
Unified On-chip Memory Allocation for SIMT Architecture

Ari B. Hayes and Eddy Z. Zhang
Department of Computer Science

Rutgers University
Piscataway, NJ 08554

{arihayes, eddy.zhengzhang} @cs.rutgers.edu

ABSTRACT
The popularity of general purpose Graphic Processing Unit
(GPU) is largely attributed to the tremendous concurrency
enabled by its underlying architecture – single instruction
multiple thread (SIMT) architecture. It keeps the context
of a significant number of threads in registers to enable fast
“context switches” when the processor is stalled due to exe-
cution dependence, memory requests and etc. The SIMT ar-
chitecture has a large register file evenly partitioned among
all concurrent threads. Per-thread register usage determines
the number of concurrent threads, which strongly affects
the whole program performance. Existing register allocation
techniques, extensively studied in the past several decades,
are oblivious to the register contention due to the concurrent
execution of many threads. They are prone to making op-
timization decisions that benefit single thread but degrade
the whole application performance.

Is it possible for compilers to make register allocation de-
cisions that can maximize the whole GPU application per-
formance? We tackle this important question from two dif-
ferent aspects in this paper. We first propose an unified
on-chip memory allocation framework that uses scratch-pad
memory to help: (1) alleviate single-thread register pres-
sure; (2) increase whole application throughput. Secondly,
we propose a characterization model for the SIMT execu-
tion model in order to achieve a desired on-chip memory
partition given the register pressure of a program. Overall,
we discovered that it is possible to automatically determine
an on-chip memory resource allocation that maximizes con-
currency while ensuring good single-thread performance at
compile-time. We evaluated our techniques on a representa-
tive set of GPU benchmarks with non-trivial register pres-
sure. We are able to achieve up to 1.70 times speedup over
the baseline of the traditional register allocation scheme that
maximizes single thread performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS’14, June 10–13 2014, Munich, Germany.
Copyright 2014 ACM 978-1-4503-2642-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2597652.2597685.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers, optimization; D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming

General Terms
Performance, Management

Keywords
GPU; Register Allocation; Shared Memory Allocation; Com-
piler Optimization; Concurrency

1. INTRODUCTION
Existing compilation techniques for on-chip memory re-

source allocation, including register allocation, mainly tar-
get single-thread performance. In the past several decades,
efficient techniques have been studied and widely adopted in
mainstream compilers. In the context of single instruction
multiple threads (SIMT) architecture for general purpose
Graphic Processing Unit (GPU), the whole program per-
formance not only depends on single thread performance,
but also the interaction between the group of threads that
run concurrently – mainly the process to hide each other’s
latency caused by execution dependence, data request, syn-
chronization and other reasons. The number of concurrent
threads depends on the physical on-chip memory constraint
as well as the per-thread on-chip memory demand from a
given program. The latter mainly depends on compile-time
decision. The traditional register allocation technique for
CPU program tends to gives the maximal number of physical
registers to a single thread according to its register pressure.

The goal of traditional register allocation technique is to
minimize the number of register spills and maximize sin-
gle thread performance. However, this strategy does not
necessarily work well for programs running on SIMT archi-
tecture. Allocating registers according to a single thread’s
register pressure may lead to resource contention among con-
currently executing threads and lead to sub-optimal perfor-
mance. We show this phenomenon using the results of a case
study over a set of important GPU applications in physics
simulation, numerical analysis, and image processing [6] [20].
We control per-thread register count at compile-time and we
compile one program into different versions over a range of
register usage from 20 or 321to the maximal register de-

1We choose 20 for Fermi and 32 for Kepler because this
leads to the maximal number of concurrent threads. Having

293

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2597652.2597685&domain=pdf&date_stamp=2014-06-10

2.6

2.763

2.925

3.088

3.25

31 32 33 34 35 36 37 38 39

heartwall

Ke
rn

el
 T

im
e

(s
)

Register Number

0.175

0.306

0.438

0.569

0.7

31 33 35 37 39 41 43 45 47 49 51

particles

Register Number

0.015

0.022

0.028

0.035

0.041

31 33 35 37 39 41 43

dxtc

Register Number

0.01

0.012

0.014

0.016

0.018

30 35 40 45 50 55 60 65

FDTD3d

Register Number

optimal optimal
optimal optimal

Figure 1: Performance of compiled programs with various per-thread register usage. The x-axis represents the per-thread
register usage for every compiled version. The y-axis shows the running time in seconds. We used an NVIDIA Kepler [21]
GTX680. The range of register count is from 32 to the maximal register demand.

mand. We show the results of four benchmarks heartwall,
particles, dxtc and FDTD3d in Fig. 1. As can be seen in Fig.
1, using as many registers as needed to avoid spilling does
not necessarily yield optimal performance. Furthermore, us-
ing the smallest number of registers per-thread does not nec-
essarily yield best performance either. For instance, the dxtc
benchmark’s best per-thread register count is 40, which is
too high to allow maximal occupancy, yet lower than the
register demand.

A fundamental question arises: what is the best per-thread
register usage for a given program on a given GPU archi-
tecture? An intuitive approach is to try all possible register
count, compile the program and profile performance over dif-
ferent runs. However, exhaustive search is prohibitive when
the range of possible register counts is large. It can be up to
255 for current GPUs[21]. Furthermore, depending on the
input parameters, the number of profiling runs needed for a
fully representative input set can be exponential.

To have a good answer to this fundamental question, we
need to understand the implications of compile-time on-chip
memory allocation decision on the efficiency of concurrent
execution. Per-thread register usage, as well as other on-
chip memory usage, is tightly correlated with the concur-
rency level a program can achieve. Using fewer registers per
thread may lead to high concurrency, but more local memory
loads and stores due to register spills. The local memory re-
sides in DRAM, which has large access latency. How can we
minimize per-thread register usage while maintaining good
single-thread performance? And how can we strike a bal-
ance between the benefits brought by high concurrency and
the overhead brought by extra off-chip memory operations?

In this paper, we study the implications of concurrent
execution on many-core GPUs and exploit these implica-
tions to develop efficient compile-time on-chip memory allo-
cation strategies. We address the above challenges from two
main aspects. We first propose a unified on-chip memory
allocation framework that not only uses registers but also
on-chip scratch-pad memory, to store thread context. The
scratch-pad memory acts as a buffering layer between reg-
isters and off-chip memory, alleviates single-thread register
pressure, and increases the concurrency level. We develop a
novel inter-procedure scratch-pad memory allocation scheme
that maximizes reuse across procedure boundaries, and im-
plement a prototype on-chip memory allocator. To ensure

a smaller per-thread register count does not improve concur-
rency; it only degrades single thread performance, leading
to worse performance overall.

compatibility, we only use scratch-pad memory not already
allocated by the user. Secondly, we characterize the relation-
ship between the program performance and the concurrency
level. Our characterization predicts the desired concurrency
level for a given program, and guides the selection of per-
thread register count and scratch-pad memory usage.

There is a large body of research work on register alloca-
tion for CPUs and embedded processors [4] [5] [23] [12] [22]
[3] [7]. They have shown promising results for single-thread
applications. Some studies investigated scratch-pad mem-
ory allocation techniques on embedded architectures [9] [17]
[26], but not on GPUs equipped with a bulk synchronous
parallel (BSP) execution model. Gebhart and others [11]
proposed techniques to dynamically partition on-chip mem-
ory into cache, scratch-pad and register memory according
to application’s register/scratch-pad memory demand with
architecture support. However, it does not address the prob-
lems of how to reduce and how to determine register pressure
for a given program. Overall, there is a lack of exploration in
the implications of compile-time on-chip memory allocation
on the concurrent execution efficiency of GPU applications.

In this paper, we propose efficient on-chip memory alloca-
tion techniques to enable maximal utilization of many-core
GPU processors. We summarize our contributions as fol-
lows:

• On-Chip Memory Allocation We build an unified
on-chip memory allocation framework for GPU appli-
cations. We offload register pressure to scratch-pad
memory when necessary and we determine the cor-
responding per-thread register and scratch-pad mem-
ory usage for maximal concurrency level. Under this
framework, we develop a novel inter-procedure on-chip
memory allocation strategy, which maximizes the reuse
of on-chip memory across procedure boundaries.

• Concurrency-oriented Program Analysis We re-
veal that severe resource contention can be caused by
static memory resource allocation for GPU programs.
For the first time, we address the problem of mapping
GPU program features to its achievable concurrency
and its desirable concurrency level. We propose effi-
cient characterization model to determine if increased
concurrency level will always yield better whole pro-
gram performance. Our model is a pure static model
and yet it is effective.

• Implemented Allocator for Real GPU Systems
We reverse engineered the NVIDIA hardware ISA and

294

implemented our prototype on-chip memory allocator
for programs that run on real GPUs. Our approach
can be readily deployed and does not require any ar-
chitecture level extension.

The rest of the paper is outlined as follows: Section 2
reviews background on GPU programming model. Section
3 details our unified on-chip memory allocation framework.
Section 4 describes program characterization and concur-
rency selection techniques. Section 5 and Section 6 respec-
tively analyzes experiment results and presents related work.

2. BACKGROUND
Although the GPU as a whole acts as a single instruction

multiple thread (SIMT) processor, with different threads
following different execution paths, it has small groups of
threads execute in lockstep, in the manner of a single in-
struction multiple data (SIMD) processor. Such a SIMD-
like processor is called a Streaming Multi-Processor (SM) in
NVIDIA terminology. We use NVIDIA terminology to de-
scribe GPU architecture throughout this paper. A group of
threads that run in lockstep on one SM is called a thread
warp. A thread warp is the minimal scheduling unit on
every SM. When one thread warp yields an SM, if there is
another ready thread warp, it will be scheduled to run. Oth-
erwise the SM processor remains idle until one thread warp
is ready. Typically there is a much larger number of active
warps than the total number of SMs. All of their states are
saved in registers. When one thread warp is swapped out
of the processor, its states remain in registers. When one
thread warp is switched in to run, it does not need to load its
states from off-chip memory into registers unless per-thread
register allocation is not enough to hold its state. Therefore
it is different from a traditional CPU ”context switch”. A
set of warps form a block, whose threads share access to the
same partition of scratch-pad memory. A set of blocks forms
a grid, which is launched by the same function. A function
that runs on GPU is called a kernel function .

There are two types of memory on a GPU card – on-
chip memory and off-chip memory. On-chip memory in-
cludes registers, scratch-pad memory, and caches. Registers
are the fastest on-chip memory storage. Every SM has a
large register file and it is divided evenly among co-running
threads. Since every thread executes the same kernel func-
tion, it uses the same number of registers. At one time, only
a limited number of threads can run simultaneously due to
hardware constraints on the size of register and scratch-pad
memory. We refer to these threads as active threads. A
kernel function typically launches a significant number of
threads which are further partitioned into multiple batches
of active threads. A batch does not yield the SMs until all
threads within it complete execution. Only thread warps
within the same batch can co-run and help hide each other’s
instruction latency. Every GPU architecture with different
computing capabilities also specifies the maximal hardware
allowed active threads per SM (active is used in NVIDIA
terminology, however we denote these threads as concurrent
threads throughout this paper). In NVIDIA terminology,
the ratio between the actual number of active threads and
the hardware limit is defined as occupancy, which is a num-
ber between 0 and 1.

Another important type of on-chip memory is scratch-pad
memory. It is referred to as shared memory in CUDA. For

the rest of the paper, we use shared memory to refer to GPU
scratch-pad memory. The shared memory can be managed
explicitly by software. It is fast, with a latency of several
cycles, comparable to the L1 cache.Shared memory is also
equally partitioned among different threads.

Off-chip memory includes global memory and local mem-
ory, which might be a hundred times slower than registers.
Local memory is used to store local variables for every proce-
dure, and is manageable during compile-time. If a register is
spilled to off-chip memory, it resides in local memory. Global
memory can be explicitly managed by programmers. Other
types of off-chip memory include constant memory, texture
memory and etc. They are used for special purposes, such
as read-only memory storage or multi-dimensional data lo-
cality.

3. UNIFIED ON-CHIP MEMORY
ALLOCATION

3.1 Framework Overview

v1

v2

v3v4

v5

r1

r2

(b) Register Allocation

v1

v2

v3v4

v5

r1

s1 s1

r2

v1

v2

v3v4

v5

(a) Before Allocation (c) Shared Memory Alloc.

Figure 2: Unified On-Chip Memory Allocation

In this Section, we describe our transformation framework
that uses shared memory to store local variables and to al-
leviate register pressure, which ultimately leads to better
GPU concurrency and whole program performance. This
framework uses shared memory to store live variables that
cannot fit in registers, as if we are spilling registers into
shared memory. We perform register allocation first and se-
lect the variables that can stay in registers. For the rest
of the variables, we perform shared memory allocation and
choose a subset of them to be stored in shared memory.

The target of the unified on-chip memory allocation is to
store as many local variables into a fixed number of regis-
ters and shared memory slots as possible. We treat both
registers and shared memory as one type of memory – the
on-chip memory. Then we perform on-chip memory alloca-
tion as if we are performing register allocation for traditional
CPU programs. We illustrate this idea in Fig. 2. Assume
we have two registers, one shared memory slot, and one local
memory slot. In Fig. 2 (a), we show the interference graph
of five local variables v1, v2, v3, v4, v5. Two variables in-
terfere with each other if they are both live at one or more
instructions. It implies the two variables cannot be assigned
to the same register or shared memory slot. If two variables
interfere, there is an edge between the nodes representing
them. In Fig. 2 (b), we show the result after register allo-
cation. Variables v1 and v2 are assigned to registers r1 and
r2 respectively. Now we have three variables that are not
assigned and we have one shared memory slot. In Fig. 2 (c),
we assign variables v2 and v5 to shared memory slot s1. By
this step, we have completed assigning as many variables as
we can to registers and shared memory. We then let the last

295

variable v4 stay in local memory. The minimal number of
variables to be stored in local memory is 1 in this case.

Register allocation techniques have been extensively stud-
ied in the past three decades [4] [5] [23] [12] [22] [3] [7]. How-
ever, they mainly focus on single procedure register alloca-
tion. A few of them [15] [8] have studied reuse of registers
across procedures but mainly focus on minimizing register
pressure penalty at procedure calls. Typically, the content
of most of the registers in the caller procedure are saved in
local memory at procedure calls so that the registers can be
reused in the callee procedure. Previous work [15] [8] avoid
saving all the registers when procedure calls happen by de-
termining if the registers will be used or not in the callee
procedure. We leverage the register allocation algorithms
for single procedure on-chip memory allocation and we de-
velop an algorithm that maximizes reuse of on-chip memory
across procedure boundaries. We describe this approach in
Section 3.2.

In summary, with a given number of registers and shared
memory, our unified on-chip memory allocation framework
performs both register allocation and shared memory allo-
cation. To separate the coupling effects from other phases
of compilation, we build a experiment platform that takes
binary as input. As in the binary file, the other phases like
instruction scheduling have already completed, and we can
simply replace the live variable accesses as shared memory
access or off-chip memory accesses and add corresponding
instructions. Therefore, the only effect we are testing is the
placement of live variables. We use the binary generated
by nvcc with a fixed register count. Then we analyze the
other variables that are spilled into local memory and trans-
form them correspondingly given a fixed number of shared
memory slots. The NVIDIA GPU hardware instruction set
architecture (ISA) and application binary interface (ABI) is
proprietary. We reverse engineered part of the ISA and ABI
for CUDA computing capability 3.0 with information from
the open source project asfermi [13] on CUDA computing
capability 2.0. We are able to decode the instructions, parse
the assembly code and perform data flow analysis. In the
following section, we elaborate inter-procedure shared mem-
ory allocation.

3.2 Shared Memory Allocation

3.2.1 Inter-procedure Shared Memory Reuse
We start describing our technique on enhancing inter-

procedure reuse of shared memory with an example. Note
that CUDA does not allow objects with virtual functions to
be parameters, and every CUDA kernel we have seen has a
call graph which can be determined statically.

We first show that there are opportunities to reuse shared
memory slots across procedure calls. In Fig. 3, we show
the stack status of a call sequence that involves three proce-
dures: proc A, proc B, proc C . proc A calls proc B. proc B
calls proc C. Assume the stack memory space for every pro-
cedure can hold exactly four different variables. This means
at any instruction in this procedure, at most four variables
can be live at the same time. The variables that are live
when proc A calls proc B are stored in locations La1, La3.
In proc B, when proc C is called, variables are saved in lo-
cations Lb2 and Lb3. In Fig. 3, we first show what the call
stack looks like with traditional CPU procedure local mem-
ory management – labeled as traditional. The cells with dark

La1 La2 La3 La4 Lb1 Lb2 Lb3 Lb4 Lc1 Lc2 Lc3 Lc4

La1 La2 La3 La4 Lb1 Lb2 Lb3 Lb4 Lc1 Lc2 Lc3 Lc4

Traditional

Register Stack Architecture

Moving Stack

Shuffle Shuffle Shuffle

proc_A proc_B proc_C

La1 La2 Lb1 Lb2 Lc1 Lc2 Lc3 Lc4

La1 La2 La3 Lb1 Lb2 Lb3 Lc1 Lc2 Lc3 Lc4

Lb1 Lb2 Lb3 Lb4 Lc1 Lc2 Lc3 Lc4La1 La2 La3 La4

proc_A proc_B proc_C

proc_A proc_B proc_C

proc_A proc_B proc_C

Figure 3: Reuse shared memory across procedure boundaries

background represent that the variable in the correspond-
ing location is live when another procedure is called. With
the traditional approach, we can see that the local memory
space of different procedures in the call sequence is stacked.
Therefore, for these three procedures, the size of the local
memory space needed in the call context is 12 slots, assum-
ing one slot can hold one variable. Even if some variables
are not live when a procedure is called, the memory stack
is incremented from its original maximal stack depth. This
is because the size of local memory for a CPU procedure is
trivial compared to the size of the off-chip memory.

In the second approach described in Fig. 3, we show a
CPU architecture that utilizes a register stack when an ar-
chitecture has relatively large register space to hold callee-
saved registers across multiple procedures [7]. This is only
made possible with special architecture support [7]. This ar-
chitecture utilizes the available register region at the end of
the register stack when a procedure is called. In the subfig-
ure marked as Register Stack Architecture in Fig. 3, proc B
can reuse the last available slot in proc A’s stack, and its
stack pointer starts from the end of La3. Similarly, proc C
can reuse the last slot in the stack for proc B. In this case, we
use 10 slots in the stack. This approach is related to inter-
procedure register usage, but it can be applied to shared
memory allocation across procedure boundaries. It saves 2
slots compared to the approach denoted as Traditional in
Fig. 3. However, there are still slots that are not used when
proc B and proc C are called.

In the third approach described in Fig. 3, we show our
approach – Moving Stack approach, which minimizes unused
stack space when there are nested procedure calls. Our re-
source allocator emits instructions to be inserted in the orig-
inal binary, which shuffles variables in the stack so that the
used variables will be stored in consecutive memory space.
Then we emit code to shift the stack pointer before the callee
procedure is invoked. For instance, in Fig. 3 Moving Stack
section, when proc B is called, the variable in La3 is shuffled
to the second slot. Then we let proc B use the space from
La3. Similarly, when proc B calls proc C, we move the vari-
able in Lb3 to Lb1. Therefore proc C can use the third slot
in proc B’s stack space, which is the 6th slot in the overall
runtime stack space. In this case, we use 8 slots in total and
no local memory slot is wasted. Compared to the original
case that uses 12 slots, we save more than 30% stack space.

296

3.2.2 Inter-procedure Shared Memory Assignment
In the last section, we presented an approach to maximize

the reusability of shared memory slots across procedures.
If we have a large amount of shared memory to hold all
local variables, then we can directly start assigning shared
memory slots to individual variables. However, the shared
memory is a scarce resource, as its size is the same or even
smaller than the register file size. Therefore, we need to
select a subset of local variables to reside in shared memory.
Meanwhile, we need to determine how many shared memory
slots every procedure gets assigned. Then we can perform
shared memory assignment on a per-procedure basis.

In this Section, we describe our approach to map selected
local memory variables to shared memory variables. We de-
fine Live-on-exit to be set of variables live at the exit of an
instruction. Max-live is defined as the maximum number of
simultaneously live variables at the exit of an instruction.
Max-live of a procedure that does not call any other pro-
cedure is easy to acquire. We can traverse all instructions
in the procedure and pick the largest Live-on-exit set. For
procedures that call other procedure calls, we propose a re-
cursive approach built on the following idea. We obtain the
number of live variables for an instruction that calls another
procedure Pcallee as the sum of its local |Live-on-exit| and
Max-live(Pcallee). If the Max-live of the callee procedure is
unknown, we recurse into the callee procedure to find its
Max-live.

Assume we have Nsmem available shared memory slots.
If Max-live of the main GPU kernel function is greater than
Nsmem, we need to prune at least Max-live - Nsmem variables
from the Live-on-exit sets and let these variables reside in
local memory. Our heuristic approach ranks different vari-
ables based on a pre-defined priority function. We prune low
priority variables until the updated Max-live is less than or
equal to Nsmem. This approach is simple, yet effective.

We rank local variables from different procedures and give
them a global ranking. We first define a composition instruc-
tion. It is a list of 2-tuples used to specify a call sequence.
If the instruction inst2 at func0 calls func1, and instruc-
tion inst3 at func1 calls func2, and the specific executing
instruction in func2 is inst0, then the resulting composi-
tion is { (func0, inst2), (func1, inst3), (func2, inst0) }.
The call context information exposed in a composition in-
struction helps keep track of caller instructions so that we
can obtain the Live-on-exit set easily from a union of live
variables at all relevant instructions in this calling context.
Then we can compare these variables from different proce-
dures as if they are from the same procedure.

Our inter-procedure variable pruning algorithm takes the
following steps:

• Step 1: We find the set of all composition instructions
whose Live-on-exit > Nsmem. We call it the Over-
smem-limit set.

• Step 2: For all live variables in the union of live-on-
exit var sets of composition instructions in the Over-
smem-limit set, we compute their priority values based
on the priority function. We use the priority function
of variable frequency in the union live variable set.

• Step 3: We eliminate one variable from the above set
with lowest priority value and check whether Max-live
is less than or equal to Nsmem after this variable is

eliminated from all Live-on-exit sets. If it is, then we
go to Step 4. Otherwise we go back to Step 3.

• Step 4: We have successfully pruned all the neces-
sary variables. We return the set of variables that are
candidates to be placed in shared memory.

Individual Shared Memory Slot Assignment.
The eliminated variables are the ones that stay in local

memory and the rest are mapped to shared memory. With
this information, we can compute up-to-date Max-live for
every procedure again. This is used as the maximal number
of shared memory slots assigned to every procedure. Then
we perform shared memory slot assignment in a way simi-
lar to register allocation. We use a heuristic graph coloring
approach that starts with the node of highest degree in the
interference graph. We assign this node a shared memory
slot that does not conflict with any of its neighbors that
are already assigned. If there are multiple choices, then we
choose the shared memory slot that was previously assigned
to some other variable. We process every node. If a vari-
able cannot be assigned to any shared memory slot without
conflicting with its neighbors, we map it to local memory. If
the interference graph has a chordal property, then we will
not have any spills [22]. In most cases, we don’t need to spill
any shared-memory mapped variable into local memory.

4. GPU PROGRAM OCCUPANCY
CHARACTERIZATION

Our transformation framework in Section 3 tackles the
problem of minimizing local memory spills given a fixed
amount of registers and shared memory. What would be
the best amount of registers and shared memory to allocate
for every running thread in any given GPU program? Given
a typically much larger number of registers than on CPUs,
usually in the scale of tens of thousands, we have many pos-
sible combinations of register count and shared memory con-
sumption per thread. In this large search space, exhaustive
search is prohibitive. In this section, we address the prob-
lem of finding best per-thread register and shared memory
usage.

The number of registers and the amount of shared memory
used per-thread determine the number of concurrent threads
on every streaming processor. The number of concurrent
threads can be estimated using the formula 2 below:

Active.Thread

= min(
Total.Reg.Num

PerThread.Reg.Num
,

Total.Smem

PerThread.Smem
).

Essentially, the specific questions on per-thread register
and shared-memory usage all boil down to one fundamental
question: what would be the most desirable concurrency
level for any GPU program on a specific GPU architec-
ture? If we know the best concurrency level, we can esti-
mate per-thread register and shared memory usage by solv-
ing the above equation. The optimal concurrency level has
2The total number of threads is also bound by the regis-
ter bank alignment and the thread block sizes for CUDA
programs. This formula illustrates the idea that per-thread
register/shared-memory usage dominates the number of con-
current threads. We use the GPU occupancy calculator [19]
to get the accurate number of active threads based on all
other factors in our experiments.

297

1

X

X

2

1 2 3 4 5 60

0

Cycles

In
st

ru
ct

io
ns

Warp 1 Warp 2 Warp 3 Idle

One Warp Three Warps One Warp

*Instruction 2 Dependent on Instruction 1 *No Dependence Between
Consecutive Instructions

Scenario A Scenario B

1

1

1

2

1 2 3 4 5 60

0

1

2

3

4

1 2 3 4 5 60

0

Cycles

In
st

ru
ct

io
ns

Cycles

In
st

ru
ct

io
ns

Figure 4: Concurrency Level Sensitivity

the capability of overlapping different types of operations
and minimizing computing unit idleness. The number of
different operations and how much they can be overlapped
depends on the characteristics of a program. The problem
of desired concurrency level is thus closely related to the
problem of GPU program characterization in a many-thread
cooperation/contention context. We describe our character-
ization approach first and concurrency level determination
algorithm secondly.

4.1 Model Many-thread Running Process
We can start from the minimal concurrency level indicated

by the maximal register/shared-memory request in the pro-
gram, keep increasing the concurrency level by spilling live
variables into shared memory and/or local memory, and
keep increasing concurrency level until the point that the
overhead of extra local memory spilling cannot be offset
by the benefit brought by increased program concurrency.
However, increasing concurrency level does not alway help;
in fact it helps for most programs except one special case.

This exception is the case which we define as computation
intensive case; it is when single thread instruction level par-
allelism (ILP) is inherently good in the program so that the
latency is well hidden when a thread is running by itself.
We illustrate it with an example in Fig. 4 Scenario B. In
Fig. 4, assume every instruction takes three cycles, and the
processor is able to dispatch one instruction in every cycle.
The x-axis represents the cycle number. The y-axis repre-
sents the instruction number. In Scenario B, instruction 2
does not directly depend on instruction 1, and it can be dis-
patched immediately at the beginning of the second cycle.
It is similar for instructions 2, 3, and 4. We only need one
thread per-core in Scenario B to fully utilize the computa-
tion pipeline (one thread warp for one SM). In this cases,
an increased concurrency level does not help improve per-
formance, and they are not concurrency-bound cases. Next
we show a concurrency-bound case in which increased con-
currency helps improve performance. In Fig. 4 Scenario
A, assume we have dependences between instruction 2 and
instruction 1. Instruction 2 can’t start until instruction 1
finishes. If we have only one warp, we cannot dispatch in-
struction 2 until the beginning of the fourth cycle in the One
Warp case of Scenario A. The processor pipeline is thus not
fully utilized. However, if we have three warps, in the Three
Warps case in Scenario A of Fig. 4, at the beginning of the
second cycle, we can schedule warp 2 to run instruction 1,
and at the beginning of the third cycle, we can schedule warp
3 to run instruction 1. Therefore the processor pipeline is
fully utilized. Overall, in Scenario A, we need three warps
to fully utilize the computing units. Increasing the number
of concurrent thread warps from one to three helps improve

performance. These cases belong to the concurrency-bound
category.

In summary, we want to optimize concurrency-bound pro-
grams with multi-level on-chip memory resource allocation
strategies. We use a heuristic metric to distinguish between
programs that can benefit from increased concurrency and
the ones that do not necessarily benefit from increased con-
currency. The metric is the average dispatch interval be-
tween every two adjacent instructions in the same thread
specified statically in the GPU binary code. The average
dispatch interval reflects the ratio between the idle cycles
and the busy cycles in the pipeline. As illustrated in Fig. 4
scenario A and scenario B, the dispatch intervals are 3 and
1 respectively. The minimal number of warps to fully utilize
the processor pipeline happens to be 3 and 1 for these two
cases respectively. The average dispatch interval 3 can also
be used as an initial estimate of the number of active warps
for every SM. We elaborate our algorithm for concurrency
selection in next section.

4.2 Concurrency Level Search
The main idea of our concurrency level search algorithm

is to make the benefits of increased concurrency outweigh
the overhead of local memory spilling. With limited reg-
isters and shared memory, increasing the concurrency level
may force live variables to be spilled into slow local mem-
ory. How many local memory spills can be allowed depends
on the concurrency level we select. We start from an ini-
tially estimated number of active threads as the product of
average dispatch interval and the number of cores per SM
(every SM is the same so we discuss how to find concur-
rency level for every SM). Based on the initial estimate, we
derive the number of registers and the amount of shared
memory for every thread. We then perform shared mem-
ory allocation with the initial per-thread register number
and shared memory amount. Then we check the number
of local memory spills to see if we should decrease or in-
crease the concurrency level. In this algorithm, we use a
heuristic criteria to check whether a given concurrency level
is good enough; we keep increasing concurrency level above
the initial concurrency level if the criteria is met, or keep
decreasing concurrency level below the initial concurrency
level until the criteria is met. We set the criteria in a way
that the local memory spilling overhead can be overlapped
with the arithmetic and other non off-chip memory instruc-
tions. We use COMPUTE insttrsf to denote the number
of instructions that are not off-chip memory instructions af-
ter transformation and we use MEM insttrsf to denote the
number of off-chip memory instructions after transforma-
tion. We refer to this criteria as Computation Interleaving
predicate – CI pred and we describe it as follows:

CIpred :
COMPUTE insttrsf ∗AD int

MEM insttrsf
> MAX cmratio

(1)

3NVIDIA kepler GPU architecture uses a static instruction
scheduling approach instead of architecture based instruc-
tion scheduling. Dispatch interval is encoded in the instruc-
tions if we compile with nvcc for computing capability of 3.0
and above. We reverse-engineered the ISA and parsed in-
structions to get the dispatch interval for every two adjacent
instructions.

298

1: if (Program is concurrency Bound) {
2: ActTnum = AD interval * SM cores;
3: (Reg,Smem) = getRegSmem(ActTnum);
4: transformProg(Reg,Smem);
5: get(CI pred);
6: if (CI pred) TraverseUp=TRUE;
7: else TraverseUp = FALSE;
8: ActTnum cur = ActTnum;
9: if (TraverseUp) {
10: while(ActTnum cur < MaxThrd) {
11: get(CI pred);
12: if (CI pred)
13: ActThrd opt = ActTnum cur;
14: ActTnum cur += BlkSize; }
15: else if(ActTnum ≥ SmemFitTnum) {
16: while(ActTnum cur > ActTnum org) {
17: get(CI pred);
18: if (CI pred) {
19: ActThrd opt = ActTnum cur;
20: break; }
21: ActTnum cur − = BlkSize; }
22: else
23: ActThrd opt = ActTnum org;
24: return ActThrd opt;

Find Desired concurrency Level

Figure 5: Concurrency Level Search

AD int denotes the average instruction dispatch interval.
We obtain this by decoding NVIDIA Kepler’s binary ISA.
MAX cmratio is correlated with the number of cycles for
an off-chip memory instruction; it is the number of com-
putation instructions with a specific dispatch interval that
are needed to hide the latency of one off-chip memory in-
struction. Its value varies from architecture to architecture.
We obtain this parameter value by measuring the cycles of
computation and off-chip memory instructions for a specific
architecture. If the condition in Inequality 1 is satisfied,
we consider this concurrency level to be beneficial. In our
concurrency level search algorithm, if the initially estimated
concurrency level is beneficial, we keep increasing it step by
step (and we use thread block size as the step since it is
the minimal unit to run on a SM). We choose the largest
concurrency level which is beneficial. Otherwise, we keep
decreasing the concurrency level step by step until we find
the first concurrency level that is beneficial.

We illustrate the major components of our concurrency
level search algorithm in Fig. 5. Note that when the al-
gorithm traverses down, it stops when it hits a threshold
SmemFitTnum. This is the number of concurrent threads
which results in no spills into the off-chip memory, which
means the live variables can completely fit into registers and
shared memory. The variable ActTnum, denotes the num-
ber of active threads per SM, and the variable ActThrd opt
denotes the final number of active threads per SM we se-
lected.

5. EVALUATION
In this section, we present our experiment results. We per-

form experiments on two different machine configurations.

One is NVIDIA Kepler GTX680. It has 8 streaming multi-
processors (SM), with 192 cores on each of them and 1536
cores in total. It has CUDA computing capability 3.0. Ev-
ery streaming multi-processor is equipped with 65536 reg-
isters and 48KB shared memory. The maximum number
of concurrent threads that can run simultaneously on each
streaming multi-processor is 2048. The second machine is
configured with NVIDIA Fermi card - Tesla C2075. It has
448 cores in total, with 32 cores on each SM. It has CUDA
computing capability 2.0. There are 32768 registers and
48KB shared memory per SM. The maximal number of con-
current threads that can run simultaneously is 1536. Notice
that these two configurations impose different constraints on
single-thread register count and single-thread shared mem-
ory with respect to maximal concurrency supported by hard-
ware. We denote the Kepler card as Kepler and the Fermi
card as Fermi.

We measured computation and off-chip memory instruc-
tions latencies with the clock() function. Normal algebra
instructions like addition and subtraction take 9 cycles and
an off-chip memory instruction takes between 300 and 400
cycles. Since reads and writes happen in parallel, we set the
average of off-chip memory latency to be between 150-200.
Therefore, we choose the larger one 200 and set the parame-
ter MAX cmratio in Section 4.2 to be 200. This parameter is
used in our automatic occupancy level selection algorithm,
and our experiments support this value as being effective.

To process a benchmark, we first extract the assembly
code for the kernel function using NVIDIA binary listing
tool cuobjdump. We decoded necessary parts of the binary
instruction set for NVIDIA Kepler architecture, including
scheduling instructions omitted by cuobjdump, based on as-
fermi [13]. Our binary analysis and modification pass is
implemented with the libelf library. We implemented our
parser with flex and bison.Our shared memory allocator then
performs program analysis, determines the best occupancy
level, and transforms the code. We use one fixed register as
a shared-memory stack pointer. If necessary, we use a sec-
ond fixed register to shuffle shared-memory slots for Moving
Stack algorithm. Note that this process is done quickly, and
takes less than a second on most benchmarks.

We evaluate our methods with seven benchmarks selected
from the Rodinia benchmark suite 2.2 [6] and CUDA SDK
5.0. We choose them because they have non-trivial regis-
ter demand. Note that a lot of benchmarks from Rodinia
[6] and CUDA Computing SDK have a low register demand
of below 20, which happens to enable maximal hardware
supported concurrency for previous and current NVIDIA
GPU architectures. Decreasing register pressure for these
benchmarks will not help improve concurrency or improve
single-thread performance. Our algorithm will choose not
to transform these programs, thus we do not include them
in discussion. We describe the list of benchmarks used for
this paper in Table 1. RegDemand is the number of regis-
ters needed per-thread if no spilling to on-chip or off-chip
memory happens. It is the default choice by nvcc and tradi-
tional CPU register allocation approach. UserSmem is the
bytes of shared memory preallocated by the user per thread.
Note that we only use the remaining shared memory left af-
ter users’ preallocation, and we do not affect the existing
concurrency when distributing the available shared memory
among concurrent threads. InstChange is the increase in size
to the transformed kernel function at the auto occupancy.

299

Benchmark AppDomain RegDemand UserSmem InstChange CacheMissRate(%)
Fermi Kepler Fermi Kepler Fermi Kepler Fermi Kepler

cfd [6] Simulation 61 63 0.00 0.00 1.00 1.12 90.49/90.49 0.00/83.68
dxtc [20] Imaging 43 49 10.00 12.00 1.03 1.00 32.81/54.39 0.00/0.00

FDTD3d [20] Numerical Ana. 57 48 7.50 10.00 1.05 1.10 0.00/0.00 0.00/0.00
hotspot [6] Simulation 36 39 12.00 12.00 1.03 1.03 0.00/48.26 0.00/43.09

imageDenoising [20] Imaging 63 63 4.00 4.00 1.29 1.06 0.00/72.99 0.00/37.05
particles [20] Simulation 50 52 0.00 0.00 1.09 1.12 0.00/44.44 0.00/43.41

recursiveGaussian [20] Imaging 41 42 0.00 0.00 1.00 1.07 0.00/83.69 72.77/90.09

Table 1: Benchmark Description. AppDomain is the benchmark’s application. RegDemand is the number of registers the
compiler tries to use. UserSmem is the amount of user-allocated shared memory per thread. InstChange is the increase to
the instruction count in the auto occupancy. CacheMissRate is the cache miss rate in the auto occupancy; the numerator is
with use of shared memory after transformation, and the denominator is with purely global spills before transformation.

CacheMissRate lists cache miss rates for the auto occupancy
before and after transformation.

We present both the results of automatically selected oc-
cupancy level through our approach, and the exhaustive
search through all possible occupancy levels. When an oc-
cupancy level is selected, per-thread register and shared-
memory limits are determined by the NVIDIA GPU occu-
pancy calculator [19].

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

cfd dxtc
FDTD3d

hotsp
ot

im
ageDen.

partic
les

recursi
veG.

Auto Best Worst

Figure 6: Kepler Performance Results. The Auto bar shows
speedup with automatically selected occupancy. The Best
bar shows highest speedup among all occupancies by exhaus-
tive search. The Worse bar shows worst speedup among all
occupancies. For our baseline, we used the runtime when
compiling each benchmark with default settings.

We first present the overall performance results for Kepler
in Fig. 6. Each group of bars along the x-axis represents
a benchmark. The y-axis represents a particular kernel’s
speedup compared to its baseline. For our baselines, we
compiled each benchmark using nvcc with the default set-
tings, including no register limits. The first bar Auto repre-
sents the speedup at the concurrency level selected by our
concurrency selector. The second bar Best represents the
best speedup among all possible concurrency levels. The
third bar Worst represents the speedup in the worst case
among all different concurrency levels. The results demon-
strate that the automatically transformed program is typi-
cally faster than the original, and in most cases is close to
the best speedup (from an exhaustive search through con-
currency levels). FDTD3d and imageDenoising fail to reach
their best speedup due to our conservative algorithm, which

avoids the highest occupancies in this case due to the num-
ber of static memory operations. In our future work, we
plan to incorporate dynamic analysis in order to allow more
optimal selections. Overall, although no dynamic analysis
is performed, we still have good performance improvement
for these benchmarks. This demonstrates the importance of
static on-chip memory resource allocation.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

cfd dxtc
FDTD3d

hotsp
ot

im
ageDen.

partic
les

recursi
veG.

Auto Best Worst

Figure 7: Fermi Performance Results. The Auto bar shows
speedup with automatically selected occupancy. The Best
bar shows highest speedup among all occupancies by exhaus-
tive search. The Worse bar shows worst speedup among all
occupancies. For our baseline, we used the runtime when
compiling each benchmark with default settings.

Next we present the results for the Fermi GPU in Fig.
7. For our baseline, we compiled the benchmark using nvcc
with the default settings, including no register limits except
where necessary for the benchmark to run (due to hardware
limitations). The bars and axes have the same meaning as in
Fig. 6. Only the cfd benchmark here is not improved; this
is because cfd has an unusually large number of memory
instructions, even at the lowest occupancy, and so our con-
servative algorithm chooses not to increase the occupancy
at all. Due to the many memory instructions, increasing the
occupancy has less effect than in most benchmarks, regard-
less. The particles and especially the FDTD3d benchmarks
also have auto speedups below their bestdue to the conser-
vative algorithm choosing a lower occupancy than is optimal
in these cases. The recursiveGaussian benchmark sees much
less improvement than on Kepler. This has to do with the
differing limitations of the hardware. On Kepler, a kernel

300

can use up to 63 registers regardless of its block size, but on
Fermi, programs with higher block size have a lower register
limit, due to the smaller register file. Having a high block
size, recursiveGaussian must be compiled with less registers
to run at all, increasing the initial occupancy, and therefore
lessening the extent to which it can be improved.

6. RELATED WORK
Many studies in the past few years have been proposed

on register spilling between physical registers and off-chip
global memory. A fundamental model is the graph color-
ing model [4]. In [2], the authors propose an integer linear
program modeling of register allocation for CISC machines.
In [27] and [14], the authors particularly tackled the prob-
lem of register spilling due to software pipelining in loops.
Most of these previous studies are for sequential programs,
instead of massively parallel architecture. In [1], the authors
studied the register allocation schemes for vector machines.
However, a vector processor is different from the SIMT pro-
cessor on modern GPUs. Sampaio and others [24] proposed
a divergence aware spilling strategy to save memory, but did
not consider concurrency.

The previous studies on GPU also investigate the impli-
cation of interaction between concurrent threads on latency
minimization. The authors of [25] point out that the abil-
ity for memory latency hiding among different vector thread
groups is critical. The authors present a model for GPU pro-
grams that predicts the performance by calculating memory
warp parallelism (MWP) and computation warp parallelism
(CWP). While this work focused on modeling of concurrent
execution, it did not discuss how to achieve the desired con-
currency level. Other relevant GPU work includes topics
such as GPU exception handling [18], where register states
need to be restored for resuming execution after exception,
and energy saving [10], where the location of registers is crit-
ical to energy consumption because the distance between
the registers and processors determines the amount of en-
ergy consumed during data movement, and hardware regis-
ter space saving [29],which combines SRAM and DRAM to
store more bits into the die area. In [28], a means of opti-
mizing shared memory is explored in order to prevent user-
allocated shared memory from reducing occupancy, whereas
our approach makes use of non user-allocated shared mem-
ory to lessen the cost of improving occupancy. In [16], an
integer programming technique is used to allocate scalars
and arrays in shared memory, in order to optimize the code
at a higher level than we consider. Most of the aforemen-
tioned studies on GPU architecture extensions are imple-
mented and evaluated in hardware simulators.

7. CONCLUSION
In this paper, we propose a unified on-chip memory re-

source allocation framework for GPU programs. Our on-
chip memory resource framework predicts near-optimal par-
tition of on-chip memory resources and adapts GPU pro-
gram to the best concurrency level according to program
characteristics without any online or off-line profiling.

Acknowledgements
We thank Dmitry Mikushin for his insights on decoding
NVIDIA Kepler hardware instruction set architecture. We

thank the anonymous reviewers for their invaluable com-
ments. This material is based upon the work supported
by Rutgers University Research Council Grant and the De-
partment of Education GAANN fellowship. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of our sponsors.

8. REFERENCES
[1] R. Allen and K. Kennedy, “Vector register allocation,”

Computers, IEEE Transactions on, vol. 41, no. 10, pp.
1290 –1317, oct 1992.

[2] A. W. Appel and L. George, “Optimal spilling for cisc
machines with few registers,” in Proceedings of the
ACM SIGPLAN 2001 conference on Programming
language design and implementation, ser. PLDI ’01.
New York, NY, USA: ACM, 2001, pp. 243–253.
[Online]. Available:
http://doi.acm.org/10.1145/378795.378854

[3] I. D. Baev, “Techniques for region-based register
allocation,” in Proceedings of the 7th annual
IEEE/ACM International Symposium on Code
Generation and Optimization, ser. CGO ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp. 147–156. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2009.31

[4] G. J. Chaitin, “Register allocation & spilling via graph
coloring,” in Proceedings of the 1982 SIGPLAN
symposium on Compiler construction, ser. SIGPLAN
’82. New York, NY, USA: ACM, 1982, pp. 98–105.
[Online]. Available:
http://doi.acm.org/10.1145/800230.806984

[5] G. J. Chaitin, M. A. Auslander, A. K. Chandra,
J. Cocke, M. E. Hopkins, and P. W. Markstein,
“Register allocation via coloring,” in Computer
Languages, vol. 6, no. 1, 1981, pp. 47–57.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark
suite for heterogeneous computing,” in Proceedings of
the 2009 IEEE International Symposium on Workload
Characterization (IISWC), ser. IISWC ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp. 44–54. [Online]. Available:
http://dx.doi.org/10.1109/IISWC.2009.5306797

[7] Y. Choi and H. Han, “Optimal register reassignment
for register stack overflow minimization,” ACM Trans.
Archit. Code Optim., vol. 3, no. 1, pp. 90–114, Mar.
2006. [Online]. Available:
http://doi.acm.org/10.1145/1132462.1132467

[8] F. C. Chow, “Minimizing register usage penalty at
procedure calls,” in Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design and
Implementation, ser. PLDI ’88. New York, NY, USA:
ACM, 1988, pp. 85–94. [Online]. Available:
http://doi.acm.org/10.1145/53990.53999

[9] A. Dominguez, N. Nguyen, and R. K. Barua,
“Recursive function data allocation to scratch-pad
memory,” in Proceedings of the 2007 international
conference on Compilers, architecture, and synthesis
for embedded systems, ser. CASES ’07. New York,
NY, USA: ACM, 2007, pp. 65–74. [Online]. Available:
http://doi.acm.org/10.1145/1289881.1289897

301

http://doi.acm.org/10.1145/378795.378854
http://dx.doi.org/10.1109/CGO.2009.31
http://doi.acm.org/10.1145/800230.806984
http://dx.doi.org/10.1109/IISWC.2009.5306797
http://doi.acm.org/10.1145/1132462.1132467
http://doi.acm.org/10.1145/53990.53999
http://doi.acm.org/10.1145/1289881.1289897

[10] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler,
W. J. Dally, E. Lindholm, and K. Skadron, “A
hierarchical thread scheduler and register file for
energy-efficient throughput processors,” ACM Trans.
Comput. Syst., vol. 30, no. 2, pp. 8:1–8:38, Apr. 2012.
[Online]. Available:
http://doi.acm.org/10.1145/2166879.2166882

[11] M. Gebhart, S. W. Keckler, B. Khailany,
R. Krashinsky, and W. J. Dally, “Unifying primary
cache, scratch, and register file memories in a
throughput processor,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 96–106.
[Online]. Available:
http://dx.doi.org/10.1109/MICRO.2012.18

[12] S. Hack, D. Grund, and G. Goos, “Register allocation
for programs in ssa-form,” in In Compiler
Construction 2006, volume 3923 of LNCS. Springer
Verlag, 2006.

[13] Y. Hou, J. Lai, and D. Mikushin, “asfermi: An
assembler for the nvidia fermi instruction set.”
[Online]. Available:
http://code.google.com/p/asfermi/

[14] J. Llosa, M. Valero, E. Ayguadé, and A. González,
“Hypernode reduction modulo scheduling,” in
Proceedings of the 28th annual international
symposium on Microarchitecture, ser. MICRO 28.
Los Alamitos, CA, USA: IEEE Computer Society
Press, 1995, pp. 350–360. [Online]. Available:
http://dl.acm.org/citation.cfm?id=225160.225211

[15] G.-Y. Lueh and T. Gross, “Call-cost directed register
allocation,” in Proceedings of the ACM SIGPLAN 1997
conference on Programming language design and
implementation, ser. PLDI ’97. New York, NY, USA:
ACM, 1997, pp. 296–307. [Online]. Available:
http://doi.acm.org/10.1145/258915.258942

[16] W. Ma and G. Agrawal, “An integer programming
framework for optimizing shared memory use on
gpus,” in High Performance Computing (HiPC), 2010
International Conference on. IEEE, Dec 2010, pp.
1–10. [Online]. Available:
http://dx.doi.org/10.1109/HIPC.2010.5713187

[17] R. McIlroy, P. Dickman, and J. Sventek, “Efficient
dynamic heap allocation of scratch-pad memory,” in
Proceedings of the 7th international symposium on
Memory management, ser. ISMM ’08. New York,
NY, USA: ACM, 2008, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/1375634.1375640

[18] J. Menon, M. De Kruijf, and K. Sankaralingam, “igpu:
exception support and speculative execution on gpus,”
in Proceedings of the 39th International Symposium on
Computer Architecture, ser. ISCA ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 72–83. [Online].
Available:
http://dl.acm.org/citation.cfm?id=2337159.2337168

[19] NVIDIA, “Cuda occupancy calculator.” [Online].
Available: http://developer.download.nvidia.com/
compute/cuda/CUDA Occupancy calculator.xls

[20] Nvidia, “Gpu computing sdk.” [Online]. Available:
https://developer.nvidia.com/gpu-computing-sdk

[21] NVIDIA, “Nvidia’s next generation cuda compute
architecture: Kepler gk110.” [Online]. Available:
http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[22] J. Palsberg, “Register allocation via coloring of
chordal graphs,” in Proceedings of the thirteenth
Australasian symposium on Theory of computing -
Volume 65, ser. CATS ’07. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2007,
pp. 3–3. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1273694.1273695

[23] M. Poletto and V. Sarkar, “Linear scan register
allocation,” ACM Trans. Program. Lang. Syst., vol. 21,
no. 5, pp. 895–913, Sep. 1999. [Online]. Available:
http://doi.acm.org/10.1145/330249.330250

[24] D. N. Sampaio, E. Gedeon, F. M. Q. a. Pereira, and
S. Collange, “Spill code placement for simd machines,”
in Proceedings of the 16th Brazilian conference on
Programming Languages, ser. SBLP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 12–26. [Online].
Available:
http://dx.doi.org/10.1007/978-3-642-33182-4 3

[25] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A
performance analysis framework for identifying
potential benefits in gpgpu applications,” in
Proceedings of the 17th ACM SIGPLAN symposium on
Principles and Practice of Parallel Programming, ser.
PPoPP ’12. New York, NY, USA: ACM, 2012, pp.
11–22. [Online]. Available:
http://doi.acm.org/10.1145/2145816.2145819

[26] S. Udayakumaran, A. Dominguez, and R. Barua,
“Dynamic allocation for scratch-pad memory using
compile-time decisions,” ACM Trans. Embed. Comput.
Syst., vol. 5, no. 2, pp. 472–511, May 2006. [Online].
Available:
http://doi.acm.org/10.1145/1151074.1151085

[27] J. Wang, A. Krall, M. A. Ertl, and C. Eisenbeis,
“Software pipelining with register allocation and
spilling,” in Proceedings of the 27th annual
international symposium on Microarchitecture, ser.
MICRO 27. New York, NY, USA: ACM, 1994, pp.
95–99. [Online]. Available:
http://doi.acm.org/10.1145/192724.192734

[28] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and
H. Zhou, “Shared memory multiplexing: A novel way
to improve gpgpu throughput,” in Proceedings of the
21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT
’12. New York, NY, USA: ACM, 2012, pp. 283–292.
[Online]. Available:
http://doi.acm.org/10.1145/2370816.2370858

[29] W.-k. S. Yu, R. Huang, S. Q. Xu, S.-E. Wang, E. Kan,
and G. E. Suh, “Sram-dram hybrid memory with
applications to efficient register files in fine-grained
multi-threading,” in Proceedings of the 38th annual
international symposium on Computer architecture,
ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
247–258. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000094

302

http://doi.acm.org/10.1145/2166879.2166882
http://dx.doi.org/10.1109/MICRO.2012.18
http://code.google.com/p/asfermi/
http://dl.acm.org/citation.cfm?id=225160.225211
http://doi.acm.org/10.1145/258915.258942
http://dx.doi.org/10.1109/HIPC.2010.5713187
http://doi.acm.org/10.1145/1375634.1375640
http://dl.acm.org/citation.cfm?id=2337159.2337168
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
https://developer.nvidia.com/gpu-computing-sdk
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dl.acm.org/citation.cfm?id=1273694.1273695
http://doi.acm.org/10.1145/330249.330250
http://dx.doi.org/10.1007/978-3-642-33182-4_3
http://doi.acm.org/10.1145/2145816.2145819
http://doi.acm.org/10.1145/1151074.1151085
http://doi.acm.org/10.1145/192724.192734
http://doi.acm.org/10.1145/2370816.2370858
http://doi.acm.org/10.1145/2000064.2000094

	Introduction
	Background
	Unified On-Chip Memory Allocation
	Framework Overview
	Shared Memory Allocation
	Inter-procedure Shared Memory Reuse
	Inter-procedure Shared Memory Assignment

	GPU Program Occupancy Characterization
	Model Many-thread Running Process
	Concurrency Level Search

	Evaluation
	Related Work
	Conclusion
	References

