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a b s t r a c t

We propose a trace fitting algorithm for Markovian Arrival Processes (MAPs) that can
capture statistics of any order of interarrival times between measured events. By studying
real traffic and workload traces often used in performance evaluation studies, we show
that matching higher order statistical properties, in addition to first and second order
descriptors, results in increased queueing prediction accuracy with respect to algorithms
that only match the mean, the coefficient of variation, and the autocorrelations of the
trace. This result supports the approach of modeling traces by the interarrival time process
instead of the counting process that is more frequently used in the literature.
We proceed by first characterizing the general properties of MAPs using a spectral

approach. Based on this result, we show how different MAPs can be combined together
using Kronecker products to define a larger MAP with predefined properties of interarrival
times. We then devise an algorithm that is based on this Kronecker composition and can
accurately fit data traces. This MAP fitting algorithm uses nonlinear optimization that
can be customized to fit an arbitrary number of moments and to meet the desired cost-
accuracy tradeoff. Numerical results of the fitting algorithm on real data, such as the
Bellcore Aug89 trace and a Seagate disk drive trace, indicate that the proposed fitting
technique achieves increased prediction accuracy with respect to other state-of-the-art
fitting methods.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Markovian models provide a convenient way of evaluating the performance of network traffic and system workloads
since their queueing analysis enjoys established theoretical results and efficient solution algorithms [1]. Although unable
to directly generate sequences with long-range dependent (LRD) behavior, Markovian models can approximate accurately
LRD traces in several ways, e.g., by superposition of processes with short-range dependent (SRD) behavior over many time
scales [2]. This is known to be sufficient for the evaluation of real systems, e.g., for LRD traffic where the performance effects
of statistical correlations becomes nil beyond a finite number of time scales [3].
One of the main obstacles to the Markovian analysis of data traces is model parameterization, which often requires to

describe in the fitted Markov model the interaction of several tens or hundreds of states. Even for basic Markov Modulated
Poisson Processes (MMPPs) or phase-type (PH) renewal processes, few results exist for their exact parameterization and the
focus is usually on models with two or three states only [4–9]. Due to the lack of characterization results, it is also hard to
establish detailed properties of these processes in the general case.
In this paper, we tackle the above issues by developing characterization and fitting methods for Markovian Arrival

Processes (MAPs), a class ofMarkovianmodels developed byNeuts [10] that encompassesMMPP and PHprocesses as special
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Fig. 1. Autocorrelation and MAP/M/1 queueing behavior (util. 80%) of two MAP(32) fittings of the LBL-PKT-5 trace [15]. The MAPs have identical first and
second order properties of the interarrival process, but one has also an accurate fitting of third order properties for which the other is instead loose.

cases. We describe the properties of the interarrival time (IAT) process of a MAP and use these properties to derive accurate
fitting algorithms for measured time series.
There are several works in the literature that have focused on fitting Markovian models of measured traces by exactly

parameterizingMAPs/MMPPswith two or three states [11,12,5–8,13]. The small state spaceminimizes the costs of queueing
analysis, but it places significant assumptions on the form of the autocorrelations. For instance, a MMPP(2) cannot fit
negative autocorrelations,while theMAP(2) autocorrelation functionmust be geometrically decreasingwith constant decay
rate [8].
In [2], Andersen and Nielsen develop a fitting algorithm to model LRD traffic traces by superposition of several

MMPP(2) sources [14]. The algorithm matches first and second order descriptors of the counting process, i.e., the mean
traffic rate, the Hurst parameter, and the lag-1 autocorrelation in counts. This method has low computational costs and
captures well the properties of the classic Bellcore LRD traces [15,16].
Following a different approach, Horváth and Telek [17] consider the multifractal traffic model of Riedi et al. [18], and

obtain a class of MMPPs which exhibits multifractal behavior [19]. According to this result, one may fit network traffic by
first computing an unnormalized Haar wavelet transform of the trace and then determining the MMPPs which best match
the variance of the wavelet coefficients at different time scales. Simulation results on the Bellcore Aug89 trace show that
this algorithm achieves better accuracy than the superposition method in [2], but at the expense of a larger state space.
Recently, several research efforts [7,6,20,8,21,22] are directed toward the accurate fitting of the IAT process instead of

the counting process that is considered in [2] and [17]. IATs can be harder tomeasure than counts [23], but simple analytical
expressions are available for their moments and lag correlations [24]. Instead, only the first three moments of a counting
process are known and can be manipulated from closed-form analytical expressions [14,25]. Several authors have shown
that fitting the mean, coefficient of variation and autocorrelations is insufficient to predict queueing behavior [26–28],
therefore fitting the higher order properties of the IAT process seems a natural way to achieve increased prediction accuracy.
To build intuition on the importance of higher order properties we first present an experiment on the LBL-PKT-5 trace

of the Internet Traffic Archive [15]. Fig. 1 shows two different MAP models we have obtained for this trace. The two MAPs
have identical first and second order properties of the IAT process, namely samemean, same squared coefficient of variation
(SCV ), and same autocorrelation function. Mean and SCV are identical to the sample values, the autocorrelation fit is also
quite good as shown in the left graph. However, one model also matches the third order statistics, i.e., the skewness and
the bicorrelations [29] of the sample IAT process, while the other has a quite loose fit of these descriptors. The strikingly
different queueing predictions of the two models, shown in the right graph of Fig. 1, stress the importance of higher order
properties of the measured samples.
In this paper, we propose to fit measured traces using higher order properties of the IAT process in addition to the

usual first and second order descriptors. Because of the general difficulty in imposing even basic autocorrelations to the IAT
process, we first derive characterization results using a spectral approach, see [30] for a review of previous work on MAP
characterization. These characterization results simplify fitting and allow to obtain a MAP fitting algorithm that is based on
nonlinear optimization that still matches moments, but can also accurately fit general traces. The latter algorithm is based
on a new MAP definition technique, called Kronecker Product Composition (KPC), which is able to generate MAPs with
predefined moments, autocorrelations, and higher order statistics in IATs. Compared to the state-of-the-art fitting methods
in [2] and [17], the proposed MAP fitting algorithm shows improved queueing prediction accuracy at similar computational
costs. In addition, it does not place limitations on the number and order of statistical properties that can be matched for a
trace, thus enables the selection of the best cost-accuracy tradeoff.
Furthermore, our approach offers a different computational tradeoff compared to expectation–maximization (EM)

algorithms developed in the literature [11,31,32,13,33]. EM algorithms determine a fitting of model parameters to a
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measured trace by iteratively maximizing the likelihood that the observed data has been sampled from the model defined
by the current guess of the parameters. The EM approach has the significant advantage of accounting for all the information
available frommeasurement, which is particularly important when the sample size is small. However, EM techniques suffer
computational limitations if either the trace size or the number of parameters to be fitted is large. Compared to EMmethods,
the KPCmethod proposed in this paper presents the same advantages of a moment matching algorithm. Thus, the trace size
does not affect directly computational costs which depend only on the number of moments, autocorrelations, and higher
order statistics evaluated in the fitting.
Our detailed contributions can therefore be summarized as follows:

(1) MAP(n) characterization: After reviewing the IAT process in MAPs, in Section 3 we propose a general spectral
characterization of IATmoments, autocorrelations, and higher order moments. These observations clarify the capabilities of
general MAPs, provide necessary conditions for fitting, and simplify the analysis of small processes.
(2) Compositional definition of MAP(n): In Section 4 we propose a compositional method based on Kronecker products that
can easily generate aMAP(n)with predefined properties of IATs from the composition of smaller processes, e.g., MAP(2)s [9].
While traditional superposition is convenient only for imposing first and second order properties of counts, our method is
more flexible and gives complete control of the IAT statistics at all orders.
(3)MAP fitting: Exploiting the previous results, we develop in Section 5 the proposed fitting algorithmwhich first determines
the optimal values of IAT moments, autocorrelations, and higher order descriptors using nonlinear optimization, and
successively finds the MAP which best matches these target values. The approach is numerically stable and the fitting can
be performed in a few minutes. Comparative analyses in Section 6 on the Bellcore Aug89 trace and on the Seagate Web
trace [34] with existing fitting methods show that our algorithm achieves the best accuracy. The relative merit of MAP(2)s
and of a special class of MAP(3)s as building block for the KPC fitting algorithm is also investigated.
Section 7 draws conclusions. The final appendix reports the MAPs used to fit the traces discussed in Section 6 and a

description of the special class of MAP(3)s for KPC fitting. A MATLAB implementation of the proposedMAP fitting algorithm
can be found in the KPC-Toolbox [35] which is available for download at http://www.cs.wm.edu/MAPQN/kpctoolbox.html.

2. IAT process in MAPs

AMAP(n) is specified by two n×nmatrices: a stablematrix1 D0 with nonnegative off-diagonal entries and a nonnegative
matrix D1 that describe transition rates between n states. Each transition in D1 produces a job arrival; D0 describes instead
background transitions not associated with arrivals. ThematrixQ = D0+D1 is the infinitesimal generator of the underlying
Markov process. In the special case where D1 is a diagonal matrix, the process is a MMPP(n).
We focus on the process stationary at arrivals (i.e., interval-stationary) that describes the IATs. For a MAP(n), this is de-

scribed by the embedded discrete-time chain with stochastic matrix P = (−D0)−1D1, having embedded probability vector
πe, πeP = πe, πee = 1, where e is a column vector of 1’s of the appropriate dimension. Let P be irreducible with a simple
unit eigenvalue γ1 = 1. Then, IATs are phase-type distributed with k-th moment

E[Xk] = k!πe(−D0)−ke, k ≥ 0, (1)

where X is the random variable representing interarrival times, which implies that SCV = 2E[X]−2πe(−D0)−2e − 1. The
lag-k autocorrelation coefficient is

ρk = (E[X]−2πe(−D0)−1Pk(−D0)−1e− 1)/SCV . (2)

Higher order moments of the IAT process can be described in terms of joint moments. Let Xi be the i-th IAT with respect
to an arbitrary starting epoch i0 = 0, and consider a sequence Xi1 , Xi2 , . . . , XiL , where 0 ≤ i1 < i2 < · · · < iL. The joint
moments of L IATs are the functions

H(Ei, Ek ) = E[Xk1i1 X
k2
i2
· · · XkLiL ],

where Ei = (i1, i2, . . . , iL) and Ek = (k1, k2, . . . , kL). The moments H(Ei, Ek ) capture nonlinear temporal relations between
samples and are known to completely characterize a MAP [28,36]. They are computed as [36]

H(Ei, Ek ) = πe

(
L∏
l=1

kl!(−D0)−klPil−il−1
)
e, (3)

where, for l = 1, i0 is set to i0 = 0. Noting that it is always PiL−iL−1e = e, (3) reduces in the case L = 1 to (1).
In the remainder of this paper and if not otherwise stated, MAP descriptors refer to the IAT process. Further, we use the

notation (D0,D1) or ((−D0)−1, P) to uniquely specify aMAP. The two representations are equivalent by settingD1 = −D0P.

1 A square matrix is said to be stable if its eigenvalues have negative real part.

http://www.cs.wm.edu/MAPQN/kpctoolbox.html
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3. Characterization of MAP(n)s

We now obtain a spectral characterization of IAT moments and autocorrelations, i.e., a scalar representation of (1)–(2)
based on spectral properties of (−D0)−1 and P. This simplifies the analysis of MAP moments and autocorrelations.

3.1. Characterization of moments

We begin by describing the moments (1) in terms of the spectrum of (−D0)−1. Recall that the characteristic polynomial
of an n× nmatrix A is

φ(A) = det(sI− A) = sn + α1sn−1 + · · · + αn−1s+ αn, (4)

which is a polynomial in swith roots si equal to the eigenvalues of A. Consider the Cayley–Hamilton Theorem [37], by which
the powers of A satisfy

Ak = −
∑
j=1...n

αjAk−j, k ≥ n (5)

that is, matrix powers are linearly dependent. Because MAP moments are computed in (1) from powers of (−D0)−1, they
are linearly dependent.

Lemma 1. In a MAP (n), any n+ 1 consecutive moments are linearly dependent according to the relation

E[Xk] = −
∑
j=1...n

(
k!mj
(k− j)!

)
E[Xk−j], E[X0] = 1, k ≥ n, (6)

where mj is the coefficient of sn−j in φ((−D0)−1).
Proof. Using the Cayley–Hamilton theorem,

E[Xk] = −k!πe

(∑
j=1...n

mj(−D0)−(k−j)
)
e (7)

which immediately proves the lemma by (1). �

Since the coefficientsmj are functions of the eigenvalues of (−D0)−1 we can derive a closed-form formula for E[Xk].

Theorem 1. Let (−D0)−1 have m ≤ n distinct eigenvalues θt ∈ C, 1 ≤ t ≤ m. Let qt be the algebraic multiplicity of θt ,∑
t=1...m qt = n. Then the IAT moments are given by

E[Xk] =
∑

t=1...m
k! θ kt

∑
j=1...qt

Mt,jkj−1, (8)

E[X0] =
∑

t=1...m
Mt,1 = 1, (9)

where the constants Mt,j’s are independent of k. In particular,

Mt,1 = πe(−D0)−1t e, (10)

where (−D0)−1t is the t-th spectral projector of (−D0)−1, i.e., the product of the right and left eigenvectors for θt .

Proof. Denoting by (−D0)−1t andMt the spectral projector and nilpotent matrix of (−D0)−1 associated to the Jordan block
for θt , the generalized spectral decomposition of (−D0)−1 is [38]

(−D0)−1 =
∑
t=1...m

(θt(−D0)−1t +Mt), k ≥ 0

where Mqtt = 0, Mt(−D0)−1t = (−D0)−1t Mt , Mt(−D0)−1p = (−D0)−1p Mt = 0, t 6= p, and (−D0)−1t (−D0)−1p = 0, t 6= p.
Therefore, for all k ≥ 0 we have

(−D0)−k =
( ∑
t=1...m

(θt(−D0)−1t +Mt)
)k

=

∑
t=1...m

(θt(−D0)−1t +Mt)k

=

∑
t=1...m

θ kt

min{qt−1,k}∑
i=0

(
k
i

)
(−D0)−1t (θ

−1
t Mt)i,
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where we used in the last passage that θt 6= 0 which is always true because (−D0)−1 is an invertible matrix and thus its
eigenvalues are all different from zero. Inserting the last formula for (−D0)−k into (1) we get after some manipulations

E[Xk] = k!
∑
t=1...m

θ kt

min{qt ,k+1}∑
i=1

(
k
i− 1

)
M̂t,i, (11)

where

M̂t,i = πe(−D0)−1t (θ
−1
t Mt)i−1e. (12)

The last expression is equivalent to (8) by expanding the binomials and grouping the coefficients of kj. This yields the
following equivalence

Mt,j =
qt∑
i=j

s(i− 1, j− 1)
(i− 1)!

M̂t,i (13)

where the s(m, n) is the Stirling number of the first kind giving the coefficient of xn in x(x−1)(x−2) · · · (x−m+1). Finally,
the condition

∑
t Mt,1 = 1 is obtained by evaluating (1) or (8) for k = 0 and noting that it is always E[X

0
] = 1. �

Corollary 1. If θt has algebraic multiplicity qt = 1, then Mt,j = 0 for j ≥ 2.
Proof. In this case the nilpotentMt of the t-th Jordan block is zero and in (13) the only non-zero projector isMt,1. �

Note that formula (8) is a Jordandecomposition of (−D0)−1 since it also holds for defective, i.e., non-diagonalizable, (−D0)−1.
This is extremely important, since well-known processes, e.g., the Erlang process, have D0 that is not diagonalizable.

Example 1. We show how to apply Theorem 1 for the analytical characterization of a MAP. Consider the MAP(3)

D0 =

[
−2λ λ λ
0 −λ λ
0 0 −λ

]
, D1 =

[0 0 0
0 0 0
λ 0 0

]
, λ ≥ 0.

The left eigenvector of P for γ1 = 1 is πe = [1, 0, 0]T. Since

(−D0)−k =

2−kλ−k (1− 2−k)λ−k kλ−k

0 λ−k kλ−k

0 0 λ−k

 ,
from (1) it is E[Xk] = k!πe(−D0)−ke = (k + 1)!λ−k. However this approach does not generalize easily, because obtaining
a closed-form expression for (−D0)−k on larger examples can be difficult. We show that the spectral characterization can
analyze E[Xk] without the need of a closed-form formula for (−D0)−k. We first compute E[X] = 2λ−1 and E[X2] = 6λ−2,
and observe that the eigenvalues of (−D0)−1 are θ1 = (2λ)−1 and θ2 = λ−1 with multiplicity q1 = 1 and q2 = 2. Im-
posing E[X] and E[X2] in (8), we find M1,1 = 0,M2,1 = 1 − M1,1 = 1,M2,2 = 1, and substituting back we finally get
E[Xk] = k!θ−k1 M1,1 + k!θ

−k
2 (M2,1 + kM2,2) = (k+ 1)!λ

−k. �

We also observe that if (−D0)−1 is diagonalizable, then m = n and the projectors Mt,1 are in simple relation to the IAT
cdf since

F(x) = 1− πeeD0xe = 1−
∑
t=1...n

Mt,1e−x/θt , (14)

which follows by the relation ediag(−θ
−1
1 ,...,−θ−1n )

= diag(e−θ
−1
1 , . . . , e−θ

−1
n ) and the computational formula forMt,1. Note that

(14) allows an efficient numerical computation of quantities such as percentiles of the IAT distribution.
We remark that the above characterization is sufficient to develop a simple moment matching algorithm for hyper-

exponential traces. We point to [39] for a description of this results and examples that illustrate its accuracy using real
traffic traces of the Internet Traffic Archive [15].

3.2. Characterization of autocorrelation

The spectral characterization can be extended to autocorrelations using the properties of the powers Pk in (2).

Lemma 2. In a MAP (n), any n+ 1 consecutive autocorrelations are linearly dependent according to the relation

ρk = −
∑
j=1...n

ajρk−j, ρ0 = (1− 1/SCV ) /2, k ≥ n, (15)

where aj is the coefficient of sn−j in φ(P) and
∑n
j=0 aj = 0 where a0 = 1.
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Proof. We want to prove that
∑
j=0...n ajρk−j = 0, where a0 = 1. By definition of ρk, this is equivalent to prove that∑

j
aj(πe(−D0)−1Pk−j(−D0)−1e− E[X]2) = 0.

The last equation is indeed true if we can show that
∑n
j=0 ajP

k−j
= 0 and

∑n
j=0 aj = 0. But the former holds true by

the Cayley–Hamilton theorem, while the latter follows by the stochasticity of P, since for the unit eigenvalue γ1 = 1 it is
φ(P) = 0 =

∑n
j=0 aj. This proves ρk = −

∑
j=1...n ajρk−j. The formula for ρ0 follows by evaluating (2) for k = 0, i.e.,

ρ0 = (E[X]−2πe(−D0)−2e− 1)/SCV = (1− 1/SCV ) /2

since πe(−D0)−2e = E[X2]/2 = (1+ SCV )E[X]2/2.

Similarly to Theorem 1, we can obtain a closed-form expression of ρk.

Theorem 2. Let γt ∈ C, 1 ≤ t ≤ m, be an eigenvalue of P with algebraic multiplicity rt . If γt = 0 assume that its geometric
multiplicity equals its algebraic multiplicity, i.e., the rt associated Jordan blocks have all order one. Then the autocorrelation
function of a MAP is

ρk =
∑

t=2...m
γ kt

∑
j=1...rt

At,jkj−1, k ≥ 1 (16)

ρ0 =
∑

t=2...m
At,1 = (1− 1/SCV )/2, (17)

where the At,j’s constants are independent of k. In particular,

At,1 = E[X]−2πe(−D0)−1Pt(−D0)−1e/SCV , (18)

in which Pt is the t-th spectral projector of P, that is, the product of the right and left eigenvectors associated to γt .

Proof. The proof is similar to the proof of Theorem 1. Let us assume first that γt 6= 0 for all t . If γt has multiplicity rt , the
generalized spectral decomposition of P gives [38]

P =
∑
t=1...m

(γtPt + Nt), k ≥ 0

where P1 = eπe, Nt is the nilpotent matrix associated to γt , Nrtt = 0, NtPt = PtNt , PtPp = 0, t 6= p, and NtPp = PpNt = 0,
t 6= p. Therefore,

Pk =
( ∑
t=1...m

(γtPt + Nt)
)k
=

∑
t=1...m

(γtPt + Nt)k

=

∑
t=1...m

γ kt

min{rt−1,k}∑
i=0

(
k
i

)
Pt(γ−1t Nt)i, k ≥ 0.

Inserting the last formula for Pk into (2) we get after algebraic manipulations

ρk =
∑
t=2...m

γ kt

min{rt ,k+1}∑
i=1

(
k
i− 1

)
Ât,i,

where

Ât,i = E[X]−2πe(−D0)−1Pt(γ−1t Nt)i−1(−D0)−1e/SCV

and we have noticed that for γ1 = 1 it is Ât,i = E[X]−2/SCV that simplifies with the similar term appear in (2). Grouping
the coefficients of kj, we have

At,j =
rt∑
i=j

s(i− 1, j− 1)
(i− 1)!

Ât,i, (19)

where the s(m, n)’s are the Stirling number of the first kind. Note that for k = 0 one has immediately from (18)∑
t=2...m

Ât,1 = ρ0 = (1− 1/SCV )/2,

where the value of ρ0 follows from Lemma 2.
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From Lemma 2 we see that the function ρk when evaluated in k = 0 assumes the value ρ0 = (1 − 1/SCV )/2. Although
this coefficient does not admit any statistical interpretation, since the autocorrelation function is by definition ρk = 1 for
k = 0, it is useful to consider this limit value since the condition ρ0 =

∑
t At,1 can simplify the computation of projectors.

The value ρ0 can also help in manipulating the autocorrelation coefficients, since it is often observed that increasing ρ0
produces a generalized increase of all autocorrelations. For instance, in the special case of a MAP(2), it follows from (16) that
ρk = γ

k
2 ρ0 and therefore the autocorrelations increases monotonically as a function of ρ0.

Corollary 2. If γt has algebraic multiplicity rt = 1, then At,j = 0 for j ≥ 2.

Proof. If all nilpotents Nt are zero, then by definition of Ât,i the only non-zero projector in (18) is At,1. �

Without loss of generality, we assume in the rest of the paper that |γj| ≥ |γj+1|, j = 1, . . . , n−1. According to this ordering,
the asymptotic decay of the autocorrelation function is geometric with rate γ2 (unless γ2 = −1 and ρk does not converge
to zero as k→+∞). We complete the analysis in Theorem 2 by studying the following degenerate case.

Corollary 3. If P has zero eigenvalues belonging to rm Jordan blocks of order l10, l
2
0, . . . , l

rm
0 , then

ρk =
∑
j=1...rm

ηk,j +
∑

t=2...m−1

γ kt

∑
j=1...rt

At,jkj−1,

where

ηk,j = E[X]−2πe(−D0)−1(N0,j)k(−D0)−1e/SCV , (20)

in which N0,j, N
lj0
0,j = 0, is the nilpotent associated to the Jordan block of order lj0, and ηk,j is equal to zero for k ≥ l

j
0.

Proof. The generalized spectral decomposition of P is

Pk =
( ∑
j=1...rm

N0,j +
∑

t=1...m−1

(γtPt + Nt)
)k

=

∑
j=1...rm

Nk0,j +
∑

t=1...m−1

γ kt

min{rt−1,k}∑
i=0

(
k
i

)
Pt(γ−1t Nt)i,

for k ≥ 0. The rest of the proof follows by substituting the above expression into (2) and performing passages similar to the
ones in the proof of Theorem 2. �

We conclude by remarking that the distinct At,j’s and γt ’s in (16) are no more than 2n − 2. Thus a non-degenerate
MAP(n) can fit up to 2n − 2 independent autocorrelations ρk, k ≥ 0. If the fitting assigns SCV , then ρ0 is fixed and the
maximum number of independent autocorrelations becomes 2n−3. This last result seems apparently in contradiction with
the formula in Lemma 2, in which it is said that any n+ 1 consecutive coefficients are linear dependent. However, this last
relation is valid given an existing (D0,D1) representation which imposes the value of the coefficients a1, . . . , an. However,
in fitting one can also assign the a1, . . . , an values, hence it is possible to fit up to 2n − 3 autocorrelations as we explain
below. To better understand the counter-intuitive derivation of the 2n − 3 value, consider a MAP(2), then from Lemma 2
we can write

ρ2 = a1ρ1 + a2ρ0, a0 + a1 + a2 = 0, a0 = 1.

This recursive equation appears to have 2n− 1 = 3 degrees of freedom: the coefficient a1 (a2 is linear dependent) and the
initial conditions ρ1 and ρ0. If SCV is fixed, the degrees of freedom seem to reduce to 2n−2 = 2 because ρ0 = (1−1/SCV )/2
becomes fixed as well. However, if we apply a spectral expansion, we can clearly see that there are actually only 2n− 3 = 1
degrees of freedom. In fact, noting that from Theorem 2 it is

ρ1 = γ2A2,1 ⇒ ρ1 = γ2ρ0,

and similarly ρ2 = γ 22 ρ0, then we have

ρ2 = a1ρ1 + a2ρ0 = (a1γ2 + a2)ρ0,

but since ρ2 = γ 22 ρ0 we can write (a1γ2 + a2) = γ
2
2 , and from a0 + a1 + a2 = 0, a0 = 1 we finally get

a1 = −1− γ2 = −1− ρ1/ρ0, a2 = γ2.

The last result implies that, unexpectedly, also a1 cannot be chosen arbitrarily once that we have set ρ1 and ρ0 since it is
always a1 = −1 − ρ1/ρ0. This reduces the degrees of freedom to 2n − 3 and suggests that it is difficult to evaluate the
number of degrees of freedom of a MAP directly from the recurrence equation of Lemma 2. The spectral expansion in (16)
does not suffer from this problem since eigenvalues and spectral projectors are independent by definition.
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Example 2. The CirculantMMPP is proposed in [26] to introduce complex eigenvalues in the autocorrelation of the counting
process. According to our results, this approach can be generalized to the IAT process by simply defining aMAPwith circulant
P and/or (−D0)−1. In particular, if D0 is diagonal, the resulting circulant MAP admits a quite simple characterization. Define
[p1, p2, . . . , pn], pn = 1−

∑
j6=n pj, to be the first column of the circulant matrix P. Since in a circulant P it isπe = e/n, from

(1) we have

E[Xk] =
(
k!
n

) n∑
t=1

θ kt .

Using Theorem 2 we can also study autocorrelations. For instance, in the case n = 3 a MAP with circulant P and diagonal D0
has structure

D0 =

−θ−11 0 0
0 −θ−12 0
0 0 −θ−13

 , D1 =

p1θ−11 p3θ−11 p2θ−11
p2θ−12 p1θ−12 p3θ−12
p3θ−13 p2θ−13 p1θ−13

 .
In this case, the circulant matrix has two identical or complex conjugate eigenvalues, which implies from the condition on
A2,1 + A3,1 = ρ0 that A2,1 = A3,1 = ρ0/2. Now letting γ2 = |γ2|ejω2 ,

|γ2| = (1/2)
√
(3p1 − 1)2 + 3∆23,2, ω2 = arg

(
(3p1 − 1)+ j

√
3∆3,2

2

)
,

with∆i,j = pi − pj, the autocorrelation is

ρk = ρ0|γ2|
k (e

jkω2 + e−jkω2)
2

= ρ0|γ2|
k cos(kω2).

Higher order cases are similar. For example, for n = 4 after few manipulations we get

ρk = Aa,1γ ka + Ab,1|γb|
k cos(kωb),

with

γa = ∆1,2 +∆3,4, |γb| =

√
∆24,2 +∆

2
1,3, ωb = arg(∆1,3 + j∆4,2),

Aa,1 =
(θ4 − θ2 + θ3 − θ1)

2

SCV (θ3 + θ2 + θ4 + θ1)2
, Ab,1 = ρ0 − Aa,1,

where the eigenvalues are denoted by the indices a and b since the asymptotic decay rate |γ2| can be either |γa| or |γb|. �

3.3. Higher order statistics

We observe that the characterization given formoments and autocorrelations generalizes in a similar fashion to the joint
moments (3), since these functions consist of powers of (−D0)−1 and P. For example, in the case where both matrices are
diagonalizable and L = 2, we have

H(Ei, Ek) = E[Xk1i1 X
k2
i2
] =

∑
t=1...,n

∑
l=1...,n

Ht,lθ
kt
t γ

il
l , (21)

where the jointmoment projectorHt,l is a constant independent ofEi and Ek and it is computed from the product of the spectral
projectors of (−D0)−1 and P. From (3) it can be seen that for general L the joint moment projector is not in simple relation
with the projectors Mt,j and At,j, since it is obtained by first multiplying several projectors ((−D0)−1)t and Pt and then
weighting the result using theπe probabilities. Therefore, moment and autocorrelation fitting algorithms which impose the
eigenvalues θt and γl and the projectorsMt,j and At,j, still leave degrees of freedom to assign the projectors of higher order
moments. This observation is consistent with the results in [36].

4. Compositional definition of large processes

The accurate fitting of LRD traces requires models composed by many states; e.g., the MAP fittings of the Bellcore Aug89
trace in [2] and [17] employ n = 16 and n = 32 states, respectively. Since traditional superposition is not meant to impose
higher order properties of the IAT process, we define a different process composition method which we call Kronecker
Product Composition (KPC). Given J MAPs {Dj0,D

j
1}, we define the KPC process as the MAP

{Dkpc0 ,Dkpc1 } = {(−1)
J−1D10 ⊗ · · · ⊗ DJ0,D

1
1 ⊗ · · · ⊗ DJ1}
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where⊗ is theKronecker product operator [40]. It can be easily shownby theproperties of theKronecker product thatPkpc =
−(Dkpc0 )−1Dkpc1 = P1 ⊗ · · · ⊗ PJ and π

kpc
e = π1e ⊗ · · · ⊗π

J
e, thus our composition generates an embedded process Pkpc with

simple compositional structure.
In order to generate a validMAP, the KPC requires that at least J−1 composing processes have diagonalDj0 otherwise off-

diagonal negative elements appear inDkpc0 . Nevertheless, because oneMAP can be arbitrary, the KPC does not placemodeling
restrictions.
The basic property of aMAP obtained by KPC is that we can easily impose its eigenvalues and projectors in bothmoments

and autocorrelations as we show later in Theorem 3. Equivalently, one may impose directly moments and autocorrelation
values, as described in Theorem 4. This is important because, by the characterization in Section 3, the fitting of real traces
can be seen as an inverse eigenvalue problem for the eigenvalues of P and (−D0)−1. Inverse eigenvalue problems are
notoriously hard, but the KPCmethod provides an effective solution. AMAP(n) can be defined tomatch an arbitrary number
of autocorrelation and moment values, with the only practical difficulty of limiting the order of the resulting MAP. In the
rest of the section, we show how one can a priori determine moments and autocorrelations of the KPC process given the
knowledge of the properties of the composing MAPs.

4.1. KPC process characterization

Without loss of generality we study {Dkpc0 ,Dkpc1 } for the case of composing by KPC J = 2MAPs. The results presented here
recursively characterize also the case J > 2.

Theorem 3. Let MAPa = {Da0,D
a
1} and MAPb = {D

b
0,D

b
1} be MAPs of order na and nb, respectively, and assume that D

b
0 is a

diagonal matrix. Let γ ap , θ
a
p , A

a
p,1 and M

a
q,1 be the eigenvalues and projectors of MAPa. Let γ

b
q , θ

b
q , A

b
p,1 and M

b
q,1 be the equivalent

descriptors of MAPb. Then the KPC

MAPa ⊗MAPb = {−Da0 ⊗ Db0,D
a
1 ⊗ Db1}

is a MAP of order nanb with eigenvalues γt = γ ap γ
b
q , θt = θ

a
p θ
b
q , and projectors

Mt,1 = Map,1M
b
q,1, At,1 = (Aap,1SCVa)(A

b
q,1SCVb)/SCV ,

for all 1 ≤ p ≤ na, 1 ≤ q ≤ nb.

Proof. The relations for the eigenvalues follow frombasic properties of the Kronecker product [40]. The projector associated
to θt = θ ap θ

b
q is

Mt,1 = πe((−D0)−1)te
= (πae ⊗ πbe)((−D0)

−1)ap ⊗ ((−D0)
−1)bq(e

a
⊗ eb)

= (πae((−D0)
−1)ape

a)(πbe((−D0)
−1)bqe

b) = Map,1M
b
q,1.

Similarly, the projector of γt = γ ap γ
b
q is

At,1 = E[X]−2πe(−D0)−1Pt(−D0)−1e/SCV ,
= E[X]−2(E[Xa]2Aap,1SCVa)(E[X

b
]
2Abq,1SCVb)/SCV ,

= (Aap,1SCVa)(A
b
q,1SCVb)/SCV . �

Theorem 4. Moments and autocorrelations of the KPC satisfy

E[Xk] = E[Xka ]E[X
k
b ]/k!, (22)

SCVρk = (SCVa)ρak + (SCVb)ρ
b
k + (SCVaSCVb)ρ

a
kρ
b
k , (23)

where the quantities in the right-hand side refer toMAPa andMAPb. In particular the relation for E[Xk] immediately implies

1+ SCV = (1+ SCVa)(1+ SCVb)/2. (24)

Proof. We begin by proving (22). Using the properties of the Kronecker product [40] we have

E[Xk] = k!πe(−D0)−ke
= k!(πae ⊗ πbe)(−((−1)

2−1Da0 ⊗ Db0))
−k(ea ⊗ eb)

= k!(πae ⊗ πbe)((D
a
0)
−k
⊗ (Db0)

−k)(ea ⊗ eb),
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and multiplying by (−1)−2k which equals one for all k ∈ N

E[Xk] = k!(−1)−2k(πae(D
a
0)
−kea)(πbe(D

b
0)
−keb)

= k!(πae(−D
a
0)
−kea)(πbe(−D

b
0)
−keb)

= E[Xk1 ]E[X
k
2 ]/k!.

Eq. (23) follows the same steps as (22) by considering (2). �

The two theoremspresented above provide a complete characterization ofmoments and autocorrelations of theKPCprocess.
The KPC also simplifies the definition of higher order statistics.

Theorem 5. The joint moments of MAPa ⊗MAPb satisfy

H(Ei, Ek ) =
Ha(Ei, Ek )Hb(Ei, Ek )
k1!k2! · · · kL!

, (25)

with Ha(Ei, Ek ) and Hb(Ei, Ek ) respectively joint moments of MAPa and MAPb.

Proof. We have

H(Ei, Ek ) = πe

(
L∏
l=1

kl!(−D0)−klPil−il−1
)
e

= (πae ⊗ πbe)

(
L∏
l=1

kl!(−Da0 ⊗−D
b
0)
−kl(Pa ⊗ Pb)il−il−1

)
e

and using commutativity of Kronecker products

H(Ei, Ek ) =

(
π ae

(
L∏
l=1

kl!(−Da0)
−kl(Pa)il−il−1

)
e

)(
πbe

(
L∏
l=1

(−Db0)
−kl(Pb)il−il−1

)
e

)

= Ha(Ei, Ek )
Hb(Ei, Ek )
k1!k2! · · · kL!

which proves the theorem. �

5. MAP fitting algorithm

Using KPC,we define aMAP fitting algorithm for trace data.We illustrate the algorithm in the casewhere the J composing
MAPs used in the KPC are an arbitraryMAP(2) (index j = 1) and J−1MAP(2)s with diagonalD0, but themethodworks with
minor modifications also with other processes as we discuss in Section 6.5. The fitting algorithm searches for J MAP(2)s that
composed by KPC can match accurately the first three moments, the autocorrelations and the bicorrelations of the trace.

5.1. MAP fitting algorithm

The MAP fitting algorithm proceeds in three steps:
Step 1— Autocorrelation and SCV fitting. Let ŜCV be the sample SCV ; similarly, let ρ̂k be the sample autocorrelation computed
on a set of lags K, and let J = {1, 2, . . . , J}. We fit second order IAT properties by the nonlinear optimization program in
Fig. 2. The fitting algorithm is essentially a least square algorithm constrained by the properties of the KPC. The result of the
optimization are two sets SCV (j) and γ2(j) for j ∈ Jwhich specify the optimal SCV and autocorrelation for each of the J MAPs
used in the KPC. For each variable, a set of upper and lower bounds are imposed, e.g., ubSCV (j) and lbSCV (j) are respectively
upper and lower bounds on the value SCV (j) to be determined by the solver. Since SCV (j) and γ2(j) are constrained by proper
bounds, they can be always chosen to be feasible for a MAP(2), see [7,30] for existing bound formulas. In particular, we set
the upper bound on the SCV to be ubSCV (j) = ∞, j ∈ J. Further, for the arbitrary MAP(2)we have

lbSCV (1) = 0.5, lbγ2(1) = −1, ubγ2(1) = 1− ε,

where ε is an arbitrarily small positive quantity. The J−1MAP(2)swith diagonalD0 can be shown to have hyper-exponential
marginal probabilities, and thus we set

lbSCV (j) = 1+ ε, lbγ2(j) = 0, ubγ2(j) = 1− ε.

The value tolSCV is a tolerance on the exactmatching of the SCV . On certain traceswhere the value of the lag-1 autocorrelation
ρ1 differs significantly from ρ0 = (1 − 1/SCV )/2, flexibility on the SCV fitting avoids an excessive constraining to impose
the passage through ρ1 which can result in bad fitting of autocorrelation at high lags.
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Fig. 2. Autocorrelation and SCV fitting [Step 1].

Step 2 — Moment and higher order fitting. Once that the optimal values of SCV (j) and γ2(j) are obtained after one or more
runs2 of the previous algorithm, we search for the missing parameters required to define valid MAP(2)s, namely the means
E[X](j) and third moments E[X3](j) for all j ∈ J. Indeed, the second moments E[X2](j) are readily obtained from the SCV (j)
for given E[X](j). As shown by the motivating example in Fig. 1, given fixed autocorrelation and SCV there exist many
possible valid processes; we thus solve a new nonlinear optimization program to select the one that results in better fitting
of higher order properties of IATs on a set of sample joint moments Ĥ(Ei, Ek) for (Ei, Ek) ∈ H. The nonlinear program is given in
Fig. 3. In our MATLAB implementation, at each iteration of the solver a (D0,D1) representation is obtained for each of the J
MAP(2)s similarly to theway described below in Step 3, but yet without assembling the results into aMAP(n). This approach
grants MAP feasibility at each point of the iteration. The joint moments of the MAP(2)s generated at each iteration are used
to update the value of the objective function since the joint moments of the composed process are in simple relation with
those of the composingMAPs [39]. Indeed, this approach imposes an overhead at each iteration, but the experimental results
we present in the paper required very modest computational times of the order of a few minutes per fitting and therefore
the cost of this interleaved estimation of the MAP(2)s is acceptable.
Because of the approach used, whenever the optimizer steps into the infeasibility region of this arbitrary MAP(2), the

value of the objective function is forced back to the value in a point where the MAP(2)s are all feasible because of the
feasibility corrections applied to the MAP(2). Indeed, it is possible that the optimizer gets stuck iterating into the same
region. This case is detected by evaluating the progress in the objective function over a time window of iterations, then the
optimization stops and returns the currently estimated MAP. If unsatisfied with the result, the analyst is left the choice of
re-running Step 2 from a different initialization point without the need of restarting from Step 1.
Finally, we remark that in this step we use the following moment bounds for the hyper-exponential MAP(2)s [7]

lbE[X](j) =
√
E[X2]/2, ubE[X](j) = +∞,

lbE[X3](j) =
√
(1.5+ ε)E[X2]2/E[X], ubE[X3](j) = +∞.

Step 3 — MAP(n) generation. Given the target optimal values for the E[X](j), SCV (j), E[X3](j), and γ2(j) we generate the J
MAPs as follows. The J − 1 diagonal MAPs are always feasible since the constraints on moments and autocorrelations are
sufficient for feasibility [7,30]. These are fitted using the analytic hyper-exponential fitting scheme in [39], but more general
MAP(2)methodsmay be used aswell. For the arbitraryMAP(2)weuse standard fitting algorithms, see e.g., [12,5].Whenever
the fitting gives an infeasible process (e.g., negative rates in D1 or in the off-diagonal elements of D0), we perform a simple
least square fitting to best match the target E[X3](j) and γ2(j), while keeping fixed E[X](j) and E[X2](j). Once that J feasible
MAPs are obtained, the final process is immediately computed by Kronecker products according to the KPC definition.
We conclude the section by remarking that with MMPP(2)s/MAP(2)s, the fitting algorithm cannot include complex

eigenvalues in the IAT autocorrelations. These may be included by also using one or more circulant MAP(3)s (see [26]),
but this may easily yield processes with several tens or hundreds of states. This state space explosion associated to the use
of circulant matrices has been pointed out also in the fitting of the counting process [41] and remains an open problem.
However, we empirically observe that many traces that exhibit multiple complex eigenvalues in the counting process often
have IAT autocorrelation that does not require complex eigenvalues, and thismakesMAP(2)-based IAT fitting sufficientmore
frequently than counting process-based methods. For instance, Fig. 4 compares the Welch power spectrum density (PSD)
estimate of the IAT and counting processes on the Bellcore Aug89 trace. The counting process is obtained by computing

2 The term algorithm ‘‘run’’ is used in the rest of the paper meaning that the optimization algorithm is restarted each time with different random
initializations.
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Fig. 3. Moment and higher order fitting [Step 2].

Fig. 4. Comparison of the power spectrum of the IAT process and the counting process for the Bellcore Aug89 trace. The counting process shows power
density in the complex spectrum which is instead negligible in IATs.

the arrivals in 105 consecutive times slots of identical duration1T = 10−2 s. The figure for the counting process indicates
power in the low frequency spectrum, whereas the IAT process does not show any significant complex sinusoid and thus
can be approximated effectively by real eigenvalues only.

6. Experiments

We present a comparison of our algorithm with two of the best-available algorithms for Markovian analysis of LRD
traces, that is, the method of Andersen and Nielsen (A&N) in [2] and the multifractal approach of Horváth and Telek (H&T)
in [17]. We have also performed experiments against the methods presented in [32,20], but we have found the techniques
in [2,17] the most competitive against our approach on the set of traces considered in this section. We first describe the
experimental methodology, later we report fitting results on the Bellcore Aug89 trace [15,16] and a recently measuredWeb
trace of Seagate disk drives and presented in [34]. All the nonlinear optimization problems considered in this section have
been solved with the fmincon function of the MATLAB optimization toolkit.

6.1. Experimental methodology

We apply the algorithm described in Section 5 as follows. We first fit the autocorrelation on a set of 103–104
logarithmically-spaced lags ranging in a large interval, e.g., [1, 105]. Previous work has often limited to match IAT
autocorrelations in [1, 104], but we have observed that the choice of a larger lag interval can result in increased modeling
accuracy at heavy loadwhere second order properties are fundamental for queueing prediction[42]. The solution of the least
squares program in Fig. 2 is usually very efficient (of the order of seconds), and only a few tens of runs are needed for an
accurate match. Here we consider four MAPs (J = 4); good fitting of the autocorrelation is also possible with only two or
three MAPs, but the remaining degrees of freedom are usually insufficient to match accurately higher order properties of
IATs.
In the fitting of the joint moments, we have performed several experiments and obtained the best results by matching a

set of moments E[Xi1Xi2Xi3 ], which implicitly define the bicorrelations of the IAT process[29]. In our tests this seemed more
important than matching moments E[Xk1i1 X

k2
i2
] of the IATs, which did not result in improved queueing prediction accuracy
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Table 1
MAP(16) fitting of the Bellcore Aug89 Trace using the algorithm of Section 5.

BC-Aug89 Trace MAP(16)

E[X] 3.1428× 10−3 3.1428×10−3

SCV 3.2236× 100 3.2235× 100

E[X3] 2.0104× 10−6 1.1763×10−5

γ2 n/a 9.9995×10−1

with respect to a standard second order fitting. Without loss of generality we set i1 = 1 and fit E[X1Xi2Xi3 ] on a square
grid of 102 or 252 points (i2, i3) generated by the Cartesian product of two identical sets of logarithmically-spaced points
in [1, 104]. The point E[X1X1X1] = E[X3] is always included in this grid, thus in Step 2, see Fig. 3, we set tolE[X3] = +∞
to give more flexibility to the least squares; in all experiments we instead impose exact matching of E[X] and SCV , thus
tolE[X] = 0 and tolSCV = 0. Compared to the autocorrelation, the least square fitting of joint moments seems more difficult
and the nonlinear optimizer can occasionally return infeasible solutions. Thus, several runs may be needed to find a good
local optimum, which is nevertheless obtained in a few minutes.
The computational costs of the final MAP(n) generation is negligible. We also remark that small manual corrections

of erroneous behaviors are possible without the need of re-running the entire fitting algorithm. For instance, to obtain a
slower asymptotic decay rate for the autocorrelations it is possible to increase the value of the largest γ2(j) and regenerate
the MAP(n).
Finally, the evaluation of the queueing behavior of the fitted MAP is done with an implementation of the analytical

method for the solution of a MAP/D/1 process in [43] and using a numerical tolerance for convergence of ε = 10−10. Details
on the experimental results are given in the rest of the section.

6.2. Bellcore Aug89,−/D/1 queue

We first compare with the queueing predictions of the models in [2,17] using the Bellcore Aug89 on a first-come-first-
served queue with deterministic service and different utilization levels. This is the standard case for evaluating the quality
of LRD trace fitting, e.g., [2,17,20]. The traffic trace consists of 106 IAT samples collected in 1989 at the Bellcore Morristown
Research and Engineering facility and shows a clear LRD behavior, see [16] for details. We run the algorithm described in
Section 5 to determine a MAP(16) which accurately fits the trace.
The size of this MAP is similar to those employed in previous work, which are composed by 16 states (A&N) or 32

states (H&T). We have experimented with other MAP orders, but we have never obtained results qualitatively better than
the MAP(16) ones using less states (i.e., MAP(2), MAP(4), and MAP(8)), while the MAP(32) does not improve significantly
prediction accuracy. As we show later in Section 6.5, the last observation applies only to KPC fitting based on MAP(2)s
as building blocks. Furthermore, we point the interested reader to [35] for a MAP(2) fitting of the Bellcore Aug89 trace
that shows the severe errors of small MAPs in predicting accurately queue-lengths under correlated workloads. Due to the
limited length of the trace, we fit all autocorrelations in the interval [1, 2× 104], since at higher lags the sample values are
significantly affected by noise. The result of this fit is rather accurate, as shown in Fig. 5, and is obtained in less than one
minute3. In the second phase of the algorithm, the joint moments E[X1Xi2Xi3 ] are matched on a square grid of 25

2 points.
On this instance, the computational cost of the program in Fig. 3 is low, approximately thirty seconds. The values of the
first three moments of the MAP(16) are given in Table 1; the entries of each composing MMPP(2)/MAP(2) are given in the
Appendix.
In order to assess the accuracy of the fit, we compare the queueing prediction of our model with the MMPPs obtained in

[2,17] for utilization levels of 20%, 50%, and 80%. All traces have a quite good match of the individual queue probabilities. In
Fig. 6 we plot the complementary cumulative distribution function (ccdf) of queue-length probabilities, i.e., the function
Pr(queue ≥ x), which accounts also for the residual queueing probability mass and thus shows the impact of the tail
probability. At 20% utilization the effects of the long-range dependence seems minimal, and the probability mass is spread
over few lags. Our method gives almost the same results of the multifractal technique, while the method of A&N seems to
underestimate the queueing probability for the smallest values of x, which also affects the rest of the ccdf.
The intermediate case for 50% utilization is generally difficult to capture, since the network is approaching heavy traffic,

but the dependence effects are still not as strong as in slightly higher utilization values, i.e., for 60%–70% utilization (see,
e.g., [2]). All methods initially overestimate the real probability, but for higher values of x our method is closer to the trace
values than A&N and H&T which predict a large probability mass also after x = 103.
Finally, in the case of 80% utilization all three methods performwell, with our algorithm and the H&T beingmore precise

than A&N. The final decay of the curve is again similar, but the KPC method resembles better the simulated trace.
Overall, the result of this trace indicates that the KPC approach is more effective than both H&T and the A&N methods,

while preserving the smallest representation (16 states) of the A&N method. It also interesting to point out that the fitting
leaves room for further improvements, especially in the 50% case which is difficult to approximate.

3 In both Figs. 5 and 8 we do not report the acf fitting of A&N and H&T since these methods do not match IAT autocorrelations, but autocorrelations in
counts.
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Fig. 5. Fitted autocorrelation for the Bellcore Aug89 trace using the program in Fig. 2.

Fig. 6. Queueing predictions for the Bellcore Aug89 trace on a queue with deterministic service.

Fig. 7. Queueing predictions for the Bellcore Aug89 trace on a queue with exponential service.

6.3. Bellcore Aug89,−/M/1 queue

In the second experiment we evaluate the robustness of the fitting under different variability in the service process.
This is important to assess that the fitting captures the essential properties of the traffic process, and thus can provide
accurate results regardless of the context in which the fitted MAP is used. In Fig. 7 we plot comparative results for a−/M/1
queue using as input the same MAPs considered before. As we can see, KPC performs better than in the −/D/1 case, and
it is now able to capture well the tail decay also for the 80% utilization. A possible explanation of this behavior is that the
autocorrelation in the flow becomes more important if the queueing process is more variable, therefore more accurate
autocorrelation fitting becomes necessary under such conditions. In comparison, the other methods seem instead to suffer
by the increase in variability of the process, as shown by the overestimateswhich are significantly greater than in the−/D/1
case. This indicates that KPC is more robust than counting-process-based fittings.

6.4. Seagate web trace,−/D/1 queue

In order to provide a comparison on traces that are representative of other workloads, we have implemented the A&N
method and compared its counting-process fitting with our method on the HTTP web trace presented in [34]. The trace
is composed by 3.6 × 106 interarrival times of requests at the storage system of a Web server, and has a long-range
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Fig. 8. Fitted autocorrelation for the Seagate Web trace using the program in Fig. 2.

Fig. 9. Queueing predictions for the Seagate Web trace on a queue with deterministic service.

Table 2
MAP(16) fitting of the Seagate Web Trace using the algorithm of Section 5.

Seagate Trace MAP(16)

E[X] 3.0134× 100 3.0134× 100

SCV 3.3285× 100 3.3285× 100

E[X3] 1.5986× 103 1.1414× 103

γ2 n/a 9.9997×10−1

dependence that is stronger than the BC-Aug89, see [34] for the Hurst coefficient estimates. Thanks to the larger size of
the sample, we now fit the autocorrelation in the larger set of lags [1, 105] using only 103 logarithmically-spaced points
since the autocorrelation function is less noisy than for the Bellcore trace, see Fig. 8. The joint moments are then fitted on a
grid of 102 points. The order of the target MAP is 16 states similarly to the Bellcore Aug89 case. The values of the first three
moments of the fitted MAP(16) are reported in Table 2; each of the composing MMPP(2)/MAP(2) are given in the Appendix.
Queueing results for this trace are shown in Fig. 9. Here we compare with an implementation of the A&N algorithm [2].

The A&NMAP(16) fitting is obtained by the algorithm parameters H = 0.85682, ρ = 0.74503, λ? = 3.3185, n = 5, d? = 4.
Although the performance effects of Web traffic on a server is more often modeled by a queue with exponential service,

we perform the comparison here by assuming a deterministic service time, since the results on the Bellcore trace indicate
that this case ismore difficult to approximate. Predictions on a−/D/1 queue at utilization levels of 20%, 50%, 80% are shown
in Fig. 9. The KPC method is more accurate than the A&N fitting in the cases 50% and 80% while the case 20% is hard to
approximate for both methods. This reinforces the validity of the observations on the Bellcore trace: IAT fitting is more
effective as soon as the effect of the temporal dependence becomes evident. The 50% and 80% utilization levels for the KPC
method are cases of almost perfect fits. In particular, for the 50% case the analytical results indicate that the tail probability
is zero with respect to machine accuracy for x = 61891, while the simulated queue drops to zero for x = 61002.

6.5. Generalization of KPC fitting

We conclude the experimental part by providing some discussion on the generalization of the KPC fitting algorithm
to building blocks different from the MAP(2). After choosing a new building block, the KPC fitting algorithm presented in
Section 5 should be modified by changing the control variables considered in the optimization to those needed to specify
the new building block. Upper and lower bounds that constraint the feasibility range of these control variables should also
be added to the optimization programs. Furthermore, it is required that Step 1 of SCV and autocorrelation fitting can be
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Fig. 10. Comparison of queueing predictions of two independent KPC fittings for the Bellcore Aug89 trace on a queuewith exponential service: theMAP(16)
built from MAP(2)s presented in Section 6.3 and a MAP(9) obtained from KPC of two MAP(3)s with special structure.

performed separately from Step 2; this condition is always granted whenever the projectors At,j of the autocorrelation
function and the eigenvalues γk can be determined without need of information on the control variables determined in
Step 2.
As an example, we have considered as building block a special class of MAP(3) described in the Appendix. These MAP(3)s

enjoy simple formulas for the characterization of moments and autocorrelations. Also the range of feasibility of the model
parameters can be obtained easily. These MAP(3)s have autocorrelation coefficients expressed as

ρk =
ρ0

2
(γ k2 + γ

k
3 ), (26)

where γ2 and γ3 are two independent eigenvalues of P. Thus, the autocorrelation function of the consideredMAP(3) is more
versatile than the one of a MAP(2) process which has a single eigenvalue. Fig. 10 illustrates fitting results on the BC-Aug89
trace obtained with KPC using two MAP(3)s as building blocks, instead of the four MAP(2)s considered in previous fittings;
the process fitted by KPC is thus aMAP(9) instead of a MAP(16). The figure illustrates queueing results of a MAP/M/1 system
for different utilization levels; the same results shown in Fig. 7 for the MAP(2)-based KPC are here reported for the sake
of comparison with the MAP(3)-based approach. The results show that an increase of flexibility in the description of the
temporal dependence as in (26) immediately improves the queueing prediction accuracy. Strikingly, a MAP process with
only 9 states is now able to achieve accuracy levels that are comparable to the MAP(16) process fitted by MAP(2)-based
KPC; in particularly, it is remarkable that for utilization 50% the fitted MAP(9) has much increased accuracy compared to
MAP(2)-based KPC which underestimates the decay rate of the queueing probabilities.
Summarizing, this subsection has shown that generalization of the proposed approach to building blocks other than

MAP(2) is viable and can be profitable to increase MAP fitting accuracy. However, the preliminary characterization of
moments, autocorrelation, and ranges of parameters required to perform this generalization inevitably limits the attention
to building blocks of MAPs of order no more than 2 or 3 states which are often the only ones that can be characterized and
fitted analytically.We remark that we have only experimented the KPC fitting algorithm using as building blocksMAPswith
2 or 3 states only. This is because analytical characterization is important to make the KPC-based fitting algorithm efficient
computationally, thus we believe that only small with no more than 2 or 3 states should be used as building blocks of the
proposed fitting algorithm.

7. Conclusion

We have presented several contributions to the Markovian analysis of measured traces described in terms of packet or
request interarrival times. We have obtained a spectral characterization of moments and autocorrelation which simplifies
the analysis of MAPs. Then, we have studied the definition of large MAPs by Kronecker Product Composition (KPC), and
shown that this provides a simple way to create processes with predefined moments and correlations at all orders. A
least square fitting procedure based on the properties of these processes has been described. Detailed comparisons with
other state-of-the-art fitting methods based on the counting process show that KPC provides improved fitting of LRD traces
that require models that capture their higher order properties, including the challenging BC-Aug89 trace of the Internet
Traffic Archive. An open-source MATLAB implementation of the MAP(2)-based fitting algorithm can be found in the KPC-
Toolbox [35] at http://www.cs.wm.edu/MAPQN/kpctoolbox.html.
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Appendix

KPC fitting — Bellcore Aug89 trace. The Bellcore Aug89 trace is fitted by the KPC process (Dkpc0 ,D
kpc
1 ) defined by

Dkpc0 = −D
a
0 ⊗ Db0 ⊗ Dc0 ⊗ Dd0

Dkpc1 = Da1 ⊗ Db1 ⊗ Dc1 ⊗ Dd1.

The four composing processes have

Da1 =
[
2.5582× 100 4.3951× 10−2

1.1369× 10−2 6.6173× 10−1

]
, Db1 =

[
2.6769× 100 6.6924× 10−5

4.2706× 10−5 1.7082× 100

]
,

Dc1 =
[
4.3309× 100 2.7061× 10−4

6.7564× 10−2 2.2578× 10−2

]
, Dd1 =

[
3.5552× 101 2.9355× 10−1

2.6962× 100 4.8230× 100

]
and the corresponding D0 are diagonal with i-th element equal in modulus to the sum of the i-th row of the associated D1
matrix, e.g., Da0 = diag(−(2.6769× 10

0
+ 6.6924× 10−5),−(4.2706× 10−5 + 1.7082× 100)).

KPC fitting — Seagate web trace. The MAP(16) fitting the Seagate Web trace is the process (Dkpc0 ,D
kpc
1 )where

Dkpc0 = −D
a
0 ⊗ Db0 ⊗ Dc0 ⊗ Dd0

Dkpc1 = Da1 ⊗ Db1 ⊗ Dc1 ⊗ Dd1
in which the composing processes have

Da1 =
[
6.0174× 10−4 1.9726× 10−5

5.4983× 10−6 1.6772× 10−4

]
, Db1 =

[
4.7919× 101 6.4534× 10−2

2.8556× 10−2 2.1204× 101

]
,

Dc1 =
[
4.4827× 100 5.7367× 10−5

1.6440× 10−5 1.2846× 100

]
, Dd1 =

[
2.9941× 101 3.6688× 10−3

1.9573× 10−3 1.5974× 101

]
and the corresponding D0 matrices are again diagonal with i-th element equal in modulus to the sum of the i-th row of the
associated D1 matrix.
A special class ofMAP(3)s.We define a class of specializedMAP(3)s that is useful for KPC fitting. This class ofMAP(3) is defined
by

D0 =

−θ−11 0 0
0 −θ−12 0
0 0 −θ−13

 , P =

[1− q− p p q
p 1− 2p p
q p 1− q− p

]
where 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, and θk ≥ 0 for k = 1, 2, 3; a (D0,D1) representation is immediately obtained by
setting D1 = −D0P. Because of the diagonal D0, the MAP(3) always describes a process with hyper-exponential marginal
probabilities (SCV ≥ 1). From the characterization results presented in Section 3, it follows with simple algebra that the
process admits the following characterization of moments and autocorrelations

E[Xk] =
k!
3

3∑
t=1

θ kt , ρk = A2,1γ k2 + A3,1γ
k
3 , A2,1 + A3,1 = ρ0,

where A2,1 and A3,1 depend on the θk values. In order to obtain a class of process that can be useful for the KPC fitting
algorithm in Section 5, it is useful to consider a case where we can decouple the analysis of SCV and autocorrelations from
the analysis of the other moments and of the bicorrelations. This decoupling can be obtained by removing the dependence
on the θk’s in the autocorrelation function expression and specifically in the A2,1 and A3,1 terms. We have found that by
setting

θ−13 = (2+
√
3)θ−12 θ−11 /(θ−12 + (1+

√
3)θ−11 )

one immediately defines a specialized MAP(3) in which A2,1 = A3,1 = ρ0/2 and the autocorrelation function thus becomes

ρk =
ρ0

2
(γ k2 + γ

k
3 ),

which is more flexible than the MAP(2) autocorrelation since it depends on two eigenvalues, instead of only γ2, and yet
keeps the explicit dependence on the term ρ0 = (1 − 1/SCV )/2, which immediately relates autocorrelations with SCV .



78 G. Casale et al. / Performance Evaluation 67 (2010) 61–79

However, this increased flexibility in the autocorrelation function is paid by a reduction of the degrees of freedom to assign
moments, since the specific value given to θ3 makes it possible to fit only two given moments instead of the three moments
of a MAP(2). However, fitting experiments reported in the paper show that this does not significantly affect the queueing
prediction accuracy. Fitting expressions as a function of the eigenvalues of the autocorrelation function and the first two
moments are as follows:

p = (1− γ2)/3, q = (2+ γ2 − 3γ3)/6,

θ1 = E[X] +

√√√√(E[X2] − 2E[X]2)(2+√3
4

)
, θ2 =

√
3E[X] + (1−

√
3)θ1.

Positivity conditions on the variables immediately translate into simple feasibility conditions for moments and
autocorrelations. In particular, it follows that the proposed class of MAP(3)s has 1 ≤ SCV < 3 and that, while γ2 can assume
arbitrary value in its natural range−1 ≤ γ2 < 1, the other eigenvalue γ3 should be always chosen so that 0 ≤ q ≤ 1. Note
that for particular choices of the parameters it can be γ2 < γ3. We remark that the condition 1 ≤ SCV < 3 is quite limiting
for general fitting, but this is not the case if the process is used as a building block in KPC since the composition of several
MAP(3)s can result in MAPs with SCV � 3; furthermore, we observe that the MAPs used for KPC of the BC-Aug89 and
SeagateWeb traces have low SCV < 3 thus suggesting that the MAP(3) model could be equally useful in fitting these traces.
Experiments confirming this observation are reported in Section 6.5 proving that the proposed special class of MAP(3) can
be a more powerful building block than general MAP(2)s.
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