 1− 2

√
1− SCVa
2

.

Inserting the last expression into ρ∞1 , the expression becomes a function of SCVa and γb and it is found that the maximum
is always achieved for SCVa = 1

2 and γb → 1 which gives by simple passages ρ∞1 =
2
3 .

8. Conclusion

We have presented the KPC-Toolbox, a set of MATLAB scripts for fitting workload traces into MAPs. One of the greatest
challenges in MAP fitting is to (a) decide a proper order for the MAP that can fit the trace data accurately while limiting the
dimension of the state space and to (b) determine the relative importance of the various stochastic descriptors of the trace
that should be matched by the MAP. The KPC-Toolbox meets the above challenges with a novel approach that uses the BIC
criterion to determine the best order-accuracy trade-off for a MAP and by using optimization to explore a vast parameter
space of alternatives such that the most important stochastic properties of the trace are captured by the resulting MAP.
The KPC-Toolbox can be used to fit into MAPs traces that exhibit temporal dependence as well as the simpler cases where
there is negligible temporal dependence in the successive samples. For traces with temporal dependence, detailed queueing
analysis that confirms the importance of matching higher-order correlations (i.e., joint moments) rather than higher-order
moments is used to guide the optimization. Instead, if there is no temporal dependence in the trace, then KPC strives to
maximize the number of high-order fitted moments to guide the optimization.
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The tool implements the theoretical results of [6], and guided by BIC and the various derived criteria for fitting, it produces
good MAP fittings of challenging temporal dependent traces in an automatic way. Experimental results on real traces from
both the computer systems and networking domains show the effectiveness of deriving a MAP that captures well the
workload characteristics.We have also presented an extension of the KPC-Toolbox to fit traceswithout correlations between
samples and a characterization of KPC processes that provides insights on the applicability of the toolbox. The KPC-Toolbox
is available for download at http://www.cs.wm.edu/MAPQN/kpctoolbox.html.
Open challenges for further development of the KPC-Toolbox are at least two. First, we would like to integrate in the

toolbox MAP processes different from MAP(2)s as basic building block of the KPC composition. A special class of MAP(3)s
that can be integrated effectively with KPC has been presented in [6], however these models are not still supported by
the KPC-Toolbox. In addition, we remark that we have performed preliminary experiments with a number of traces with
autocorrelation function that clearly shows periodic oscillations of the autocorrelation coefficients. For instance, video
streaming traces often show this characteristic. Such traces are impossible to fit with the present version of the KPC-Toolbox
becauseMAP(2)s lack support for complex eigenvalues that create periodicities in the autocorrelations and this is propagated
to the KPC process. As a result, the inter-arrival time based fitting of traces with oscillations in the autocorrelation function
remains an open challenging problem for MAP fitting research and related tools.
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Appendix

A.1. Matrix exponential distribution fitting results

We report below the matrix exponential processes (MEPs) with representation (v,H) [20] that fit the SWeb∗, SDev∗, and
BC− pAug89∗ traces according to the algorithm presented in [22]. We have focused on MEPs with three states since these
can be easily converted into a PH(3) process using the canonical transformation defined in [20]. In all cases the initialization
vector is found equal to v = [1/3 1/3 1/3], while the Hmatrices are

HSWeb
∗

=

[ 4.508180106857546 1.046851029180154 1.259164846086030
−8.055669274608974 −2.550582061501703 −2.857588169939868
7.389002607942255 1.883915394835023 2.190921503273185

]
,

HSDev
∗

=

[
−0.423438168388604 −0.421460282137257 −0.421436744980477
−11.487646469632512 −11.239841316612891 −11.242842474868281
10.820979802977188 10.573174649957339 10.576175808212732

]
,

HBCAug89
∗

=

[
−0.721732605907524 −0.431194300379008 −0.460567399256791
−0.300027946513111 −0.351562083855954 −0.295802597267175
−0.366638720153555 −0.315104582810712 −0.370864069399491

]
,

The first five moments E[Xk] = k!v(−H−k)e are identical to the measured ones for all traces; however numerical issues
can arise in computing these values because the H matrices for the SWeb∗ and SDev∗ traces are ill conditioned. Thus, we
recommend exact algebra environments such as Mathematica or Maple for the evaluation of these moments.
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