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ABSTRACT
Modern GPUs employ cache to improve memory system ef-
ficiency. However, large amount of cache space is under-
utilized due to irregular memory accesses and poor spa-
tial locality which exhibited commonly in GPU applications.
Our experiments show that using smaller cache lines could
improve cache space utilization, but it also frequently suf-
fers from significant performance loss by introducing large
amount of extra cache requests. In this work, we propose
a novel cache design named tag-split cache (TSC) that en-
ables fine-grained cache storage to address the problem of
cache space underutilization while keeping memory request
number unchanged. TSC divides tag into two parts to re-
duce storage overhead, and it supports multiple cache line
replacement in one cycle. TSC can also automatically adjust
cache storage granularity to avoid performance loss for ap-
plications with good spatial locality. Our evaluation shows
that TSC improves the baseline cache performance by 17.2%
on average across a wide range of applications. It also out-
performs other previous techniques significantly.

CCS Concepts
•Computer systems organization → Single instruc-
tion, multiple data;

Keywords
GPGPU; Cache Organization; Spatial Locality

1. INTRODUCTION
Nowadays GPUs become a highly attractive platform for

general purpose computing due to their cost effectiveness
and energy efficiency. Modern GPUs are equipped with on-
chip caches [1, 2, 3] to minimize the gap between through-
put scaling and memory performance scaling. However, it is
usually difficult to fully harness the power of on-chip caches
because of the large amount of cache contention caused by
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massive multi-threading. The fact that many general pur-
pose workloads exhibit irregular memory behaviors exacer-
bates this problem.

One severe problem for the current GPU cache is that
only very small portion of intra cache line space gets uti-
lized. Figure 1 shows the fraction of L1 cache lines that get
0, 25%, 50%, 75% and 100% of line utilization before evic-
tion for cache sensitive Rodinia [5] and Parboil [33] bench-
marks. Here we split every 128B cache line into 4 continuous
equal-size chunks, and define line utilization as the portion
of chunks in a fetched cache line that actually gets reused be-
fore eviction. First, we observe that many cache lines never
get any portion within them reused. The major reason be-
hind it is the severe cache contention caused by thousands of
threads sharing one L1 cache simultaneously. Furthermore,
among reused cache lines, only a small fraction of them are
actually useful for most applications. For instance, 90.3%
of reused cache lines of mummergpu have only 1/4 of them
actually reused. Only in histo there are more than half of
cache lines that have more than 1/2 reused.
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Figure 1: The distribution of reused percentage
within a 128B cache line before eviction.

The observation that a significant portion within a cache
line never gets used has two-fold implications. The first one
is that the memory bandwidth is utilized inefficiently. Most
of the data transfer to L1 caches is a waste of interconnect
bandwidth and should be avoided. The second implication
is that the cache space within lines is underutilized in the
current cache design. If unused space within cache lines is
recycled to store useful data from other cache lines, cache
space utilization can be improved significantly. The severe
cache contention that is common in GPU can also be relieved
because the cache is able to store more cache lines, and
every line stays longer in cache to have better chance to get
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reused. In this paper, we aim to address this cache space
underutilization problem with a cache design that allows
flexible cache line storage.

The locality-aware memory hierarchy (LAMAR) [27] dis-
covers the memory bandwidth waste issue in GPU and pro-
poses a method to address it, but it cannot address the cache
space underutilization problem we find. LAMAR employs
sector cache [19] and only transfers the fraction within cache
line that is actually requested. But unrequested fraction still
occupies cache space to prevent them from utilized by other
cache lines. Some approaches have been proposed to address
cache space underutilization problem in CPU caches [8, 14,
25, 30, 32, 35]. They either have very complex design and
large overhead which are incompatible with the simple and
efficient design of GPU, or sacrifice certain degree of storage
flexibility. Our experiments also demonstrate that simply
adopting small cache line size is not an efficient solution due
to caused extra overhead.

In this paper, we propose tag-split cache (TSC), which
organizes cache space in the unit of small chunks to enable
fine storage granularity for efficient cache utilization, while
keeping a coarse access granularity to avoid the increment
of cache request number. By default, TSC only stores re-
quested chunks within a cache line to save space on cache
misses, and thus it does not require complex mechanism
used in previous techniques to predict appropriate storage
granularity [14, 35]. To reduce tag storage overhead, several
chunks share a fraction of tag in TSC. Besides, TSC is able
to replace chunks from multiple cache lines simultaneously,
while previous methods can replace at most one cache line
at a time [14, 25, 30, 32, 35]. TSC also reduces intercon-
nect network traffic by only transferring missed chunks on
cache misses. Overall, the contributions of this paper are as
follows:

• We discover that while using fine storage granularity
can improve cache utilization, a coarse access granular-
ity is also critical for GPU caches since its performance
is sensitive to memory access number.

• Our work is the first cache design that enables fine
storage granularity for GPU architecture. It not only
maximizes cache space utilization but also minimizes
on-chip memory interconnect traffic.

• We develop a simple adaptive scheme that dynami-
cally switches between fine-grained storage mode and
coarse-grained storage mode for TSC to avoid perfor-
mance loss for applications with good spatial locality.

• Our proposed design is effective and yet has lower over-
head compared with previous methods. It improves
the baseline cache performance by 17.2% on average
for a wide range of applications.

2. BACKGROUND AND MOTIVATION

2.1 Background
This work proposes simple yet effective architectural ex-

tensions to improve the efficiency of on-chip cache in GPU
architectures. A GPU processor consists of multiple SIMD
units, which are further organized into streaming multipro-

cessors1 (SMs or SMXs) in NVIDIA GPUs [2, 3] or Com-
puting Units in AMD GPUs [1]. Each SIMD unit contains
32 lanes for vector instructions, and a group of 32 threads
that runs on one SIMD unit is called a warp. A GPU pro-
gram follows the single instruction multiple threads (SIMT)
execution model. Due to the native support for diverging
scalar threads, memory addresses are determined at a per-
thread granularity, which means a warp can generate up to
32 independent memory transactions. A memory coalescing
unit is commonly implemented in GPUs to reduce the con-
trol overhead of a memory operation. It can aggregate the
memory requests (ranging from 32B to 128B) from the ac-
tive threads in each warp, with a minimum memory access
granularity of cache line size. Based on the previous liter-
ature [6, 27], it is a common belief that the main memory
of current GPUs (e.g., NVIDIA Fermi and Kepler) are op-
timized for such coarse-grained memory accesses, based on
the fact that the main memory (e.g., GDDR5) of many com-
mercial GPUs enable a 64B (64 bits × 8-bursts) minimum
access granularity per channel.

However, there is lack of study for the appropriate granu-
larity of GPU caches. To better exploit locality and utilize
memory bandwidth, multiple types of cache are provided by
GPUs, e.g., hardware-managed L1 D-caches and software-
managed shared memory (software cache). Main memory
(or global memory) accesses are served through L1 D-cache
by default. All the SMs (SMXs) are connected by an inter-
connected network to a partitioned memory module, each
with its own L2 data cache and main memory partition.
For Kepler, the latency for L1 cache is around 20 cycles.
The latency for L2 of a GPU is around 200 cycles. The la-
tency of off-chip main memory is around 500 cycles. The
gap between the latency of the L2 cache and off-chip mem-
ory is not as large as the gap between that of L1 cache and
L2 cache. For this reason, in this paper, we focus on find-
ing out the most appropriate granularity of L1 cache and
proposing new cache design to enhance caching efficiency.
However, our technique can be well applied to L2 cache as
well.

2.2 Motivation
To improve the intra cache line space underutilization

shown in Figure 1, the most straightforward method is to
shrink the cache line size so that cache has a finer storage
granularity.

Figure 2 shows the performance of cache sensitive bench-
marks from Rodinia [5] and Parboil [33] when the cache line
size is 32B, 64B, 128B and 256B for a 16KB L1 cache. Their
performance is measured by instructions per cycle (IPC),
and all the performance data in the figure is normalized to
that when using the 128B cache line size, which is the de-
fault line size for the current NVIDIA GPUs such as Fermi
and Kepler2.

From Figure 2, we observe that different applications have
different preference for cache line size. We categorize these
applications into two categories: CLP and CLN (shown in Ta-
ble 1), where CLP (Cache Line Size Positive) represents appli-
cations that benefit from larger cache line size (e.g., 128B),

1NVIDIA terminology will be used throughout this paper to
illustrate our technique. However, the proposed idea applies
to a wide range of throughput architectures.
2See Section 4 for the detailed configuration of the baseline
architecture.
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Type Benchmark Source

CLN

bfs Rodinia
cfd Rodinia

kmeans Rodinia
mummergpu Rodinia
particlefilter Rodinia

srad v2 Rodinia
spmv Parboil

CLP

b+tree Rodinia
dwt2d Rodinia

gaussian Rodinia
srad v1 Rodinia

streamcluster Rodinia
histo Parboil

mri-gridding Parboil
stencil Parboil

Table 1: Benchmarks categorized by performance
sensitivity to the cache line size.

and CLN (Cache Line Size Negative) represents applications
that prefer smaller cache line size.

CLN Cases.
For these cases shown in Figure 2(a), we observe perfor-

mance improvement by using smaller cache line sizes such
as 32B and 64B over the larger ones (i.e., 128B and 256B).
This is because many GPU applications show poor spatial
locality as suggested in Figure 1. Using a smaller cache line
in these cases releases the wasted cache space, which can be
used to retain more data that will be potentially reused.

To be more specific, we use kmeans to showcase why CLN

benchmarks prefer smaller cache line sizes. kmeans has highly
divergent memory accesses within the same warp [28], which
benefits most from using a smaller cache line. Figure 3
shows the kernel that is responsible for most cache misses in
kmeans. Almost all the accesses to the “input[ ]” array miss
when using the default 128B cache line. From the code, we
observe that there is spatial locality across loop iterations in
the same thread if there is only one thread running. How-
ever, many threads that run at the same time (within or
across thread warps) access different cache lines since the
value of the variable nfeatures is large. Therefore, there is
a big chance that between two adjacent loop iterations (i.e.,
in between the reuse of a cache line), several other warps
execute the same load instruction and fill the L1 cache with
their data. As a result, most cache lines will be evicted be-
fore the spatial locality within them is exploited, resulting
in a cache miss rate of 95.5% at 128B line size for kmeans.
When we apply a smaller line size such as 32B, L1 cache can
retain 4 times of cache lines compared to the default 128B
configuration, and thus the probability that a cache line is
evicted before spatial locality is exploited is significantly re-
duced. As a result, the L1 cache miss rate of kmeans is
drastically reduced to 20.5% and the overall performance is
improved by 165%.

These CLN applications demonstrate that reducing the cache
line size helps improve cache space utilization and therefore
the overall performance.

CLP Cases.
Although using a smaller cache line size can improve cache

space utilization, it can also cause significant performance
degradation for many applications (i.e., CLP cases shown in
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Figure 2: Performance under different L1 cache line
sizes.

Figure 2(b)). There are two potential causes for such per-
formance loss:

1. Using a smaller cache line size can increase the miss
rate if an application already shows good spatial lo-
cality. For these applications, larger cache lines are
preferred.

2. Since the memory coalescing is done using the granu-
larity of cache line size, using smaller cache lines results
in more cache requests. More cache requests can have
the following negative impact on performance: (a) un-
der the same volume of misses, smaller cache line size
means more miss requests are sent to the lower level
memory (i.e., L2 cache), resulting in more intercon-
nect traffic and longer miss latency; (b) cache resources
(e.g., MSHRs, miss queue entries) are saturated more
easily, resulting in less miss memory instructions can
be processed in parallel; and (c) more cache requests
also mean longer hit latency.

__global__ void invert_mapping(float * input, float * output, 
                                    int npoints,  int nfeatures)

{
int point_id = threadIdx.x + blockDim.x*blockIdx.x;
int i;

if ( point_id < points )
for ( i=0; i < nfeatures; i++ )

output[point_id + npoints*i] = input[point_id*nfeatures + i];
}
return;

}
 

Figure 3: The kernel code of kmeans.

To investigate the impact of the first potential cause (i.e.,
more misses caused by using smaller cache lines), we evalu-
ate and compare the L1 miss rates under different line sizes
for both CLN and CLP applications, shown in Figure 4. Since
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Figure 4: L1 cache miss rate under different line
sizes.

the cache request number varies under different cache line
sizes, to make a fair comparison, miss rate is calculated by
dividing the total number of memory instructions that incur
misses by the total number of memory instructions, which
is a constant.

We observe that the miss rate using a 32B cache line is
less than or similar to that using a 128B line for the majority
of cases except gaussian. It is obvious that CLN cases using
a 32B line incur less misses due to the better cache space
utilization, however, this is also true for some CLP cases. For
instance, although mri-gridding suffers from performance
degradation when using a 32B cache line as shown in Fig-
ure 2(b), it still shows less L1 misses. Also, stencil has a
nearly 100% miss rate under any of the three cache line sizes,
but its performance of using 32B cache lines is significantly
lower than that using 128B lines. Therefore, the argument
that a smaller cache line increases miss rate for CLP cases is
not consistent among all the benchmarks, thus it is not the
major reason for performance loss.

We then further investigate if the interconnect and re-
source contention caused by more cache requests (i.e., the
second potential cause) is the primary reason for perfor-
mance loss in CLP cases using smaller cache lines. Figure 5
shows the interconnect network traffic from L1 cache to L2
cache, which is a direct indicator for the number of L1 miss
requests. The results show that a smaller cache line size
does increase L1 to L2 traffic significantly for many cases,
e.g., as much as 170% for streamcluster. For stencil, the
L1 to L2 traffic increases by 103% when using 32B cache
lines, which explains the reason of its degraded performance
although its miss rate does not change (Figure 4).

Discussion.
In summary, we draw two conclusions from our observa-

tions. On one hand, it is important to enable fine-grained
data storage in cache (e.g., 32B cache line size) in order to
achieve better cache space utilization, as suggested by CLN

applications. On the other hand, the cache should still have
a coarse access granularity (i.e., coalescing granularity)
to avoid the performance loss caused by more cache requests
in CLP cases. Therefore, simply applying a smaller or bigger
cache line size is not a good solution.

We argue that 128B is the most reasonable access gran-
ularity for GPU L1 cache for the following reasons. In
the most common cases of memory access, each thread re-
quests an integer or single-precision float variable, and both
of them are 4B. As a result, a thread warp which contains
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Figure 5: L1 to L2 traffic under different cache line
sizes.

32 threads will request 128B data in total, and thus a 128B
access granularity matches it perfectly. In addition, access
granularity that is larger than 128B is not able to further
reduce the cache request number. As shown in Figure 5,
using 256B cache lines has almost the same volume of L1
to L2 traffic as that using 128B cache lines in most cases.
For some cases, it incurs more traffic because there are more
L1 misses with 256B cache line size. Therefore, we choose
128B as the access granularity of our design, and requests
from load/store unit are coalesced as if the cache line size is
128B. We will discuss the implementation of fine-grained
data storage in details next.

3. IMPLEMENTATION
To support coarse access granularity and fine storage gran-

ularity with low overhead, we design tag-split cache (TSC).

3.1 Structure
As discussed above, 128B is the most appropriate access

granularity for TSC. In other words, a cache line still virtu-
ally represents a contiguous 128B memory region, although
our design may not store a cache line in the way of a normal
cache using 128B cache lines. To enable fine-grained storage,
we organize the data RAM of tag-split cache in the unit of
data chunks. The chunk size is smaller than the cache line
size 128B, and a cache line can have 1 to (line size/chunk
size) chunks stored in the tag-split cache. In the rest of this
paper, we assume the chunk size (i.e., the storage granular-
ity) is 32B by default. We will study the impact of chunk
size in Section 5.4.

Figure 6: Address decomposition of normal cache
and tag-split cache.

Figure 6 compares the address decomposition of normal
cache and tag-split cache on cache access. To support the
128B access granularity, we need to make sure all chunks
within a 128B cache line fall into the same cache set. To
achieve this goal, tag-split cache uses exactly the same seg-
ment in address as the normal cache for cache set index.
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Figure 7: The cache set structure (left) and tag comparison logic (right) of tag-split cache.

Thus the set lookup process on cache accesses is not changed.
The remaining 2 bits between set index and intra-chunk off-
set are called inter-chunk offset, which represent the rela-
tive position of a chunk within its corresponding 128B cache
line. Note that our design is also applicable for hash based
set index used in recent GPUs [22], and we use it in our
experiments.

Theoretically, every chunk needs a tag entry since they
can store chunks from different cache lines. However, if every
chunk is assigned with a separate tag entry, there will be a
large storage overhead, and more tag comparison on cache
accesses will also increase cache access latency. To reduce
overhead, we divide traditional tag segment within memory
address into two parts: higher bits are called shared tag and
lower bits are called private tag. A set of chunks have the
same shared tag and each chunk has its own private tag.
The motivation for this approach is that programs tend to
access a small memory region in a short amount of time,
and thus different cache lines are likely to share higher bits
in their tags. We study the impact of private tag length to
the performance of tag-split cache in Section 5.1.

Figure 7 shows the structure of a cache set in tag-split
cache. In our default configuration with 32 cache sets, a
cache set includes 16 chunks. They are divided into 4 chunk
groups, and all 4 chunks in one group have the same shared
tag. In doing this, a chunk group can store chunks from mul-
tiple 128B cache lines, and thus fine storage granularity
is supported to increase the effective cache capacity.

The purpose of having a chunk group of 128B is, in the
case that applications show good spatial locality and fine-
grained storage is harmful, tag-split cache can fall back to a
normal cache. In such cases, a chunk group can always be
used to store a whole cache line. Besides private tag, each
chunk also contains a valid bit, inter-chunk offset bits, and
an NRU bit for replacement.

Another thing worth noticing about tag-split cache is that
a cache line can have its chunks spread across multiple chunk
groups. Thus, chunks of a cache line can be stored anywhere
among 16 chunks belonging to the corresponding cache set.
To be able to access any subset of chunks in a cache set, we
use 16 SRAMs to compose a 16-bank data RAM. Different
banks can be accessed simultaneously and each bank holds
one and only one chunk for every cache set, making it feasible
to read any subset of chunks belonging to one cache set
simultaneously.

3.2 Cache Access Processing
On a load/store instruction, the streaming multiprocessor

first coalesces data requests of all thread in a warp according

to the access granularity of 128B as usual. It also calculates
which chunks within the requested 128B cache line are ac-
tually required to generate a 4-bit access chunk mask. Then
the cache line request along with its corresponding access
chunk mask is passed to the tag-split cache.

After TSC receives a request and reads out all tag infor-
mation of the corresponding cache set, it starts to perform
tag comparison. As shown in Figure 7, shared tags and pri-
vate tags are compared in parallel. Note that shared tag
comparison is performed for every chunk group and private
tag comparison is performed for every chunk. If both the
shared and private tags of a valid chunk match those of the
current request, its chunk offset is used to set the corre-
sponding bit in the cached chunk mask. Then, the cached
chunk mask is compared with the access chunk mask coming
with the request to determine the access status.

If all required chunks are already cached, the current re-
quests hits in the tag-split cache. The location of cached
chunks are used to index the data RAM to get desired data.
Then TSC combines those returned data to form a virtual
cache line before returning to SM.

If there is no required chunk found, a cache miss occurs.
On a miss, TSC allocates an new MSHR entry or uses an
existing MSHR entry to record this miss as will be discussed
in Section 3.4. MSHR will send the miss request to the L2
cache when feasible. Then it allocates cache space for missed
chunks, which will be described in Section 3.3.

A special access status for TSC is partial miss, which oc-
curs when a part of required chunks are not present in the
cache. In such scenarios, the cached chunks are addressed as
a cache hit and missed chunks are addressed as a cache miss.
While missed chunks are requested from L2 cache, cached
chunks are read from data RAM.

3.3 Allocation and Replacement
In order to allocate cache space for missed chunks on

misses and partial misses, at the first step, we check if there
are available invalid chunks. In our design not all invalid
chunks can be used. An invalid chunk is available for the
current miss only if its corresponding chunk group does not
have any valid chunk, or its shared tag matches with the
current miss. Otherwise, if there is valid chunk in the target
group which has at least one invalid chunk and the shared
tag of the target group is different from that of the missed
chunk, allocating those invalid chunks for the current miss
will have to invalidate all valid chunks in the target chunk
group since the shared tag is changed.

If there are not enough invalid chunks found on a miss,
one or more valid chunks need to be replaced. We use Not
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Recently Used (NRU) algorithm [24] to select victim chunks
since it has low storage requirement and yet is efficient in
practice [10, 17]. Each chunk is associated with one NRU
bit, and all NRU bits are initialized to 0s. On an access to a
chunk, its NRU bit is set to 1 to indicate it has been accessed.
If all NRU bits in a cache set are 1s, they are reset to 0s as an
aging mechanism. On replacement, we preferentially select
chunks whose NRU bits are 0s. If there are more chunks
with 0 NRU bits than required, we select randomly among
them. Otherwise if there are not enough chunks with 0 NRU
bits, chunks with 1 NRU bits are selected randomly.

After the victim chunks are selected, they can be sim-
ply invalidated simultaneously by reseting their valid bits.
The reason why we can do this is GPU L1 cache uses a
write-evicted policy and thus no data writeback is required.
Therefore the replacement of tag-split cache is very easy to
implement. GPU L1 caches adopt a write-evicted policy be-
cause of its simple cache coherence implementation. Snoop
and directory based implementation of cache coherence is
well known for their poor scalability with the number of pro-
cessors [20], while GPUs typically have dozens of streaming
multiprocessors for high throughput. Current GPUs choose
to directly write data to L2 caches and evict cached written
blocks in L1 to make sure other SMs can get updated data
from shared L2 caches.

On the other hand, previous methods that change cache
storage granularity perform replacement in the unit of cache
line since only one cache line can be written back at a time
[32, 25, 14]. As a result, it is possible that after one re-
placement there is still not enough cache space available
and thus multiple-round replacement is desired. Multiple-
round replacement not only increases access latency which
adversely affects performance, but also increases design com-
plexity and verification difficulty. TSC always finishes its re-
placement in one round and thus does not suffer from these
problems.

3.4 MSHR
Miss Status Holding Register (MSHR) is responsible for

recording cache misses and sending miss requests to lower
memory. To be compatible with our tag-split cache and re-
duce interconnect traffic, we extend the conventional MSHR
with an issued chunk mask for each entry. An MSHR entry
still keeps track of all miss requests to a 128B cache line as
usual. The issued chunk mask records which chunks within
that cache line have been requested from L2 cache to avoid
redundant requests.

When a new MSHR entry is allocated on a miss, i.e., the
current miss is the first miss to a 128B cache line, a miss
request including the current missed chunk mask is sent
to L2 cache, and L2 cache will only return those missed
chunks to reduce transfered data. Besides, the issued chunk
mask of the MSHR entry is initialized to the current missed
chunk mask. When a miss request is added to an existing
MSHR entry, i.e., there are on-going misses to the same 128
cache line, we compare its missed chunk mask with the is-
sued chunk mask to avoid redundant data transfer. Only
chunks whose requests have not been sent before are re-
quested from L2 cache. If the requests of all current missed
chunks have been sent before, no new request will be gener-
ated by MSHR.

3.5 Adaptive Storage Granularity Modes

Some GPU applications have good spatial locality such as
histo in Figure 1. Merely storing current requested chunks
on misses for these applications will destroy spatial local-
ity and result in additional misses to adversely affect per-
formance. To solve this problem, in addition to the default
fine-grained storage mode where only current desired chunks
are stored in the tag-split cache, we employ another mode
called coarse-grained storage mode. In coarse-grained mode,
tag-split cache will fetch and store all chunks within a 128B
cache line on miss to exploit spatial locality. Switching from
fine-grained mode to coarse-grained mode is implemented
by simply marking all bits in the access chunk mask which
is generated by memory coalescing logic to 1s, as shown in
the upper right corner of Figure 7.

Now the question is how to decide which mode should
be adopted. We design a simple mechanism to dynamically
make the mode selection decision at runtime. Among all
cache sets in a L1 cache, we randomly select two subsets
of cache sets. One subset is dedicated to fine-grained mode
and the other is dedicated to coarse-grained mode, and these
cache sets are called sampler sets since they always use the
assigned mode. Then the mode selection decision is made
by monitoring the access behavior of sampler sets, which
is similar to the Set Dueling method [26]. Set Dueling is
developed to choose the better performing one between 2
candidate replacement policies for CPU caches by comparing
their miss number.

Unlike Set Dueling, which compares the miss number of
sampler sets to judge their performance, we consider both
miss number and generated traffic of two competitive modes
in order to decide which one is better. The motivation be-
hind it is our mode selection decision can directly affect
interconnect traffic, and previous work has demonstrated
that interconnect network traffic has a large impact on GPU
cache performance [27, 6]. If one mode is learned to have
better performance than the other, the remaining sets called
follower sets will all adopt the winner mode.

Figure 8: Mode selection logic.

Figure 8 shows the logic for mode selection. For the sam-
pler sets of every mode, there are two counters to record
their miss number and the corresponding traffic size gener-
ated on misses. On a miss request in the sampler set, the
miss counter of the corresponding mode is increased by 1,
and the corresponding traffic counter is also increased by
estimated traffic generated to serve this miss request. We
estimate traffic on cache misses as follows. The interconnect
network between L1 and L2 caches are packet based net-
work. On a miss, L1 cache sends one request packet to L2
cache at first, and then L2 cache returns n data packets to
L1. Since the packet size is equal to the default chunk size
of our design (32B), n is equal to the number of requested
chunks. Therefore, the total packet number generated for a
miss is 1 + n, where n is the missed chunk number.

With these two counters, we use the product of them
to represent the performance overhead of the correspond-
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ing mode. The smaller the product is, the less performance
loss we consider the corresponding mode incurs. Finally,
the mode which has the smaller product is selected as the
operating mode of all follower sets.

To adapt to memory access behavior changing, we em-
ploy an aging mechanism for these counters. Once the miss
counter of any mode exceeds a threshold, we shift all 4 coun-
ters to the right by 1 bit. In this way, recent memory access
behavior can be reflected by the values of these counters
more quickly. The experiments show that a threshold of
1024 works well for our design.

Although using a larger number of sampler sets can make
the mode selection more accurate, it increases the perfor-
mance overhead since sampler sets cannot change their oper-
ating mode. To reduce learning overhead for mode selection,
all sampler sets are selected from the L1 cache of a certain
SM, which is SM0 in our experiments. L1 caches of other
SMs follow the mode selection decision made by SM0. We
also find that selecting 8 out of 32 total cache sets as sam-
pler sets is enough to get satisfying mode selection result.
Among them, 4 sets are dedicated to fine-grained mode and
the other 4 sets are dedicated to coarse-grained mode.

4. EXPERIMENTAL METHODOLOGY
We model and evaluate our design using a widely-used

cycle-accurate GPU simulator GPGPU-Sim 3.2.2 [4]. The
microarchitecture configuration of the simulator is shown in
Table 2. We models a typical GPU architecture. The config-
uration of our design is illustrated in the bottom of Table 2.
GPU power consumption is estimated through GPUWattch
[15].

SIMT Core (SM)
15 SMs, SIMT width=32,
5-stage pipeline, 1.4GHz,
2 GTO schedulers [28]

SM Limit
32768 registers, 1536 threads,

48 warps, 48KB shared memory

L1 DCache
16KB/SM, 128B line, 4-way,

32 MSHRs, hash set index [22]

L2 Cache
12 banks, 64KB/bank, 128B line,

8-way, 32 MSHRs

Interconnect 32B width, 700MHz

Memory Controller FR-FCFS, 924MHz, 6 channels

DRAM
tCL=12, tRP=12, tRC=40,

tRAS=28, tRCD=12, tRRD=6

Tag-Split Cache

32B chunk size, 4 chunk groups
per set, 4 chunks per group,

1-cycle extra hit latency, 12-bit
shared tag, 8-bit private tag

Table 2: Configuration of the baseline architecture
and tag-split cache.

Our design is evaluated with Rodinia 3.0 [5] and Parboil
[33] benchmarks. Out of all 22 Rodinia benchmarks, we
select 11 benchmarks. We also select 4 benchmarks from
Parboil. The remaining benchmarks are not cache sensitive
and their performance does not exhibit noticeable improve-
ment (less than 3%) even under the perfect cache which only
incurs compulsory misses. All the benchmarks are compiled
with nvcc 4.0. Most of the benchmarks run to completion on
the simulator. For a few of them that have long simulation
time, we execute them long enough so that the variation of
IPC is very small (1 billion instructions).

5. EVALUATION

5.1 Impact of Private Tag Length
One major design choice for tag-split cache is the length

of private tag field. In a common configuration of 32-bit
memory address (i.e., 4GB GPU memory), the total length
of shared and private tags is 20 bits. Larger private tag and
smaller shared tag mean more 128B cache lines are poten-
tially able to share the same chunk group and thus better
cache space utilization, while smaller private tag means less
storage overhead since each chunk has a private tag. The se-
lection of private tag length is essentially a tradeoff between
performance and overhead.
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Figure 9: The performance and tag storage of tag-
split cache for different private tag length.

Figure 9 shows the variation of performance and tag stor-
age when the private tag length changes from 0 to 20. Y axis
represents the geometric mean speedup of all 15 benchmarks
in terms of IPC compared to the baseline cache using 128B
lines. Here the evaluated version of tag-split cache does not
include mode switch and always adopts fine-grained mode.
When the private tag length is 0, tag-split cache is equiv-
alent to sector cache and there is no cache space saving.
When it is 20, chunks within a chunk group no longer share
any fraction of tag. We observe that with the increment of
private tag length, the performance improvement becomes
slower. There is a performance leap from 6-bit to 7-bit since
streamcluster starts to benefit from tag-split cache at that
point. The results demonstrates the assumption behind our
tag split design, that most programs tend to access a lim-
ited size of memory region in a short time. We adopt 8-bit
private tag for tag-split cache in the rest of our evaluation
since it is a good tradeoff point between performance and
overhead. 8-bit private tag means a chunk group can store
any chunks within 1MB memory region.

5.2 Performance
In this section, we evaluate the performance of two ver-

sions of tag-split cache, including: (1) basic design always
enabling fine-grained storage, i.e., no adaptive mode switch
(TSC), and (2) TSC with mode switch for good spatial local-
ity applications (TSC+). Besides caches using various fixed
cache line sizes (32B and 64B), we also compare tag-split
cache with three related schemes: LAMAR [27] (state-of-
the-art technique for GPU memory bandwidth utilization
optimization), decoupled sectored cache (DSC) [32] (clas-
sical cache space utilization optimization scheme for CPU
caches with relative low overhead), and MRPB [11] (state-
of-the-art GPU memory request reordering approach to re-
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Figure 10: The performance of various schemes. All data are normalized to that of the baseline cache using
128B lines.

duce intra- and inter-warp contention). DSC-2 and DSC-4
represent the DSC configuration of using 2 and 4 times of
tag entries respectively compared with a sector cache [19].
Note that we also adopt our modified MSHR design for all
DSC configurations so that they can also reduce intercon-
nect traffic as our design.
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Figure 11: Normalized MPKI of L1 cache for various
schemes.

Figure 10 shows the performance speedup of various tech-
niques over the baseline cache with 128B cache line size. At
first, Figure 10(a) compares the performance of TSC with
normal caches using small line sizes. TSC outperforms small
cache line size for almost every benchmark since it does not
suffer from the performance overhead caused by cache re-
quest increment when using fine access granularity.

TSC also outperforms the baseline with 128B cache lines
except srad_v1 and histo. These two benchmarks have
good spatial locality and TSC+ can largely counteract the
performance loss of TSC by switching to coarse-grained mode.
For srad_v1, the performance of TSC+ is almost the same
as that of the baseline. The reason why there is still perfor-
mance degradation for TSC+ in histo is the training over-
head of sampler sets, which always use fine-grained mode.
These sets suffers from significantly more misses. Although
TSC+ correctly learns that histo prefers coarse-grained mode
and uses this mode for almost all accesses, it has a limited
number of total thread blocks, so that other SMs cannot
amortize the performance loss of SM0 that owns sampler sets
by executing more thread blocks. As a result, the slowest
SM0 dominates the overall performance. Except histo, all

other benchmarks have plenty of thread blocks so that non-
sampler faster SMs are assigned with more thread blocks at
runtime to relieve workloads from the sampler SM. There-
fore the performance difference between TSC and TSC+ is
negligible for other benchmarks as shown in Figure 10(a).

Figure 10(b) compares TSC’s performance with those of
other techniques. Overall, TSC and TSC+ improve the
performance of the baseline cache by a geometric mean of
15.6% and 17.2% respectively across all evaluated applica-
tions, while MRPB, LAMAR, DSC-2 and DSC-4 achieve
an average performance improvement over the baseline by
7.0%3, 7.4%, 10.4% and 11.7% respectively. Unlike our tech-
nique, MRPB improves performance by rescheduling mem-
ory requests from different warps to improve temporal local-
ity. The fact that MRPB has better performance for some
benchmarks like streamcluster implies that our technique
can be applied together with MRPB to further improve per-
formance. We leave such exploration as future work.

To have further insight on why TSC can outperform LAMAR
and decoupled sectored cache, Figure 11 shows the normal-
ized Miss Per Kilo Instructions (MPKI) of L1 cache for var-
ious techniques. First, we observe that LAMAR always has
the same or more misses compared with the baseline. It
is because LAMAR uses sector cache and cannot harness
wasted cache space within cache lines, while DSC and our
TSC can both make use of these wasted space.

Compared to decoupled sectored cache (DSC), tag-split
cache has three major advantages. First, DSC enforces a
restrictive way in multiple cache lines sharing the same cache
space in order to avoid using data pointer. For instance,
assume there is a free 128B space in cache, if two 128B cache
lines both want their first 32B to be stored, DSC cannot
store these two lines simultaneously because they will occupy
the same 32B place. TSC does not have such restriction and
can store both cache lines at the same time. Second, TSC
is able to always finish replacement in one cycle while DSC
may need multi-cycle replacement. That is why for bfs and
kmeans DSC-4 incurs less misses than TSC but TSC still
outperforms DSC-4. Third, TSC has less storage overhead
since DSC uses a separate tag entry for each 32B data as will
be shown in Section 5.6. The advantage of using separate

3MRPB cannot work correctly for mri-gridding in our ex-
periments, and its geometric mean speedup is calculated for
the rest 14 benchmarks.
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Figure 12: The normalized interconnect traffic between L1 and L2 for various schemes.

tags is that DSC suffers from less misses compared with
TSC in some benchmarks, because some chunks cannot be
utilized in TSC if there are not enough cache lines sharing
the same shared tag.

For b+tree, cfd, srad_v1, srad_v2 and histo, the MPKI
of TSC is higher than that of the baseline cache. Among
these benchmarks, TSC+ learns that coarse-grained mode
works best for srad_v1 and histo and reduces misses signif-
icantly by switching to it. For the remaining 3 benchmarks,
although TSC incurs more misses using fine-grained storage
mode, it produces less interconnect traffic as will be shown
in Figure 12. Taking both of them into consideration, TSC+
decides to stay in fine-grained mode rather than switch to
coarse-grained mode for these benchmarks.

From this point on, we mainly show the results of TSC
since most benchmarks prefer fine-grained storage mode and
adaptive mode switch is not necessary for them.

5.3 Interconnect Network Traffic
Figure 12 shows the interconnect network traffic between

L1 and L2 caches for TSC and LAMAR. All results are nor-
malized to the “L2 to L1” traffic of the baseline cache. There
are two types of traffic between L1 and L2: “L1 to L2” in-
cludes load miss requests and write data from L1 caches
to L2 caches, and “L2 to L1” includes loaded data from L2
caches to L1 caches. “L2 to L1” is the main contributor of
total traffic since most GPU accesses are load accesses and
loaded data are larger than requests.

Figure 12 shows that for most applications TSC can re-
duce more memory traffic than LAMAR for both “L1 to
L2” and “L2 to L1”, up to 45.4% and 71.8% respectively
(kmeans). The major reason behind this is that TSC en-
counters fewer L1 cache misses than LAMAR, as shown in
Figure 11, and thus miss requests sent to L2 and returned
data from L2 are both reduced. We also observe significant
“L2 to L1” traffic reduction from LAMAR for some cases
since it also shrinks the returned data size on misses. How-
ever, LAMAR cannot make use of wasted cache space to
reduce L1 misses. As a result, its “L1 to L2” traffic increases
compared with the baseline. These results show that besides
cache space utilization improvement, tag-split cache is also
efficient for interconnect traffic reduction.

5.4 Basic Storage Granularity Selection
One of the most important design choice of TSC is its

storage granularity, i.e., the chunk size. Figure 13 shows
the performance of TSC using 8-bit private tag with various
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Figure 13: TSC performance with various basic stor-
age granularity.

chunk sizes. Our experimental results show that using 8B,
16B, 32B and 64B chunks can achieve an average perfor-
mance improvement of 15.7%, 18.1%, 15.6% and 11.7% re-
spectively compared to the baseline. On one hand, smaller
chunk size means better cache space utilization and thus
performance for benchmarks such as cfd and mri-gridding.
On the other hand, using smaller chunks can further destroy
spatial locality for benchmarks like kmeans and srad_v1.
Also, every time the chunk size is reduced by half, the pri-
vate tag storage is doubled. Taking both performance and
overhead into consideration, we select 32B as the chunk size
in our experiments. Another reason for selecting 32B is the
minimal data transfer unit on the interconnect network be-
tween L1 and L2 caches are 32B. Hence a smaller chunk size
may not reduce interconnect traffic further.

5.5 The Impact of Access Latency
Because TSC has slightly more complicated cache line

lookup process than the baseline, it can increase the hit
latency of L1 cache. All our experiments above assume that
it increases the L1 cache hit latency by 1 cycle, and we
evaluate the performance of TSC under various additional
L1 cache hit latency in this subsection. Our experimen-
tal results show that the performance impact of increasing
hit latency is negligible for TSC. For instance, the maxi-
mal performance degradation with an additional hit latency
of 3 cycles is less than 1% among all benchmarks for TSC.
This is because GPU can effectively hide cache hit latency
thanks to its massive multi-threading capability and pipelin-
ing. Therefore, we conclude that the performance impact
due to the hit latency increment of TSC is negligible.



 10 

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Overhead Speedup Overhead Speedup
LAMAR 0.063KB 7.4% MRPB 1.21KB 7.0%
DSC-2 0.45KB 10.4% TSC 0.58KB 15.6%
DSC-4 1.33KB 11.7% TSC+ 0.58KB 17.2%

Table 3: Storage overhead of various schemes.

Since recent GPUs have been proved to have large L1
cache latency [21]. We assess the L1 cache latency of vari-
ous GPU architectures using micro-benchmarks. Using the
assessed results, we evaluate the performance of TSC when
the default L1 cache latency is 20-cycle (Fermi and Kepler)
and 90-cycle (Maxwell) respectively. We assume TSC fur-
ther increases the latency by 2 cycles in both cases. Under
20-cycle and 90-cycle L1 cache latency, TSC achieves a geo-
metric mean speedup of 15.6% and 15.4% respectively across
all benchmarks compared with the default cache. The per-
formance benefit of TSC is similar to that obtained under
1-cycle L1 cache latency (15.6%), which is used by default
in our experiments. Therefore, we conclude that TSC also
works well under long L1 cache latency.

5.6 Overhead
In this subsection, we discuss various overhead of TSC.

Table 3 compares the storage overhead of various schemes for
a 16KB L1 cache. The major storage overhead of TSC comes
from private tag, valid bit, chunk offset and NRU bit that are
private for each chunk. Totally, the overhead is 0.58KB per
16KB L1 cache for 8-bit private tag configuration. TSC+
only requires 4 16-bit counters for the entire GPU to record
the performance of two operation modes in addition to the
overhead of TSC. TSC has better performance and less over-
head at the same time compared with other techniques ex-
cept DSC-2. Compared with DSC-2, TSC with 5-bit private
tag has less storage overhead of 0.44KB, and it still has a
higher geometrics performance improvement of 13.6%.

We use CACTI 6.5 [34] is to evaluate the area overhead
under the 45nm technology. The result shows that the area
overhead is 0.002 mm2 per L1 cache. The overall extra
area for TSC is evaluated to be 0.03 mm2, which occupies
roughly 0.01% of the total area of a typical GPU under 40nm
technology [23].

We also used CACTI to evaluate the timing and power
overhead of TSC. The data lookup of TSC adds less than
0.02 ns, and thus 1-cycle additional hit latency increment
modeled in our experiments is more than enough. CACTI
also reports that tag comparison of TSC consumes 0.0008
nJ of extra energy on each data access. It is approximately
0.4% of total cache access energy consumption. The leakage
power increment due to extra tag storage is 0.5 mW per L1
cache. In total, the leakage power increases by 0.02% for the
whole GPU.

6. RELATED WORK
CPU intra cache line space utilization: Prior work

has tried to address the cache space underutilization for
CPU caches by altering cache organization. Amoeba-Cache
[14] uses an unified storage for tag and data, and it predicts
the best access granularity on misses. Amoeba-Cache em-
ploys a complex structure for data lookup since tag can be
stored anyway in the unified storage. Compared with our
design, Amoeba-Cache incurs much higher design overhead
and thus is not suitable for GPU cache. Amoeba-Cache and

adaptive cache line size [35] also employ complex mechanism
to predict the most appropriate cache line size. Line distilla-
tion [25] partitions cache into two parts. On a cache miss the
whole line is placed into the first place. When a cache line
is evicted from the first part, only reused words in that line
can enter the second part. Their method cannot resolve the
wasted space in the first part of cache. Inoue et al. propose
a variable line-size cache design for merged DRAM/logic in-
tegrated circuit [9]. Their design incurs large tag storage
overhead since every subline has its own tag entry. Decou-
pled sectored cache [32] proposes to add more tag entries
for a sector in sector cache [19], so that different cache lines
can share space within a sector to improve space utilization.
As we discussed in Section 5.2, decoupled sectored cache
restricts the space sharing way so that our design outper-
forms it significantly. Sector pool cache [30] also extends
sector cache to make use of spare subsectors. Like decou-
pled sectored cache, sector pool cache also restricts the way
that different cache lines share subsectors and thus is less
efficient than TSC. Besides, it uses pointers to indicate the
data location. Since pointer chasing can be expensive for
hardware, TSC does not use pointers and is less complex.

Compared with previous CPU cache techniques, our tech-
nique is different in the following aspects. Firstly, CPU
cache work does not consider the impact of cache line size
on cache request number, which can significantly affect GPU
performance as shown in Figure 2 and 5. TSC can reduce
the cache request number by using a coarse access gran-
ularity. Secondly, as shown in Figure 4, since most GPU
benchmarks have poor spatial locality, the major purpose
of TSC is to utilize the wasted cache space caused by poor
spatial locality in order to retain more data for exploiting
temporal locality, rather than adapting to the spatial locality
variation. Thirdly, previous methods usually employ com-
plex cache structure and locality prediction mechanism to
achieve fine-grained storage. For instance, Amoeba Cache
uses a unified storage for tag and data, which makes the
process of cache lookup complicated. TSC incurs significant
lower complexity and overhead compared to them. Fourthly,
we propose shared/private tag to reduce the tag overhead.
Finally, TSC can invalidate/replace multiple cache lines in
one cycle thanks to the write-invalid L1 cache in GPU, while
previous CPU cache work has to implement multi-round re-
placement, which increases design complexity and verifica-
tion efforts.

Memory bandwidth optimization on CPUs: Some
recent work has explored changing data access granularity
for better memory bandwidth utilization in CMP environ-
ment. AGMS [38] relies on programmers to specify the best
granularity of data access, while DGMS [39] dynamically ad-
justs access granularity based on spatial locality at runtime.
MAGE [18] integrates an adaptive granularity memory sys-
tem with error checking for both performance and resiliency.
However, these work cannot address the problem of cache
space underutilization due to limited spatial locality.

Memory bandwidth optimization on GPUs: The
most related work to TSC is locality-aware memory hier-
archy (LAMAR) proposed by Rhu et al. [27]. They also
observe that spatial locality for GPU cache is low for many
irregular applications, and they propose to use sector cache
(supported by modified sub-ranked memory) and only fetch
the demanded parts if the requested cache line is predicted
to have poor spatial locality to reduce memory traffic. The
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major difference between LAMAR and our work is that we
not only improve the memory bandwidth utilization, but
also address the cache space underutilization problem that
results from poor spatial locality, and thus our method sig-
nificantly outperforms LAMAR as shown in Section 5.2.

Other related GPU cache work: Throttling the max-
imum number of current running thread warps can reduce
cache contention and thus improve performance. CCWS
[28] uses auxiliary tag array in L1 cache to detect locality
lost and adjusts maximal concurrent warp number accord-
ingly. Instead of reactive cache contention detection, DAWS
[29] proactively predicts the optimal concurrent warp num-
ber based on history information to improve performance
further. Kayiran et al. limit the concurrent warp number at
thread block level [13]. MRPB [11] reorders on-the-fly mem-
ory requests so that requests from a small group of warps
make use of cache resource preferentially. It also employs a
reactive bypassing scheme. Some work focuses on improving
GPU cache performance through novel cache replacement
methods [6, 7, 12, 31, 36, 37]. A decoupled GPU L1 cache
is proposed in [16] to enable dynamic locality filtering func-
tionality in the extended tag store for efficient and accurate
runtime cache bypassing. Since the main goal of our design
is to address intra cache line space underutilization due to
lack of spatial locality, our work is complementary with all
these request scheduling and replacement techniques that
aim to improve the temporal locality of data accesses. They
can be used together with TSC for further performance im-
provement.

7. CONCLUSION
With their high computation throughput, GPUs become

a popular platform for general purpose applications. These
applications usually show irregular memory access behav-
ior, which causes the underutilization of cache space and
memory bandwidth. This work addresses these problems by
introducing a new cache architecture called tag-split cache
(TSC). TSC efficiently utilizes the cache space by enabling
fine-grained cache storage. TSC also dynamically adjust
data storage granularity to avoid performance degradation
for applications with good spatial locality. Based on our
experimental results, TSC outperforms previous techniques
significantly while having low overhead, including MRPB,
LAMAR and decoupled sectored cache.
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