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Abstract
One important type of parallelism exploited in many applications
is reduction type parallelism. In these applications, the order of the
read-modify-write updates to one shared data object can be arbi-
trary as long as there is an imposed order for the read-modify-write
updates. The typical way to parallelize these types of applications
is to first let every individual thread perform local computation and
save the results in thread-private data objects, and then merge the
results from all worker threads in the reduction stage. All appli-
cations that fit into the map reduce framework belong to this cat-
egory. Additionally, the machine learning, data mining, numeri-
cal analysis and scientific simulation applications may also ben-
efit from reduction type parallelism. However, the parallelization
scheme via the usage of thread-private data objects may not be vi-
able in massively parallel GPU applications. Because the number
of concurrent threads is extremely large (at least tens of thousands
of), thread-private data object creation may lead to memory space
explosion problems.

In this paper, we propose a novel approach to deal with shared
data object management for reduction type parallelism on GPUs.
Our approach exploits fine-grained parallelism while at the same
time maintaining good programmability. It is based on the usage
of intrinsic hardware atomic instructions. Atomic operation may
appear to be expensive since it causes thread serialization when
multiple threads atomically update the same memory object at the
same time. However, we discovered that, with appropriate atomic
collision reduction techniques, the atomic implementation can out-
perform the non-atomics implementation, even for benchmarks
known to have high performance non-atomics GPU implementa-
tions. In the meantime, the usage of atomics can greatly reduce cod-
ing complexity as neither thread-private object management or ex-
plicit thread-communication (for the shared data objects protected
by atomic operations) is necessary.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, compilers, optimization

General Terms Performance, Management

Keywords GPU; Atomics; Parallelism; Concurrency
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1. Introduction
Parallel applications need to manage shared data object updates
efficiently. In many important parallel applications, operations on
shared memory objects are commutative and thus the execution or-
der of these operations can be arbitrary [8]. These applications in-
clude map reduce applications, machine learning, numerical anal-
ysis and scientific simulation applications. Parallelism in these ap-
plications is typically exploited via the usage of thread-private data
structures to hold local computation results. Eventually, a final re-
duction step merges results from all worker threads. In this way, a
large task can be split into multiple independent small subtasks that
can be executed in parallel. However, this approach may incur large
memory space overhead when there are many concurrent threads.
This is typically the case in GPU applications, where a kernel func-
tion may easily invoke millions of threads.

An alternative parallelization approach is to partition the work-
load in a way such that the write updates to every data object is
at most from one thread. In certain cases, communication among
individual threads can be completely eliminated. For instance, in a
sparse matrix vector multiplication kernel, the dot product between
one entire row in the input matrix and the input column vector re-
sults in a single write to one entry in the result vector. Every dot
product can be performed by one and at most one thread. How-
ever this approach may suffer from the load-unbalancing issue. It
is challenging to maintain a balanced workload across all threads
when the number of threads is large. In the sparse matrix, the num-
ber of non-zero entries in every row may vary a lot. Therefore, if
one thread is assigned only one dot product, the amount of multi-
plication steps (equivalent to the number of non-zero elements in a
row) for every thread may vary a lot. It is relatively easier to bal-
ance the workload in multi-core architectures that exploit coarse-
grained parallelism. This is because we can use a much smaller
number of threads and assign multiple dot products to one thread
for load balancing. However, the GPU applications exploit fine-
grained parallelism and thus it is difficult to achieve load balancing
if inter-thread communication is eliminated.

Due to the space explosion and load-unbalancing issues, some
prior studies have explored the use of atomic operations in combi-
nation with shared data objects with for specific applications [13]
[4] [18] or specific memory layer (scratch-pad memory) [6]. The
atomic operations help ensure the atomicity of the read, modify and
write steps. Therefore, managing the commutative memory updates
is purely automatic, requiring no extra algorithmic complexity. The
GPU hardware atomic support has also been improved from time
to time. For instance, the atomic memory objects can be cached
in NVIDIA Fermi GPUs and the L2 cache hit bandwidth is en-
hanced significantly in NVIDIA Kepler GPUs [3] (for instance by
73% in Geforce GTX680). However, there is a lack of systematic
exploration in the application of native atomics to general commu-
tative computations operations. The challenge mainly comes from
atomic collision – if multiple concurrent threads attempt to read-
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modify-write the same memory location at the same time, then
these threads need to be serialized, forfeiting the potential mas-
sive parallelism in GPU architectures. It remains unclear whether
atomics implementation can be profitable for a more general class
of parallel GPU applications, i.e., the applications that already have
highly optimized non-atomics implementations. If it is potentially
profitable, we need to address the atomic collision challenge.

In this work, we conducted a systematic exploration in the usage
of atomic operations for a general class of applications that are
abundant in reduction type parallelism. We studied the impact of
atomic collisions and proposed efficient atomic collision reduction
techniques based on two principles. The first principle is to scatter
atomic updates to the same memory location at different time
intervals to avoid thread serialization. The second principle is to
convert atomic collision to parallel computation so that atomic
updates can be performed by a few leader threads that do not
conflict with each other. In contrast to the traditional perception
that atomic operations should mainly be used as synchronization
primitives (locks and barriers), our study shows that using atomics
for general purpose computation can actually be profitable, in terms
of both programmability and efficiency, if used appropriately. We
summarize our contributions as follows:

• We discovered that atomic operation can be profitable in paral-
lelizing applications with abundant reduction type parallelism,
even for parallel GPU applications that already have highly op-
timized non-atomics implementations, including sparse matrix
vector multiplication and parallel summation (reduction).

• We identified two principles for efficient reduction of atomic
collisions. Based on these two principles, we designed a set
of reduced-collision atomic algorithms. We presented the com-
plexity of our algorithms and discussed the applicability of
these algorithms in different scenarios. We built a statistical
learning model to choose over the non-atomics, naive atomics
and reduced-collision atomics implementations given different
atomic collision levels.

• We built a library that implemented these atomic collision re-
duction algorithms. The functions in this library have simple
interfaces. In most cases, programmers can call these functions
in a way similar to calling regular native atomic functions .

The rest of the paper is organized as follows. In Section 2 we
give the background on GPU programming and present a motiva-
tion example. In Section 3, we discuss the performance aspect of
generally using atomic operations in computation. We present de-
tailed algorithms for eliminating atomic collision. In Section 4, we
present evaluation results. We describe related work in Section 5
and conclude in Section 6.

2. Motivation
Background Throughout this paper we use NVIDIA CUDA
terminology to describe the GPU architecture and programming
model. A GPU is made up of multiple Streaming Multiprocessors
(SMs). An SM is a Single Instruction Multiple Data (SIMD) like
processor in which a group of threads execute the same instruc-
tions on multiple data elements. A GPU program includes both
CPU code and GPU code. The function that runs on the GPU is
called a kernel function. A kernel function is typically launched
by more than thousands of threads. These threads are divided into
small groups to be executed and scheduled on different SMs. Each
group is called a thread warp. There is implicit synchronization
within a thread warp – in which threads execute in lockstep.

There are two major types of memory on a GPU – on-chip
memory and off-chip memory. On-chip memory includes regis-
ters, cache, and shared memory. Scratch-pad memory is nearly as

fast as cache memory though it has to be explicitly managed by
the programmer. Scratch-pad memory is called shared memory in
NVIDIA terminology. The off-chip memory of an NVIDIA GPU is
partitioned into global memory for heap objects, local memory for
local variables, constant memory for constant objects and, texture
memory for multi-dimensional read-only data objects. We primar-
ily use shared memory and global memory for our atomics study.

We define atomic collision as the event of multiple threads at-
tempting to update the same data object at the same time. These
memory updates must be serialized due to the atomicity property of
atomic operations. The shared memory atomic instruction is imple-
mented as a loop that atomically updates unique unlocked memory
locations at each iteration until one thread warp’s requested atomic
memory updates are complete. The number of iterations for a warp
is the number of times the most frequent memory location is ac-
cessed by threads in the whole thread warp. Common atomic oper-
ations include atomicAdd, atomicOr, atomicAnd, atomicMin, etc.
We focus on the commutative atomic operations.

Sparse Matrix Vector Multiplication Example As a motivation
example, we first show the atomics-based implementation of a real
application. We then compare the performance between the tradi-
tional non-atomics implementation and the atomics-based imple-
mentation. We use a highly optimized sparse matrix vector mul-
tiplication kernel from CUSP [5], which is an open source C++
library of generic parallel algorithms for sparse linear algebra and
graph computations on GPUs. We show the main computation code
in the left half of Fig. 1. In this implementation, a thread warp it-
erates over one or multiple consecutive rows in the input sparse
matrix represented by V[ ] (at line 1), multiplies every non-zero
element by the corresponding element in the input column vector
(at line 4), performs segment reduction on the multiplication results
and updates the output column vector correspondingly (at lines 5-
20). If the last thread in a thread warp at previous iteration obtains
the multiplication value to be added to the same output vector en-
try, then the value is carried into the current iteration (lines 7-8).
Otherwise the value from the last iteration needs to be added to the
corresponding output vector entry (at lines 9-10). The control flow
is relatively complex here since the thread warps may cross input
matrix row boundaries.

In the right half of Fig. 1, we show the atomics-based imple-
mentation. The multiplication code is exactly the same (at line 4).
The difference begins from line 5. We atomically add the multi-
plication result into the corresponding output vector entry y[row].
There is no thread divergence in the code and the total number of
lines of code is significantly reduced. Although not included in the
code snippet, note that the non-atomics version uses shared mem-
ory to hold intermediate reduction results. The rows[] and vals[]
arrays are shared memory arrays. However, our naive atomics im-
plementation does not use shared memory.

In Fig. 2, we show the performance comparison results. The
experiment is performed on an NVIDIA GTX 680, which is an
NVIDIA Kepler card, we denote as kepler, and a NVIDIA Tesla
C2075, which is a NVIDIA Fermi card, we denote as Fermi. We
use the non-atomics implementation as baseline and the y axis rep-
resents are speedup. If the speedup is greater than 1, atomics ver-
sion is faster, otherwise the non-atomics version is faster. Every
bar in this graph corresponds to an input matrix. We use the sparse
matrix input from matrix market [2] – the standard pool of sparse
matrix in real world applications which is typically used for bench-
marking sparse matrix programs. In Fig. 2, we can see that, surpris-
ingly, the naive atomics implementation is faster for some case(s)
on both Fermi and Kepler despite the atomic collisions. For Fermi,
in most cases, the atomics version runs slower than the non-atomics
version. One reason is that the original non-atomics version used
shared memory to store intermediate results, while the naive atom-
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1: for(IndexType n = interval_begin + thread_lane; n < interval_end; n += WARP_SIZE)
2:    {
3:        IndexType row = I[n];                                                              // row index (i)
4:        ValueType val = V[n] * fetch_x<UseCache>(J[n], x);            // A(i,j) * x(j)

5:        if (thread_lane == 0)
6:        {
7:            if(row == rows[idx + 31])
8:               val += vals[threadIdx.x + 31];                                          // row continues
9:            else
10:                y[rows[idx + 31]] += vals[threadIdx.x + 31];  // row terminated
11:        }

12:        rows[idx]         = row;
13:        vals[threadIdx.x] = val;

14:        if(row == rows[idx -  1]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  1]; }
15:        if(row == rows[idx -  2]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  2]; }
16:        if(row == rows[idx -  4]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  4]; }
17:        if(row == rows[idx -  8]) { vals[threadIdx.x] = val = val + vals[threadIdx.x -  8]; }
18:        if(row == rows[idx - 16]) { vals[threadIdx.x] = val = val + vals[threadIdx.x - 16]; }

19:        if(thread_lane < 31 && row != rows[idx + 1])
20:            y[row] += vals[threadIdx.x];                                                // row terminated
21:    }

    1: for(IndexType n = interval_begin + thread_lane; n < interval_end; n += WARP_SIZE)
    2: {
    3:     IndexType row = I[n];                                                             // row index (i)
    4:     ValueType val = V[n] * fetch_x<UseCache>(J[n], x);            // A(i,j) * x(j)
         
    5:     atomicAdd(y+row, val);
     
    6: }

Non-atomics Implementation Atomics Implementation

One line of code in atomics version.
16 lines of code in the non-atomics versions.

Figure 1. Atomics based SPMV implementation v.s. non-atomics based SPMV implementation
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Figure 2. Performance of naive atomics implementation on Kepler
and Fermi

ics implementation illustrated in Fig. 1 uses global memory, which
is much slower. The other reason is the atomic collision incurred by
threads operation on elements at the same row of the matrix. For the
Kepler card, we already saw performance improvement for most
benchmark matrices. Only two of them have performance slow-
down. The atomics hardware support on Kepler has been improved
significantly compared to the Fermi generation (especially for mul-
tiple atomic updates to single memory locations [3]). Further, the
thread divergence is significantly eliminated in the naive atomics
version, which also contributes to the performance improvement
[19]. The experiment results demonstrated the potential of using
atomic operations for programs with abundant reduction type par-
allelism even without applying any atomic collision elimination
techniques. In the following Section 3, we show that with appro-
priate collision-removal techniques, the already atomics-based im-
plementation can be further improved.

3. Performance
In this section, we discuss the performance aspect of applying
atomic operations extensively for computing purposes. Atomic col-
lision may degrade atomic performance significantly. We describe
our approaches that reduce atomic collisions. There are two major
types of approaches. The first type of approach is based on con-
verting atomic collision into computation. This approach leverages
local parallel reduction and reduces atomic memory operations.
The second type of approach is based on re-scheduling atomic
memory operations so that we can scatter potential atomically con-
flicted accesses over different time intervals. The basic idea is that
if the atomic updates of the same memory addresses from differ-
ent threads are scheduled at the same time, they collide with each
other; however, if these threads are scheduled to run at different
time intervals, they do not collide with each other. GPU programs
typically launch a lot more threads than the number of physical
GPU cores for maximal concurrency. Therefore, there is great po-
tential to schedule threads for minimal atomic collisions. We name
the first type of approach as atomic-collision-to-computation, and
the second as atomic-collision-to-scatter. We describe the first ap-
proach in Section 3.1 and the second one in Section 3.2.

3.1 Convert Atomic Collision To Computation
With the atomic-collision-to-computation approach, we first per-
form local parallel reduction for the threads that atomically ac-
cess the same memory location. We then let one thread perform
atomic updates to every unique memory address based on the local
reduction result. We present the design of the atomic-collision-to-
computation algorithm in two scenarios: (1). the threads that access
the same address are placed next to each other as illustrated in Fig.
3 (a), which happens frequently in kernels with structured paral-
lelism such as matrix/vector computation in linear algebra libraries
[12] ; (2) the threads that access the same memory locations are not
placed next to each other as illustrated in Fig. 3 (b), which is the
case for kernels with unstructured parallelism such as graph traver-
sal kernels. We refer to the first scenario as the clustered-collision
case and the second one as the non-clustered-collision case.

Clustered-collision Case: One of the major difficulties of the
atomic-collision-to-computation approach is that the number of
threads accessing every unique memory address may not be uni-
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threads

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]
data: 

    A[ ]

tid 0 1 2 3 4 5 6 7

threads

A[0] A[1] A[2] A[3] A[4] A[5] A[7] A[8]
data: 

    A[ ]

tid 0 1 2 3 4 5 6 7

(a) Clustered-Collision (b) Non-Clustered-Collision

Figure 3. Atomic Collision Pattern

threads

tid 0 1 2 3 4 5 6 7

atomicAdd(&A[ind[tid]], 1);

0 1 1 1 3 3 3 3ind[ ]

1 1 1 1 1 1 1 1tempVal[ ]

1 1 2 2 1 2 2 2tempVal[ ]

1 1 2 3 1 2 2 4tempVal[ ]

1 0 0 3 0 0 0 4A[ ]

atomicAdd (only 
threads 0, 3 and 7)  

0 0 0 0 0 0 0 0A[ ]

if (ind[tid] == ind[tid-1]) 
LOOP ITER 1: 

if (ind[tid] == ind[tid-2]) 
LOOP ITER 2: 

Figure 4. An example of atomic scan and reduce approach

form. Thus the number of local parallel reduction steps for every
unique memory address may also vary significantly. Further, the
thread boundary for local parallel reduction, the first and the last
thread for one unique memory address, is usually not determined
during static time. An example is the sparse matrix vector multipli-
cation kernel we discussed in Section 2, in which the threads that
process the non-zero elements at the same input matrix row may
span across different thread warps and blocks. In a word, it is chal-
lenging to detect the size and boundary of every thread group that
performs local parallel reduction for an unique memory address.

We propose an algorithm for the clustered-collision case that
can perform the minimal number of local parallel reduction steps
and can detect thread boundaries for unique memory addresses at
the same time. In this algorithm, within every thread, we check the
current thread and the thread with a logical id that is smaller than
the current thread by a power of 2. If the two threads’ memory
addresses are the same, then we perform partial reduction on these
two threads, and store the result in the current thread’s temporary
storage. If the two threads’ memory addresses are different, we do
not perform any action since we have already crossed the boundary
of the thread region corresponding to the same unique memory
address. Start from the thread distance of 20, we repeat this process
and double the distance at every iteration until we have finished
local parallel reduction for the largest thread region.

We describe the detailed algorithm in algorithm 1. We illustrate
the algorithm with atomic addition operations, which applies to

Algorithm 1 Atomic scan and reduce algorithm
1: procedure ATOMICADDSR(A[], idx, val,N )
2: // Naive atomic version: atomicAdd(&A[idx],val)
3: // Allocate temporary storage for addresses and values
4: alloc tempVal[]; // One value per thread
5: alloc tempIdx[]; // One integer per thread
6: alloc tempMask[]; // One integer per thread warp
7: tempIdx[tid] = idx;
8: tempVal[tid] = val;
9: sync(); // Barrier at a given thread scope

10: tempMask[warpid] =
ballot(tempIdx[tid]==tempIdx[tid-thresh]);

11: if (tempMask[1:lastWarpid] == 0) then
12: // If all masks are 0s, use naive atomic and return
13: atomicAdd(&A[idx], val);
14: return ;
15: end if
16: for i = 1 to log2 N do
17: if (tempIdx[tid] == tempIdx[tid-2i] && tid≥ 2i) then
18: tempVal[tid] += tempVal[tid-2i];
19: sync();
20: else
21: sync();
22: break;
23: end if
24: end for
25: if (tempIdx[tid] 6= tempIdx[tid+1] && tid ≤ N-2) then
26: atomicAdd(&A[idx], tempVal[tid]);
27: end if
28: sync();
29: end procedure

other commutative atomic operations as well. Programmers who
want to convert atomic collision to computation can simply replace
the original atomic add function atomicAdd with this atomicAddSR
function. The parameters of atomicAddSR include the array pointer
A, the index idx and the value val, which means the array cell A[idx]
needs to be atomically increased by val. The parameter N is the
number of threads on which local parallel reductions need to be
performed. Note there might be more than one local parallel reduc-
tion thread regions within the N threads. This function is executed
by every individual thread. In this algorithm, we synchronize after
every local (partial) parallel reduction step to make sure the mem-
ory updates are visible to all threads within the N threads (at line 19
and 21). If local parallel reduction is performed within every thread
warp, the barrier synchronization statement is not necessary since
thread warp level synchronization is implicit. We ensure that local
parallel reduction is only performed by threads that access the same
unique memory address by the condition check at line 17. This can
be nicely integrated with the local parallel reduction steps as the
number of condition checks is also logarithmic. If the two threads
do not pass the condition check at line 17, then we know we crossed
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the boundary of the thread region corresponding to the same mem-
ory location, we break out of the loop at lines 20-22. Henceforth,
the number of local parallel reduction steps for every unique mem-
ory address is logarithmic with respect to the thread group size.
When all local parallel reduction operations are done, we break out
of the loop from line 16 to 24. Therefore we ensure the minimal
number of computation steps with this approach. Note that we only
perform local parallel reduction if there are at least thresh threads
which access the same memory location. It is performed with the
help of a voting function at lines 10-15. We will describe the selec-
tion of the thresh variable in Performance Guarantee discussion in
this section. We will discuss the voting function in more detail at
the Non-Clustered-Collision Case scenario.

We illustrate the use of our algorithm in Fig. 4. In this example,
every thread tries to atomically add an value 1 to a cell in array A
with the index of ind[tid]. The tid variable represents the thread in-
dex. Every cell in A[] array is 0 initially as illustrated in Fig. 4. We
also show the values of every cell in array ind[], which corresponds
to the location of the array cell every thread needs to access. As-
sume there are 8 threads. According to ind[], the first thread needs
to increment A[0] by 1, the second to the fourth thread need to
atomically increment A[1] by 1, and the fifth to the eighth thread
need to increment A[3] by 1. The optimal case is to perform 2 local
reduction steps for threads 2-4 and threads 5-8, and no reduction
for thread 1. We achieve this by using the condition at line 17 in
Alg. 1. At loop iteration 1 in Fig. 4, we only perform addition if
the current thread and its precedent thread have exactly the same
memory access. Then we save the partial reduction result in tem-
porary array cell tempVal[tid] for each thread. At loop iteration 2,
we perform the same check and partial reduction operations except
that we check the current thread and the thread that has a tid smaller
than the current thread by 2. After two loop iterations, we get the
summation results for every element and the elements to its left that
correspond to the same memory in array tempVal[]. In the last step,
we perform atomic add only with thread 0, thread 3 and thread 7
to A[0], A[1] and A[3] and array A[] is completely atomically up-
dated. Our algorithm eliminates atomic collision completely and
needs the minimal number of local parallel reduction steps.

Non-Clustered-collision Case: In this case, not only is the
amount of atomic collision irregular, but also how it is distributed
among threads is irregular – the threads that access the memory
address are not necessarily placed next to each other, which makes
local parallel reduction boundary even more challenging. We pro-
pose an algorithm that identifies the most frequently accessed mem-
ory locations with the maximum likelihood. Then we obtain the
frequency of these memory addresses in one pass or log(Nwarp)
passes, with Nwarp being the number of thread warps. Based on
this, we determine if it is necessary to perform local reduction and
if so how many local reduction steps is necessary. We name this
approach as atomic vote and reduce.

We describe the atomic vote and reduce algorithm in Alg. 2.
Given a local reduction scope (whether it is within every thread
warp or every thread block or among all the threads), we first
randomly pick a thread and obtain the thread’s memory access
location (lines 10-11). Then, we let all threads vote to find out
which threads access the same memory address (line 12). Thus,
we get the thread access frequency of this memory address. If it
is above a threshold (the thresh variable in Alg. 2), we perform
a local reduction on the corresponding threads and let one leader
thread write the local reduction result back atomically (lines 14-
17). Otherwise, we use the naive atomic operations (lines 21-22).
Similarly, this approach not only applies to atomic addition but also
other commutative atomic operations. The barrier synchronization
instruction at line 9 is not necessary if we perform atomic vote
and reduce at thread warp level as synchronization within a thread

Algorithm 2 Atomic vote and reduce algorithm
1: procedure ATOMICADDVR1(A[], idx, val)
2: // Naive atomic version: atomicAdd(&A[idx],val)
3: // Allocate temporary storage for addresses and values
4: alloc tempVal[]; // One value per thread
5: alloc tempIdx[]; // One integer per thread
6: alloc tempMask[]; // One mask per thread warp
7: tempIdx[tid] = idx;
8: tempVal[tid] = val;
9: sync(); // Thread barrier at a given thread scope

10: rid = rand[(scopeid + kbase)% rand cycle]; //randomly
selected thread id

11: sampleIdx = tempIdx[rid];
12: tempMask[warpid] = ballot(idx == sampleIdx);
13: if (freq(tempMask[1:lastWarpid]) ≥ thresh) then
14: lsum = localReduce(); // Local parallel reduction
15: if (scopeTid == 0) then
16: atomicAdd(&A[sampleIdx], lsum);
17: end if
18: if (idx 6= sampleIdx ) then
19: atomicAdd(&A[idx], val);
20: end if
21: else
22: atomicAdd(&A[idx], val);
23: end if
24: end procedure

warp is implicit. In Alg. 2, we illustrated the atomic vote and
reduce algorithm with the case where we want to pick the most
frequently accessed memory address and perform local reduction.
We name it as atomicVR1(). We also extend it to the case where we
want to pick top m most frequently accessed memory addresses.
We use a loop to sample the top m most frequent addresses. The
local reductions of these m unique addresses happen in parallel.
In practice, we find atomicVR1() at the thread warp level is most
helpful. If the amount of atomic collision is excessive at thread
block level or among all running threads, then the non-atomics code
version usually outperforms the atomic version (even the reduced
atomic collision version). We use a regression tree model described
in Section 3.3 to identify different atomic collision level.

We use the random sampling and voting based collision detec-
tion approach for the following reason. Given a set of memory ad-
dresses accessed by one thread group (group is the scope we men-
tioned above), the more frequent a memory address appears, the
more likely the thread that accesses it will be selected if we draw
one thread from this thread group with uniform probability distri-
bution. As the number of thread groups and the number of sam-
pling points increase, the most frequent memory address can be
obtained with maximum likelihood according to the large number
theorem. The number of threads launched by a GPU kernel is typ-
ically large which ensures the efficiency of the random sampling
and voting based approach. For random number generation, we do
not directly use a random number generator during runtime. In-
stead, we generate a large sequence of random numbers with a full
cycle random number generator. We save the sequence in memory.
Whenever a kernel is invoked, we pick a location in the sequence
randomly as the seed position. The thread groups then use the ran-
dom number sequence in a round robin fashion. The first thread
group in the GPU kernel uses the random number in the seed po-
sition. The second thread group uses the number immediately after
the seed position. The following thread groups get their random
number in a similar fashion and when they hit the end of the se-
quence, the first random number in the sequence is selected. This
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process is described at line 10. The kbase is the seed position de-
termined when the kernel is invoked. We use the system time mod
the random number cycle to obtain the seed position in the ran-
dom sequence. Every time the kernel runs, it starts with a different
seed position. Therefore the randomness across all thread groups
is ensured in a lightweight fashion (no dynamic random number
generation is necessary).

Performance Guarantee We choose the thresh variable in Alg.
1 and Alg. 2 in a way that guarantees no performance degradation
if compared to the naive atomic implementation. Assume the total
number of threads in the thread group is N, the maximal number of
threads that access the same memory location is x, and the initial
setup overhead is s (the voting, boundary checking and counting in
Alg. 1 and Alg. 2). We determine the threshold value by finding the
minimal of x in the following inequalities:

log2x+ s ≤ x(atomic scan and reduce) (1)
(N − x) + log2x+ s ≤ x(atomic vote and reduce) (2)

In the above inequalities, the left-hand side estimates the total
number of computation steps needed if we perform the local re-
duction, and the right-hand side represents total number of compu-
tation steps if we use the naive atomic implementation. For atom-
icVR, in the left-hand side, the N − x component represents, after
local parallel reduction on the set of threads that access the most
frequently accessed address, the number of extra atomic computa-
tion steps needed in the worst scenario (assuming all other threads
collide at the same memory address). For both atomicVR and atom-
icSR, the log2x component represents the number of computation
steps needed for local parallel reduction. The s component repre-
sents initial set up overhead. We first change the ≤ to = and solve
this nonlinear equation for x. Then we set the threshold variable
thresh as the x value we solved. Following this inequality, we guar-
antee that our transformed atomics code does not run any slower
than the naive atomics code. We obtain the overhead s by checking
number of binary instructions that are needed to implement the ini-
tial setup and normalize it with respect to the latency of the binary
instructions needed to perform every step of local reduction.

3.2 Atomic Collision to Scatter
In the atomic-collision-to-computation approach, we perform local
reduction operations before we perform any atomic updates. In this
section, we present an approach that does not use extra local re-
duction steps. The basic idea is that two different threads accessing
the same unique memory address do not collide atomically if they
are scheduled to run at different points in time. Since GPU pro-
grams typically launch a lot more threads than physical GPU cores,
we can schedule these threads to scatter the potentially conflicting
atomic operations over time.

We propose an algorithm that achieves the scattering of poten-
tially conflicting atomic accesses through thread layout transfor-
mation. The essential idea is to separate the threads that have con-
flicting memory accesses from each other as far as possible. The
logical thread layout implies the thread co-running pattern; for in-
stance, every thread in a thread warp or a thread block runs at the
same time at one SM. The threads from different thread blocks may
run at different time intervals, as the GPU hardware only support
a limited number of active thread warps at one time. The thread
warps are divided into batches, with the size of each batch being
the maximal number of active thread warps the GPU can support.
These thread batches run sequentially [1]. To enable scattering, we
first group threads by the memory addresses they access. We con-
struct one set of threads for every unique memory address. We then
reorder threads based on these sets and create a new thread lay-
out. Starting from the first set of threads, we take out one thread

and place it as the first thread in the new thread layout. Next we
pick a thread from the second set and place it as the second thread
in the new thread layout. We repeat this step and keep appending
threads to the new thread layout. If we reach the last set of threads,
we restart from the first set. The process stops until we remove
all threads from the sets. Finally, we obtain a new order of logi-
cal threads. For clustered-collision case, since the threads have al-
ready been grouped according to their memory access addresses
the set creation step is omitted. For non clustered-collision case,
both the set creation step and the reordering step are necessary. If
the scattering overhead is non-trivial, we run the scattering algo-
rithm on CPUs. We can overlap the actual computation on GPU
with the scattering process on CPU. If necessary, we use the kernel
spilling technique described in [19] to enable the overlapping and
overcome dependence. Further, we can regroup and reorder thread
warps instead of threads. For non-clustered collision cases, we ob-
tain the most frequently accessed address in one warp using the ran-
dom sampling approach described in Alg. 2 and we label the thread
warp with this address. For the clustered case, we associate every
thread warp with its first thread’s address since threads are already
grouped. These two overhead reduction techniques help us achieve
performance improvement or at least no performance degradation
by making the thread layout transformation overhead transparent.
The algorithm for scattering is illustrated with pseudo-code in Alg.
3.

Algorithm 3 Atomic scatter algorithm
1: procedure ATOMICSS(tAddr[], newLayout[], tNum)
2: //Obtain sets of threads that access unique addresses
3: wSets = groupThreads(tAddr[]);
4: i = 0;
5: while (i < tNum) do
6: for each set ∈ wSets do // In address ascending order
7: if ( set.size 6= 0 ) then
8: tId = set.pop();
9: newLayout[i] = tId;

10: i++;
11: end if
12: end for
13: end while
14: return newLayout[];
15: end procedure

3.3 Atomic Collision Sampling
Eliminating atomic collision incurs overhead. If there is little
atomic collision, there is little benefit in eliminating atomic col-
lision. We should use naive atomics directly in these cases as the
overhead for detecting and eliminating collision is non-trivial. If
there is too much atomic collision, we should use the non-atomics
code version or the reduced-collision atomics. We need to deter-
mine for every given program input: (1) whether the atomics code
version should be used; (2) if so, whether the reduced atomic colli-
sion version or the naive atomics version should be used. Although
we can perform a dynamic collision check with the voting approach
described in Section 3.1, the check overhead s in inequalities 1 and
2 needs to be incurred regardless of the fact whether atomic col-
lision needs to be reduced or not. We propose statistical learning
techniques to model the relationship between the collision statistics
and the decision on whether and which atomic code version should
be used. Specifically, we use regression tree model [10] for its
simplicity and good interpretability. We use three major collision
parameters: (1). intra-warp collision level (2) intra-block collision
level (3) all-thread collision level. We first define the maximal col-
lision factor as the ratio between the maximal access frequency of
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Figure 5. Performance results of sparse matrix vector multiplica-
tion after eliminating atomic collision

every unique memory address in a warp/block and the total number
of threads in a warp/block. The maximal collision factor can be ob-
tained using the voting step we discussed in Alg. 2. It is lightweight
as the process can be easily parallelized by many threads. We de-
fine the intra-warp/intra-block collision level as the average of all
thread warps’/blocks’ maximal collision factors. We choose max-
imal collision factor because it is the minimal amount of time the
whole thread warp/block needs to finish all atomic updates. The
all-thread collision level is the average access frequency of all
unique memory addresses. We use a training set of inputs, calibrate
a database that stores tuples mainly consisting of the three collision
parameters and the corresponding best code version (naive atomics
or reduced-collision atomics or no atomics), and build the regres-
sion tree model. Given the collision stats of a new program input,
we feed it as input to the statistical learning model and outputs the
code version to be used. We may also use other factor of a program
to build the regression tree model such as the scale of a program.
If a program runs a small number of threads such that the running
time is trivial, it may not be necessary to perform any optimization.

Discussion The atomicSR, atomicVR and atomicSS algorithms
can be applied at different scenarios. For the programs that have
inherent clustered-collision pattern such as sparse matrix multi-
plication, we should always use atomicSR. For the programs that
have inherent non-clustered-collision pattern such as image his-
togramming or graph traversal, we should use the atomicVR algo-
rithm. Both atomicSR and atomicVR algorithms has less complex-
ity than the atomicSS algorithm since it needs to scatter conflicted
atomic memory addresses. Also the atomicSS algorithm might in-
cur larger transformation overhead, however it also has greatest po-
tential to improve performance since no extra local reduction needs
to take place. Overall, the combination of atomicSR+atomicSS can
achieve relatively low overhead and satisfactory performance im-
provement. The atomicVR is best not to be used in combination
with atomicSS since the atomic memory access is likely randomly
distributed for non-clustered collision case unless the distribution

of collision statistics is degenerate (which can be detected through
the statistical learning model).

We present the performance results of the sparse matrix multi-
plication example used in Section 2 after we apply the optimization
techniques in this section. The sparse matrix vector multiplication
program has an inherent clustered collision pattern. Therefore, we
apply a combination of the atomic scan/reduce algorithm (atom-
icSR) and the atomic scattering algorithm (atomicSS). In Fig. 5,
we show the naive atomics version, the atomicSR+atomicSS and
the final selected version based on the statistical learning model
for both Fermi and Kepler. The left bar in every group represents
the performance of naive atomics. The middle bar represents the
performance after we reduce atomic collisions. The right bar repre-
sents the selected version with the statistical learning model. The
baseline is the original non-atomics implementation. The graph
shows that these techniques improved performance significantly.
For Kepler, though naive atomics version is already fast com-
pared to the non-atomic version for a number of benchmarks,
reduced-collision atomics version can make them even faster. The
mac econ, scircuit and mc2depi matrices have up to 60% improve-
ment. For Fermi, since its intrinsic atomic speed is slower than Ke-
pler [3], the reduced-collision atomic implementation make a big
performance difference when compared to the naive atomics im-
plementation almost for every benchmark. Comparing the reduced-
collision atomic implementation to the non-atomic implementa-
tion, four out of seven cases are better. Three others are slightly
worse. That is because these three benchmarks cop20k A, dense2
and consph are relatively denser matrices. The final version se-
lected by the statistical learning model for these matrices is the
non-atomics version (with the speedup as 1 in these bars).

4. Evaluation
In this section we evaluate the performance of our atomic algo-
rithms described in section 3 with various important and practi-
cal kernels. We conduct our experiments on two GPUs with differ-
ent hardware atomic instruction latencies. One is an NVIDIA Ke-
pler GPU card – GTX680 with CUDA computing capability 3.0. It
has 8 streaming multiprocessors with 192 cores on each of them.
There are 65536 registers and 48KB shared memory on each SM.
The other one is an NVIDIA Fermi GPU card – Tesla C2075 with
CUDA computing capability 2.0. It has 14 streaming multiproces-
sors (SM) with 32 cores on each of them. Each SM has 32768 reg-
isters and 48KB of shared memory. The hardware atomics speed
in Kepler card is improved over the Fermi card [3]. Both host ma-
chines run 64-bit Linux with kernel version 3.1.10 and CUDA 5.5.

For each benchmark, we have collected data for the original
non-atomics implementation, the naive atomics implementation
and the reduced-collision atomics implementation. We denote our
atomic-collision-to-computation function for clustered-collision
case – the “atomic scan and reduce” function as atomicSR, and
the atomic-collision-to-computation function for non-clustered-
collision case – the “atomic vote and reduce” function as atomicVR.
They are abbreviated as SR and VR respectively in figures. We de-
note our atomic-collision-to-scatter function “atomic set scatter” as
atomicSS, abbreviated as SS. The default naive atomic implemen-
tation is denoted as AA.

As of benchmark applications, we use five important kernels
that are commonly used in various applications. They are his-
togramming [13], merge-sort [14], page-view-count [11], parallel
summation [14], and sparse matrix vector multiplication [5]. All
benchmarks are highly optimized GPU kernels. They are obtained
either from the CUDA linear algebra library for sparse matrices
(CUSP) [5], the CUDA SDK [14], or published papers [11]. We
describe the features of these five benchmarks as follows:
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• Image Histogramming Image processing applications exten-
sively use the histogram kernel, which counts the frequency of
each color for all pixels taken from an input image. We used
the image histogramming benchmark optimized by the authors
in [13]. The authors provided a warp-private histogram imple-
mentation which uses warp-private histograms to store local
histogramming results, and a thread-private histogram imple-
mentation which does not use any atomics. We extended this
benchmark by adding a block-private histogram and a global
histogram implementation (which uses no private histogram) in
order to test atomic-collision reduction techniques at different
memory levels. Both block-private and warp-private histograms
are stored in shared memory. The no-private implementation
uses a global histogram in device memory for all threads.

• SPMV Sparse matrix vector multiplication is from the CUSP
[5] library, an open source C++ library of parallel algorithms
for sparse linear algebra and graph computations on GPUs. This
kernel uses shared memory to enhance performance. Its GPU
implementation is much faster than the CPU implementation.
In our naive atomics implementation mentioned in Section 2,
each thread warp operates on an interval of nonzero elements
in the input matrix. The threads fetch the row index, column
index, and value of the non-zero input matrix elements. Each
thread multiplies the non-zero input matrix element with the
corresponding input vector element, and atomically adds the
multiplication result to the output vector.

• Merge Sort We use merge sort from CUDA Thrust library
(Thrust is a parallel algorithms library which resembles the
C++ Standard Template Library (STL)) as the baseline non-
atomic implementation. Similarly, this kernel is highly opti-
mized. It iteratively performs local sorting and then merges the
partially sorted results at different levels until the entire array
is sorted. At every local sort stage, it is typically common that
multiple elements have the same value. Sorting these duplicated
elements causes increased sorting overhead. Our atomic imple-
mentation eliminates redundancy at the end of every local sort-
ing stage so that the following sorting stage sort only unique
values from every local sorted group. We use atomic add to
count the frequency of each element. Every element is asso-
ciated with a frequency attribute and it is propagated across all
levels of sorting. The frequency information helps restore the
array to the original length after the multi-level sorting of all
locally unique elements is completed.

• Page View Count Page View Count is a map-reduce applica-
tion used to track the number of unique visitors for a given web
page. It is from the GPU map-reduce benchmark suite Mars
[11]. The authors implemented Page View Count by using two
invocations of Map Reduce. The first invocation eliminates du-
plicate page views by mapping each entry to a unique value,
globally sorting these values, and then eliminating adjacent du-
plicates. The second iteration counts the number of remaining
unique views for each web page. Our naive atomic implemen-
tation extends this benchmark by using atomic reduction be-
tween the map and reduce phases of the first iteration of Page
View Count in order to eliminate all duplicate entries within
each block prior to global sorting. Our block-level atomic re-
dundancy elimination invokes relatively very little overhead
and vastly improves the performance of global sorting which
is by far the most constricting bottleneck of Mars as the authors
themselves mentioned in [11].

• Summation The parallel summation kernel is taken from the
CUDA computing SDK 5.0 (the reduction kernel), which is
carefully optimized with respect to different factors such as
shared memory bank conflicts, loop unrolling, etc. The original
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Figure 6. Histogram input statistics

Method Minimum Maximum Average % Off Opt.
Block P. 0.91 14.74 3.90 9.41%
Warp P. 0.58 6.98 2.03 12.80%
No P. 0.99 6.87 2.30 0.04%

Table 1. Histogramming kernel speedup with regression tree
model (kepler)

Method Minimum Maximum Average % Off Opt.
Block P. 0.68 9.51 3.08 7.82%
Warp P. 0.65 7.61 2.39 8.21%
No P. 0.99 15.40 4.28 0.10%

Table 2. Histogramming kernel speedup with regression tree
model (fermi)

version computes a local sum at the block-level at each itera-
tion. It then saves the partial sum for every block in the output
array buffer, which becomes the input array for the next itera-
tion of local sum computation. Instead of writing to the block-
private data objects, we allow threads to atomically add results
to a compacted output array. We vary the level of atomic col-
lision by changing the size of the compacted output array. The
program run-time is taken as the total time of all the kernel in-
vocations that are necessary to perform complete summation of
a large array.

For the benchmarks that have inherent clustered-collision pat-
tern such as sparse matrix vector multiplication, we use atomicSR
within the thread warp scope and atomicSS at the thread warp level.
For the benchmarks that have inherent non-clustered-collision pat-
tern such as image histogramming, we use the atomicVR and atom-
icSS versions at the thread warp level. In our experiments, we found
that atomicSS in non-clustered-collision benchmarks do not help as
much as it does in clustered-collision benchmarks. Therefore, we
do not present the results of atomicSS for non-clustered-collision
cases.

We first present the detailed analysis results of two benchmarks.
One benchmark has non-clustered-collision pattern. It is the im-
age histogramming kernel. The other benchmark has clustered-
collision. It is the sparse matrix vector multiplication kernel. We
show the collision statistics for ten representative inputs of every
benchmark. And we discuss performance results of various atomic
collision reduction techniques.

In the image histogramming kernel, atomic operations are uti-
lized in both the block-private, warp-private, and no-private imple-
mentations. We tested the atomic performance on 37 different im-
ages with varying degrees of atomic collision levels. We choose to
present the results for 10 representative input images. Fig. 6 shows
the warp, block, and global collision statistics. In the Warp/Block
Collision graph, we use box plot to represent the distribution of
the maximal collision factors in thread warps/blocks. The bottom
of the box correspond to the first quartile and the top of the box
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Figure 7. Histogram speedup

correspond to the third quartile. The top bar corresponds to the 100
percentile (the largest max collision factor) and the bottom bar cor-
responds to the 0 percentile (the smallest max collision factor). The
left box plot in every group corresponds to the warp and the right
box plot corresponds to the block. The global collision graph shows
the box plot for the access frequency of unique memory addresses.
As can be seen from Fig. 6, the collision statistics vary heavily
from image to image. Tables 1 and 2 show the minimum, maxi-
mum, and average speedup of the predicted implementation with
our statistical learning model (the non-atomic implementation is
the baseline). The columns of “% Off Opt.” shows on average how
much slower the predicted implementation is compared to the opti-
mal implementation. As both tables show, the average slowdown is
extremely small. Even when the predicted code version is subopti-
mal, in most cases, the performance difference between these two is
negligible. Figure 7 shows the speedup of all implementations with
respect to the block-private naive atomics implementation. We did
not use the original non-atomics as baseline because it is typically
much slower even than the naive atomics version [13]. We observe
significant speedup in cases with heavy collision and non-trivial
speedup even in cases with relatively light collision. Note that on
Kepler, the naive no-private version that does not use shared mem-
ory is sometimes faster than the block-private and warp-private ver-
sions that use shared memory. It is because the Kepler hardware
atomic updates are automatically cached and the Kepler’s L2 cache
hit bandwidth is much larger. However, after applying our atomic
collision reduction techniques, the atomicVR version still performs
better in block-private and warp-private versions. The implication
is that atomic collision reduction is necessary even when the in-
trinsic hardware atomic operations are faster. Note that, the num-
ber of concurrent threads that are interleaved to execute may also
have an impact on the atomics performance. The higher the concur-
rency level, the more atomics collision overhead can be hidden. The
image in8 has relatively high intra-warp collision level as shown
in Fig. 6, however, the collision reduction did not help much on
either Fermi or Kepler architecture. That is because image in8 is
the largest and requires a larger number of threads to be launched,
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Figure 8. SPMV speedup

Arch. Minimum Maximum Mean % Off Opt.
Kepler 0.99 1.35 2.46 4.68%
Fermi 0.70 1.04 1.51 8.55%

Table 3. SPMV method prediction speedup and optimality
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Figure 9. SPMV input statistics

which enables maximal concurrency level. Therefore, the differ-
ence between naive atomics and reduced-collision atomics is not
that large.

For the sparse matrix vector multiplication kernel, we ran the
benchmark on 18 different matrices with different sparsities, sizes,
and degrees of atomic collision levels. The result of the bench-
marks for 10 representative matrices is shown in Figure 8. The
speedups in this chart are relative to the non-atomics kernel. We
also present the atomic collision level statistics for each matrix in
Figure 9 as a box plot. Similarly, the chart on the left displays the
collision levels for thread warps and blocks. The left box plot in
every group corresponds to thread warp, and the right box plot
corresponds thread block. As usual, this plot shows the min, first
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Figure 10. Benchmark speedup summary

quartile, third quartile, and max collision percentage over the set of
collisions per warp and block. The right chart shows a box plot for
the global collisions level. Overall, we observe that the Kepler ar-
chitecture has improved atomic addition performance compared to
Fermi, which is expected due to an improved L2 cache bandwidth
[3]. We used leave-one-out cross validation for statistical learning
model. Table 3 show statistics on the average slowdown of the ker-
nel chosen by the decision tree with respect to the fastest imple-
mentation. For Fermi architecture, we observe that kernels which
use our collision reduction techniques generally offer a significant
improvement in performance over the naive atomics kernel. De-
spite the overall slow performance of naive atomic operations on
Fermi, the optimized kernels can even outperform the non-atomic
version for some matrices. For Kepler architecture, we observe that
the reduced-collision atomic implementations either improved sig-
nificantly or decreased slightly compared to the naive atomic im-
plementation.

Finally, we present the performance summary for all bench-
marks. In Fig 10 we present the minimum, maximum and average
speedup across different inputs for each benchmark on both the Ke-
pler and Fermi architectures. The speedup values are normalized
with respect to the original code version. In most cases, the orig-
inal code version is the non-atomic implementation except in the
case of image histogramming, where the original code version is
the block-private naive atomics version (histogramming already has
fast naive atomics implementation published [13] [6]). Non-trivial
average speedup is achieved in all benchmarks on both architec-
tures. For most benchmarks, minimal speedup is around 1 (rare case
has minimal speedup of 0.65) and about 1.5x-15x maximal speedup
is achieved across all benchmarks. For some benchmarks, particu-
larly image histogramming and PVC, we observe a very significant
disparity between minimal and maximal speedup. The effective-
ness of our atomic collision reduction techniques is obviously heav-
ily dependent on the nature of the program input. Differing inputs
may generate heavily contrasting levels of atomic collision. For the
sake of fair comparison, our testing input sets have been chosen to
represent a broad range of atomic collision from heavy collision to
little to no collision on the extreme ends. Our data shows that while
presented with a workload generating heavy atomic collision, our
techniques improve potential performance tenfold or more (com-
pared to the naive atomic case), and while presented with a work-
load generating light atomic collision, our techniques induce little
to no slowdown (and potentially speedup over the non-atomics ver-
sion) in most cases. In combination with our regression tree model,
our collision reduction techniques have the potential to provide not
only vastly simplified programmability but also incredible perfor-
mance improvement with minimal performance degradation.

5. Related Work
One of the few relevant studies is the hardware extension for effi-
cient atomic vector support [12], where the authors study atomics
for SIMD processors in Chip Multi-processors (CMP). Another rel-
evant hardware work is by Gottlieb and others [7], where the fetch-

and-add operation is implemented by an Omega-network for NYU
ultracomputer such that memory latency for updates to the same
address is logarithmic with respect to the number of cores. There
are also limited relevant software studies that systematically ex-
plore the usage of atomics for reduction type parallelism abundant
applications. Most existing software work focuses on application-
specific atomic usage, including GPU-MCML[4] – a highly opti-
mized Monte Carlo (MC) code package for simulating light trans-
port, GPU histogramming [16] [15] [13] and GPU graph-cut [18].
Some software work studies atomic collision for a specific memory
level, for instance, Gomez-Luna and others [6] optimize atomics
operations for scratch-pad memory. To the best of our knowledge,
this work is the first one that systematically studies the impact of
extensive atomics usage, and explores a variety of atomics colli-
sion reduction techniques. The atomic collision to scatter approach
is relevant to the job swapping idea used in control divergence and
memory irregularity removal for GPU programs [19]. The local re-
duction in atomicSR algorithm is similar to the global reduction [9]
approach, which does not need to detect boundaries and sizes of lo-
cal reduction groups. The GPU voting used in atomicVR is studied
extensively in [17], the techniques in which can help us speedup
atomicVR even more.

6. Conclusion
In this paper, we proposed to use atomic operations extensively for
computation rather than communication on many-core GPUs. We
systematically studied the influence of atomic collision on GPU
programs and investigated various solutions on the elimination of
atomic collisions.
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