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Abstract Graphic processing units (GPU) have become increasingly adopted for the
enhancement of computing throughput. However, the development of a high-quality
GPU application is challenging, due to the large optimization space and complex
unpredictable effects of optimizations on GPU program performance. Many recent
efforts have been employing empirical search-based auto-tuners to tackle the prob-
lem, but few of them have concentrated on the influence of program inputs on the
optimizations. In this paper, based on a set of CUDA and OpenCL kernels, we report
some evidences on the importance for auto-tuners to adapt to program input changes,
and present a framework, G-ADAPT+, to address the influence by constructing cross-
input predictive models for automatically predicting the (near-)optimal configurations
for an arbitrary input to a GPU program. G-ADAPT+ is based on source-to-source
compilers, specifically, Cetus and ROSE. It supports the optimizations of both CUDA
and OpenCL programs.
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1 Introduction

Graphic processing units (GPU) have drawn increasing adoptions for high performance
computing. The development of programming models (e.g., CUDA and OpenCL) have
simplified the creation of a GPU program, but not much the optimizations.

Developing an efficient GPU program remains a challenge to programmers, as well
as compilers and performance auto-tuners. Because of the tremendous computing
power of GPU, there can be orders of magnitude performance difference between
well optimized and poorly optimized versions of an application. But optimizing GPU
programs are facing three-fold special difficulties. The first is the complexity in GPU
architecture. On an NVIDIA GeForce 8800 GT, for example, there are hundreds of
cores, several types of off-chip memory, hundreds of thousands of registers, and many
parameters (e.g., maximum number of threads per block, thread block dimensions)
that constrain the programming. Second, an optimization often has multiple effects,
and the optimizations on different parameters often strongly affect each other. The final
and also the least-understood challenge is that some GPU applications are strongly
sensitive to their inputs (including command-line arguments, input file content, and
other data coming outside the program). The best optimization decisions for an appli-
cation may be different when different inputs are given to the application. Together,
these factors make manual optimizations time consuming and difficult to attain the
optimal, and at the same time, form great hurdles to automatic optimizations as well.

Some prior studies have tried to tackle the problem through performance auto-tuners
(or empirical search) [3,10,21]. But few of them have systematically considered the
influence of program inputs on the optimization decisions.

In this paper, based on our prior study [16] and some recent experiments, we
report some evidences on the important impact of inputs on GPU program optimiza-
tions. The measurements are on both CUDA and OpenCL programs. We present a
framework, called G-ADAPT+, that efficiently discovers near-optimal decisions for
GPU program optimizations, and then, tailors the decisions for each program input.
G-ADAPT+ is based on source-to-source compilers: Cetus for CUDA and ROSE for
OpenCL. The framework is distinctive in that it conducts program transformations
and optimization-space search in a fully automatic fashion, and meanwhile, offers a
set of pragmas for programmers to easily incorporate their knowledge into the empir-
ical search process. Based on the exposed input sensitivity, we construct a cross-input
predictor by employing statistical learning (Regression Trees in particular) to make
G-ADAPT+ automatically customize optimizations to program inputs. Experiments
demonstrate the promise of such adaptive optimizations frameworks in overcoming
the input sensitivity of GPU program optimizations, leading to speedups of a factor
of integers.
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2 Challenges in the Optimization of GPU Programs

For consistency, we use CUDA terminology throughout the entire paper, even in the
discussions of OpenCL programs. A GPU usually contains a number of streaming
multiprocessors (SM), containing hundreds of cores for computing. When a GPU
kernel is launched, it is often executed by thousands of GPU threads. These threads
are organized into a number of thread blocks. The size and dimensions of a thread block
often affect the degree in which the massively parallel GPU hardware computing units
are utilized. A GPU memory hierarchy is complex. There are three types of off-chip
memory (global memory, constant memory, texture memory), and at least three types
of on-chip storage (shared memory, cache, registers). A good usage of the computing
units and memory systems is essential for exerting the full power of GPU.

Optimizations There are mainly two ways to improve the performance of a GPU
program: the maximization of the usage of computing units, and the reduction of the
number of dynamic instructions. Optimizations to reach the first goal fall into two
categories. The first includes those techniques that attempt to increase the occupancy
of the computing units. One typical example is to reduce resource consumption of
a single thread so that multiple thread blocks can be assigned to an SM at the same
time. The multiple blocks may help keep the SM busy when the threads in one block
are stalled for synchronization. Example transformations for that purpose include the
adjustment of the number of threads per block, and loop tiling. The second category
contains the techniques that try to reduce latencies caused by memory references (or
branches). Examples include the use of cachable memory (e.g., texture memory), the
reduction of bank conflicts in shared memory, and coalesced memory references (i.e.,
when threads in a warp reference a sequence of contiguous memory addresses at the
same time.)

Optimizations to reduce the number of dynamic instructions include many tradi-
tional compiler transformations, such as loop unrolling, common subexpression elimi-
nation. Although GPU compilers have many of these techniques included, researchers
have seen great potential to adjust some of those optimizations, such as the levels of
loop unrolling.

Challenges It is difficult to analytically determine the best optimizations for a GPU
application, for three reasons. First, it is often difficult to accurately predict the effects
of an optimization on the performance of the GPU application. The effects are often
non-linear as what Ryoo et al. [21] have shown. The undisclosed details of the CUDA
compiler and other abstractions add further unpredictability. Second, different opti-
mizations often affect each other. Loop unrolling, for example, removes some dynamic
instructions and exposes certain opportunities for the instruction scheduler to exploit;
but it also increases register pressure for each thread. Given that the number of registers
in an SM is limited, it may result in fewer threads an SM can hold, and thus affect the
selection of thread-block size. Finally, the many limits in GPU hardware add further
complexity. In GeForce 8800 GT, for instance, the maximum number of threads per
block is 512, the maximum number of threads per SM is 768, the maximum number
of blocks per SM is 8, and at each time, all the threads assigned to an SM must use
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no more than 16 KB shared memory and 8,192 registers in total. These constraints
plus the unpredictable effects of optimizations make it extremely difficult to build an
accurate analytical model for GPU optimization.

An alternative strategy for determining the best optimizations is through empirical
search, whereby the optimizer searches for the best optimization parameters by running
the GPU application many times, each time with different optimizations applied. Three
obstacles must be removed before this solution becomes practical. First, a compiler
is needed for abstracting out the optimization space and transforming the program
accordingly. Second, effective space prunes are necessary for the search efficiency,
especially when the optimization space is large. Finally, the optimizer must be able
to handle the influence of program inputs. Our study (Sect. 4) shows that the best
values of optimization parameters of some GPU programs are different for different
inputs. For example, an optimization suitable for one input to a reduction program
degrades the performance of the program on another input by as much as 640 %. For
such programs, it is desirable to detect the input-sensitivity and make the optimization
cross-input adaptive.

3 Adaptive Optimization Framework

G-ADAPT+ is our solution to the challenges in GPU program optimization. It is a
cross-input adaptive framework, unifying source-to-source compilation, performance
modeling, and pattern recognition. It extends the capability of its predecessor,
G-ADAPT [16], by adding support to OpenCL programs (in addition to CUDA sup-
port).

3.1 Overview

Figure 1 shows the structure of G-ADAPT+. Its two parts separated by the dot vertical
line correspond to two stages of the optimization. The task of the first stage, shown
as the left part in Fig. 1, is to conduct a series of empirical search in the optimiza-
tion space of the given GPU program. During the search, a set of performance data,
along with the program input features, are stored into a database. After the first stage
finishes, the second stage, shown as the the right part of Fig. 1, uses the performance
database to recognize the relation between program inputs and the corresponding suit-
able optimization decisions. G-ADAPT+ then transforms the original GPU code into
a program that is able to automatically adapt to an arbitrary input.

The first part uses empirical search to overcome the difficulty in modeling GPU pro-
gram performance; the second part addresses the input-sensitivity issue by recognizing
the influence of inputs and making GPU program adaptive.

3.2 Stage 1: Heuristic-Based Empirical Search and Data Collection

The first stage is an iterative process. The inputs to the process include a given GPU
application (with some pragmas inserted) with a set of typical inputs.

In the iterative process, the adaptive framework, for each of the given inputs to the
GPU application, automatically searches for the best values of optimization parameters
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Fig. 1 G-ADAPT: an adaptive optimization framework for GPU programs

that can maximize the performance of the application. The process results in a perfor-
mance database, consisting of a set of <input, best parameter values> tuples.

Three components are involved in this iterative process. For a given input to the
GPU program, in each iteration, a compiler produces a new version of the application,
a calibrator then measures the performance of the program on the given input, and
the measured result is used by an optimization agent to determine what version of the
program the next iteration should try. When the system finds the best optimization
values for that input, it stores the values into the performance database, and starts the
iterations for another input.

Several issues need to be addressed to make the empirical search efficient and widely
applicable. The issues include how to derive optimization space from the application,
how to characterize program inputs, and how to prune the search space to accelerate
the search. In the following, we describe how the 3 components in the first stage of
G-ADAPT+ work together to address these issues.

3.2.1 Optimization Pragmas and G-ADAPT+ Compiler

We classify the optimization parameters in GPU applications into three categories,
corresponding to three different optimization levels. In the first category are execu-
tion configurations of the program—that is, the number of threads per block and the
number of thread blocks for the execution of each GPU kernel. The second category
includes the parameters that determine how the compiler transforms the program code,
such as loop unrolling levels and size of loop tiles. The third category includes other
implementation-level or algorithmic decisions, such as the selection of different algo-
rithms for implementing a function. These parameters together constitute the space
for the empirical search.

Different applications have different parameters to optimize; some parameters may
be implicit in a program, and the ranges of some parameters may be difficult to be
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automatically determined because of aliases, pointers, and the entanglement among
program data.

So even though compilers may automatically recognize some parameters in the
first two categories, for automatic search to work generally, it is necessary to have a
mechanism to easily expose all those kinds of parameters and their possible values for
an arbitrary GPU application.

In this work, we employ a set of pragmas, named G-ADAPT+ pragmas, to support
the synergy between programmers and compilers in revealing the optimization space.
There are three types of pragmas. The first type is dedicated for the adjustment of
scalar variable (or constant) values that control the execution configurations of the
GPU application. The second type is for compiler optimizations. The third type is for
implementation selection. The pragmas allow the inclusion of search hints, such as the
important value ranges of a parameter and the suitable step size. For example, a pragma,
“#pragma erange 64,512,2” above the statement “#define BLKSZ 256”, means that
the search range for the value of BLKSZ is from 64 to 512 with exponential (the first
“e” in “erange”) increases with base 2.

We employ source-to-source compilers to construct and explore the optimization
space. The G-ADAPT+ compiler has two modes. One is for CUDA program optimiza-
tions. It is based on Cetus [15], a C compiler developed by the group led by Eigenmann
and Midkiff. With some extensions added to Cetus, the compiler is able to support
CUDA programs, the G-ADAPT+ pragmas, and a set of program transformations (e.g.,
redundant elimination, and various loop transformations). The second mode of the
G-ADAPT+ compiler is for OpenCL program optimizations. It is based on ROSE [23],
a C++ compiler developed by a group at Lawrence Livermore National Laboratory, led
by Quinlan. The reason for using two compilers is historical. We started with Cetus,
but had to switch to ROSE for OpenCL programs because the lack of support to C++
language features in Cetus.

The G-ADAPT+ compiler has two-fold responsibilities. At the beginning of the
empirical search, the compiler recognizes the optimization space through data flow
analysis, loop analysis, and analysis on the pragmas in the GPU application. In each
iteration of the empirical search, the compiler uses one set of parameter values in the
search space to transform the application and produces one version of the application.

3.2.2 Performance Calibrator and Optimization Agent

The performance calibrator invokes the native GPU compiler to produce an executable
from the GPU program generated by the G-ADAPT+ compiler. It then runs the exe-
cutable (on the current input) to measure the running time. After the run, it computes
the occupancy of the executable on the GPU. The occupancy reflects the degree to
which the executable exerts the computing power of the GPU. A higher occupancy is
often desirable, but does not necessarily suggest higher performance. The occupancy
calculation is based on the occupancy calculating spreadsheet provided by NVIDIA.
Besides hardware information, the calculation requires the information on the size of
shared memory allocated in each thread, the number of registers used by each thread,
and the thread block size.
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The calibrator then stores the parameter values, along with the running time and
occupancy, into the performance database. It checks whether the termination condi-
tions (explained next) for the search on the current input have been reached; if so, it
stores the input, along with the best parameter values that have been found, into the
performance database.

The responsibility of the optimization agent is to determine which point in the opti-
mization space should be explored in the next iteration of the search process. The size
of the optimization space can be very large. For K independent parameters, with Di

denoting the number of possible values of the i th parameter, the optimization space is
as large as

∏K
i=1 Di . It implies that for an application with many loops and implemen-

tation options, the space may become too large for the framework to enumerate all the
points. The optimization agent uses hill climbing to accelerate the search. Let K be the
number of parameters. The search starts with all the parameters having their minimum
values. In each of the next K iterations, it increases one parameter by a step and keeps
the others unchanged. After iteration (K + 1), it finds the best of the K parameter
vectors that are just tried, and use it as the base for the next K iterations. This process
continues. When one parameter reaches the maximum, it stops increasing. When all
parameters reach their maximum values, the search stops.

3.3 Stage 2: Pattern Recognition and Cross-Input Adaptation

After the first stage, the performance database contains a number of <input, best para-
meter values> tuples, from which, the pattern recognizer learns the relation between
program inputs and the optimization parameters. A number of statistical learning tech-
niques can be used in the learning process. In this work, we select Regression Trees [11]
for its simplicity and good interpretability. Regression Trees is a divide-and-conquer
learning approach. It divides the input space into local regions with each region having
a regular pattern. In the resulting tree, every non-leaf node contains a question on the
input features, and every leaf node corresponds to a region in the input space. The
question contained in a non-leaf node is automatically selected in the light of entropy
reduction, defined as the increase of the purity of the data set after the data are split by
that question. We then apply least mean squares (LMS) to the data that fall into each
leaf node to produce the final predictive models.

To capitalize on the learned patterns, we need to integrate them into the GPU
application. If there were just-in-time compiler (JIT) support, the integration could
happen during runtime implicitly: The JIT compiles the program functions using the
parameters predicted as the best for the program input. Without JIT, the integration can
occur either through a linker, which links the appropriate versions of object files into an
executable before every execution of the application, or an execution wrapper, which
every time selects the appropriate version of executables to run. In our experiments, we
use the wrapper solution because it has no linking overhead, and the programs in our
experiments need only few versions of executables. The G-ADAPT+ compiler, along
with the CUDA compiler, produces one executable for each parameter vector that is
considered as the best for some training inputs in the performance database. When
the application is launched with an arbitrary input, the version selector in the wrapper
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uses the constructed regression trees to quickly determine the right executable based
on the input and then runs the program.

4 Evaluation

We use a number of kernels, written in either CUDA or OpenCL or both, to measure the
influence of program inputs on GPU optimizations and evaluate the effectiveness of
G-ADAPT+ in attacking the optimization difficulties. They mainly come from
NVIDIA SDK. The program, mvMul, is a matrix vector multiplication program imple-
mented efficiently by Fujimoto [8]. To study the influence of inputs, we collect or create
7–18 different inputs for each of the programs. We use two types of GPU devices,
GeForce 8800 GT for CUDA experiments and Telsa 1060 for OpenCL experiments.
That helps examine whether the input sensitivity persist across devices.

Figure 2 shows the performance of mvMul on two example inputs when different
configurations are used. The different parameter values cause up to 2.5 times perfor-
mance difference. The block size has more significant influence than the unrolling
levels. Moreover, the results clearly show the influence of program inputs on the opti-
mal parameter values. The best block size for the first input turns out to be the worst
for the second input, causing 2.4 times slowdown than its best run.

Input sensitivity shows up on some other kernels as well. We give only a brief
summary of the experimental results shown in Figs. 5, 6, 7).

We apply the predictions of G-ADAPT+ to measure the effectiveness in perfor-
mance improvement. The prediction is based on leave-one-out cross validation [11],
which is a typical practice in statistical learning to estimate the error of a predictive
model in real uses by separating testing and training data apart. On average, the scheme
achieves 80–100 % accuracy for predicting the best optimization parameters for a ker-
nel, demonstrating the effectiveness of the Regression Trees method in modeling the
relation between inputs and optimization decisions.
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Fig. 4 The ranges of speedup (on OpenCL programs) brought by G-ADAPT+ optimization decisions

On different inputs to an application, the G-ADAPT+ yields different speedups.
Figure 3 summarizes the ranges of speedup brought by G-ADAPT+ on the 7 CUDA
programs. The baseline is the running times of the original GPU programs. For each
program, the left bar in a benchmark corresponds to the worst configuration encoun-
tered in the explored optimization space, which reflects the risk of a careless con-
figuration or transformation. The right bar shows the effectiveness of G-ADAPT+.
Among all programs, only the default settings in transpose-co and reduction happen
to be (almost) the same as the one G-ADAPT+ finds. The 1.5–2.8 times of speedup on
other programs demonstrate the effectiveness of input-adaptive optimizations enabled
by G-ADAPT.

Figure 4 summarizes the ranges of speedup on a set of OpenCL kernels. The speedup
is even more significant than the CUDA results.
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Fig. 5 The best values of optimization parameters and speedups of CUDA programs. The other four
benchmarks, matMulGPU, convolution, scalarProd, transpose-co, do not show input sensitivity

5 Related Work

The studies closest to this work are the recent explorations by Ryoo et al. [21], and
Baskaran et al. [3]. Ryoo and his colleagues have defined efficiency and utilization
models for GPU computing, and demonstrated the effectiveness of the models in
pruning of the optimization space. Our study complements their technique in that the
influence from program inputs is a dimension omitted in their work. Furthermore,
the previous work conducts transformations manually, whereas, we develop a com-
piler framework with optimization pragmas for automatic transformations. The prune
method in our tool complements the previous models in that it relaxes some assump-
tions made by previous work, such as the memory bandwidth is not the bottleneck
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Fig. 6 The best values of optimization parameters and speedups of OpenCL programs (continued in Fig. 7)

on performance. On the other hand, the previous models may work well in the cases
when the assumptions hold.

In the study by Baskaran et al. [3], the authors focus on the optimization of affine
loops in GPU applications. They develop an approach to improving global memory
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Fig. 7 The best values of optimization parameters and speedups of OpenCL programs

accesses and use model-driven empirical search to determine optimal parameters for
loop unrolling and tiling. Our work is complementary to their technique on two aspects.
First, our optimizations are input adaptive, whereas, the influence of program inputs
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is a missing factor in the previous study. Second, our tool can be applied to not only
optimization of affine loops, but also other factors that affect the performance of GPU
applications, such as the size of thread block size and implementation-level decisions.
On the other hand, the transformations developed in the previous work can strengthen
the effectiveness of our tool. An integration of them into the tool may be worthwhile.

Several recent studies have proposed software and hardware solutions to the influ-
ence of irregular memory references or control flows on GPU program performance.
Zhang et al. [30,31] develop G-Streamline, a software tool for eliminating irregular
computations on the fly. Meng et al. [19] introduce dynamic warp subdivision to divide
a warp so that diverging threads can execute in an interleaving manner. Tarjan et al. [24]
propose adaptive slip to allow a subset of threads to continue while other threads in
the same warp are waiting for memory. Fung et al. [9] try to reduce thread divergences
through dynamic warp formation. These hardware approaches have shown promis-
ing simulation results. As a pure software solution, our approaches are immediately
deployable on current real GPU systems.

On traditional CPU architecture, there has been many studies on empirical-search
based optimizations. Many of the explorations are for the development of efficient
numerical libraries or kernels, such as ATLAS [29], PHiPAC [4], SPARSITY [12],
SPIRAL [20], FFTW [7], STAPL [25]. Our work is enlightened by those explorations,
but focuses on a single-chip massively parallel architecture, on which, the optimiza-
tions dramatically differ from those on the previous CPU architecture. Furthermore,
the targets of this work are general GPU applications, rather than a certain set of ker-
nels. The variety in the applications further complicates input characterization and the
construction of cross-input predictive models.

The adaptation to different program inputs in this work shares some common theme
with code specialization, such as procedure cloning [5], the incremental run-time
specialization [18], the specialization of libraries in Telescoping Languages [14]. In
addition, dynamic optimizations [1,6,17,28] may tailor a program to their inputs by
runtime code generation.

However, unlike the previous work, the adaptation in our work concentrates on the
whole-program level, rather than on the procedure level. We believe that a runtime
optimizer may be able to better capitalize the cross-input adaptive models, but it may
introduce extra runtime overhead.

There have been some studies tackling input sensitivity in dynamic program opti-
mizations. A representative work is the recent input-centric optimizations proposed by
Tian and others [13,26,27]. Some other works on input sensitivity appear in embedded
systems research [2]. They do not address the special complexities in GPU comput-
ing. A recent work following this current study explores input-aware compilation for
GPU [22].

6 Conclusion

This paper reports our exploration of the influence of program inputs on GPU pro-
gram optimizations. It shows that for some GPU applications, their best optimizations
are different for different inputs. It presents a compiler-based adaptive framework,
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G-ADAPT+, which is able to extract optimization space from program code, and
automatically search for the best optimizations for an GPU application on different
inputs. With the use of Regression Trees, G-ADAPT+ produces cross-input predictive
models from the search results. The models can predict the best optimizations from
the input given to the GPU application, and thus enable cross-input adaptive opti-
mizations. Experiments show significant performance improvement generated by the
optimizations, demonstrating the promise of the framework as an automatic tool for
resolving the productivity bottleneck in the development of efficient GPU programs.
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