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ABSTRACT
Because of their tremendous computing power and remark-
able cost efficiency, GPUs (graphic processing unit) have
quickly emerged as a kind of influential platform for high
performance computing. However, as GPUs are designed
for massive data-parallel computing, their performance is
subject to the presence of condition statements in a GPU
application. On a conditional branch where threads diverge
in which path to take, the threads taking different paths
have to run serially. Such divergences often cause serious
performance degradations, impairing the adoption of GPU
for many applications that contain non-trivial branches or
certain types of loops.

This paper presents a systematic investigation in the em-
ployment of runtime thread-data remapping for solving that
problem. It introduces an abstract form of GPU appli-
cations, based on which, it describes the use of reference
redirection and data layout transformation for remapping
data and threads to minimize thread divergences. It dis-
cusses the major challenges for practical deployment of the
remapping techniques, most notably, the conflict between
the large remapping overhead and the need for the remap-
ping to happen on the fly because of the dependence of
thread divergences on runtime values. It offers a solution to
the challenge by proposing a CPU-GPU pipelining scheme
and a label-assign-move (LAM) algorithm to virtually hide
all the remapping overhead. At the end, it reports signifi-
cant performance improvement produced by the remapping
for a set of GPU applications, demonstrating the potential
of the techniques for streamlining GPU applications on the
fly.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—optimiza-
tion, compilers
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1. INTRODUCTION
Because of their remarkable computing power and cost

efficiency, GPUs (Graphics Processing Units) have emerged
as a kind of influential platform for high performance com-
puting [2,7,12–15].

However, as GPUs are specially designed for massive data-
parallel computing, their performance is subject to the pres-
ence of condition statements in a GPU application. When
a GPU application runs, a group of threads (called a thread
warp1) are deployed in each GPU SM (streaming multipro-
cessor) so that they can run concurrently to maximize the
usage of the computing power. Normally, the threads in a
warp run in a SIMD (Single Instruction Multiple Data) fash-
ion. However, on a conditional branch where the threads
diverge in which path to take, the threads taking different
paths have to run serially. This phenomenon is called thread
divergence.

Thread divergence often causes serious performance degra-
dations. Figure 1 shows a piece of code adapted from a pro-
gram named gafort that performs a genetic algorithm. Sup-
pose the first 32 elements in r1 are all even numbers except
r1[13]. When the first warp encounters the “if” statement
in the code, only thread 13 passes through the check and
conducts compute1, while all the other 31 threads are idle
and waiting. Note that because the warp is not completely
idle, no other warps are allowed to run on that SM during
that time. So at most 1/32 computing power of the SM is
being used. The similar problem exists on the “for” loop in
Figure 1. Suppose that the first 32 elements in r2 are all
as large as nchrome except that r2[4] is 0; then all the 31
threads have to stay idle and wait until thread 4 finishes its
nchrome (which could be very large) iterations of compute2,
causing substantial waste of computing power. In reality, we
observe up to 1.47 speedup when thread divergences are re-
moved (as shown in Section 5), which echos the potential
observed in previous studies [3, 8].

1This paper uses NVIDIA CUDA terminology and program-
ming model for discussions. A warp is assumed to contain
32 GPU threads.
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if (r1[tid]%2){
    ... ... // compute1
}
... ...
icross = sqrt (r2[tid]);
for (n= icross; n < nchrome; n++){
    ... ... // compute2
}

Figure 1: A piece of code adapted from gafort, a pro-
gram implementing a genetic algorithm. Both the
“if” statement and the “for” loop may cause thread
divergence. (tid is the sequential number of the cur-
rent thread.)

As a side effect of the architectural support of GPUs for
massive data parallelism, this divergence problem exists in
virtually all types and generations of modern GPUs. It im-
pairs the adoption of GPU for many applications that con-
tain non-trivial condition statements. There have been lim-
ited solutions proposed, among which, some [3] aim at reduc-
ing register pressure incurred by thread divergences rather
than the divergences themselves, some [8] tackle divergences
directly but rely on special hardware support.

In this paper, we propose a pure software solution via run-
time thread-data remapping. The basic scheme is simple: to
switch the data sets that the GPU threads work on so that
all the threads in a warp would take the same path on a con-
ditional branch. Consider the “if” statement in the example
mentioned earlier in Figure 1. Suppose the other (say 992)
elements of r1 all have the similar value pattern as the first
32 elements have—that is, in every 32 elements, only one
value is odd—we can remove all the thread divergences by
remapping the threads to data so that the first 992 threads
all work on the data with small r1 values, and only the final
32 threads work on the large ones. This strategy, apparently,
works with the “for” loop as well in a similar manner.

A series of issues must be solved before thread-data remap-
ping can be feasibly applied to real GPU applications. The
first is the determination of a desirable thread-data map-
ping. In a real GPU application, data accesses may be irreg-
ular or have complex indexing expressions. The thread-data
remapping may cause side effects—such as, altering original
regular memory reference patterns.

The second issue is on what mechanism to use to realize
the thread-data remapping. There are two options. One is
through reference redirection (also called indirect accessing).
For the “if” example in Figure 1, we may create an index
array I[ ] and change r1[tid] to r1[I[tid]]. Appropriately
setting the values in I[ ] will produce a desired thread-data
mapping. The second option is through data layout trans-
formation (also called data packing). For the “if” example
again, if we keep the kernel unchanged but relocate the ele-
ments in r1 so that small values are all at the front of r1 and
large ones all at the end, we can achieve the same mapping
as the redirection array produces. It is necessary to explore
both options to determine their limitations, effectiveness,
and how they should be applied safely.

The final but also the most difficult issue is on the conflict
between the large remapping overhead and the need for the
remapping to happen on the fly. Because in most cases the
values of the data set that a condition statement depends

on are not known until run time, the thread-data remapping
must happen on the fly. However, the remapping, through
either redirection or layout transformation, typically causes
significant overhead that may easily outweigh the remapping
benefits. It is hence crucial to minimize or hide the overhead,
as well as to protect the basic efficiency of the GPU appli-
cation from getting jeopardized by the remapping process.

In this work, we develop a set of techniques to address
these issues, making run-time thread-data remapping feasi-
ble for GPU computing. Our description starts with an ab-
stract form of GPU applications and the concept of thread-
data remapping (Section 2). In Section 3, we discuss the two
mechanisms, reference redirection and data layout transfor-
mation, for the realization of thread-data remapping, with
their properties, constraints, and suitable scenarios.

In Section 4, we present two techniques that make run-
time remapping possible for GPU computing by effectively
hiding and reducing remapping overhead. The first tech-
nique is a CPU-GPU pipelining scheme, which allows the
remapping-related operations to overlap with GPU kernels
execution. Its effectiveness in hiding remapping overhead
comes from its exploitation of the massive data-parallelism
in GPU applications and the independence between CPU
and GPU memory systems. The second technique is a linear-
time LAM (label-assign-move) scheme, which minimizes the
number of data movements required for the generation of a
target thread-data mapping. The two techniques can vir-
tually remove all remapping overhead for most applications
and make costly runtime remapping affordable.

Section 5 reports up to 1.47 speedup on a set of GPU ap-
plications, demonstrating the effectiveness of the techniques
for eliminating thread divergences and streamlining GPU
computing on the fly.

2. GPU THREAD-DATA REMAPPING
This section first outlines an abstract form for GPU ker-

nels that contain condition statements, based on which, it
introduces the concept of thread-data remapping.

2.1 An Abstract Form of GPU Kernels
A GPU application (written in CUDA) consists of some

CPU code and GPU code. The GPU part includes one or
more functions; each of them is called a GPU kernel. All
applications start from the“main”function in the CPU code.
When the CPU launches a GPU kernel, a number of GPU
threads are created with each having a unique sequential
number, called thread ID and denoted as tid in this paper2

Upon its creation, every thread starts an instance of the
GPU kernel independently. Although they execute the same
kernel with the same parameter values, they may behave
differently and access different data. The differences usually
stem from the uses of tid inside the GPU kernel.

Figure 2 outlines an abstract form for GPU kernels con-
taining condition statements. We elide the parts irrelevant
to thread divergence. We use arrays to represent container
objects in GPU kernels as they are the most commonly used
data structures. The input arrays are those arrays whose val-
ues are passed from CPU to GPU at the invocation of the

2More precisely, CUDA uses several built-in variables to
store the index of the current thread block and the index
of the current thread in its block. Combined together, they
form the tid, a unique identity for the current thread.
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Bi=fi(SI)

...

SO

Start

End

Input array set:  SI={ I1, ..., In}

Condition array set:  SB={ B1, ..., BK}

Output array set:  SO={ O1, ..., Ou}

...

... ...

Figure 2: An abstract form of a GPU kernel con-
taining conditional statements.

kernel. Note, in this abstract form, all thread IDs together
are viewed as a special input array as IDArray[tid] = tid.
This view is important for the applicability of thread-data
remapping (as Section 3.2 will show).

Each condition array corresponds to one instance of a con-
dition statement in the kernel, storing only binary values:
Bi[tid] = 1 means that thread tid goes through the check
of the ith condition; Bi[tid] = 0 means otherwise. A loop
or a condition with more than two branches are viewed as
a series of such binary conditions. The denotation fi() rep-
resents the computation that produces Bi from the input
arrays. The output arrays store computation results.

Additionally, we introduce the concept of path vectors. A
path vector of a thread is

SB [tid] =< B1[tid], B2[tid], · · · , BK [tid] > .

It summarizes the entire path taken by thread tid. It is
easy to see that a warp diverges if and only if there exist
two threads in the warp whose path vectors differ. Another
important concept is the input set of a thread. It refers to
the set of elements in all the input arrays that are accessed
by a thread, denoted as SI [tid].

2.2 Concept of Thread-Data Remapping
It is important to note that the input set of a thread de-

termines its behavior in a given kernel and thus the path
vector of that thread. The implication is, if after a remap-
ping, the ith thread maps to the original SI [j] (i �= j), then
the new value of SB [i] would be the same as the original
value of SB [j]. This is the basic rationale for using thread-
data remapping to remove thread divergences. If we view
the values of the path vector produced by an input set as
the color of that input set, there is no divergence if and
only if all threads in a warp are mapped to the input sets
of the same color. The purpose of thread-data remapping is
essentially to find an appropriate mapping between threads
and input sets, as Figure 3 illustrates (the two approaches
to remapping will be presented in Section 3).

Thread divergences may come from two kinds of sources.
The first is the differences in loop trip-counts (i.e. numbers
of iterations), as illustrated by the “for” loop in Figure 1.
Clearly, the time for a thread warp to finish the execution
of the loop is determined by the largest trip-counts of the
loop in the executions by all the threads in that warp. Each
iteration of a loop typically takes a similar amount of time
to run. Hence, the total time that the loop costs all the

j

j

layout on mem.

(a) Original thread-data mapping

j

j

layout on mem.

(b) Remapping through reference redirection

j

j

layout on mem.

(c) Remapping through data layout transformation

Figure 3: Illustration of thread-data remapping for
elimination of thread divergences. The two types of
circles represent two types of input data sets. Their
differences make threads in a warp diverge on a con-
dition statement in (a). All divergences disappear
after either of the remappings in (b) and (c).

warps is determined by

T =
W

X

i=1

maxk∈warpi
(itk),

where W is the total number of warps, itk is the trip-count
of the loop executed by the kth thread. Minimizing thread
divergences hence leads to the minimization of T . Our basic
strategy is to create a thread-data mapping so that the trip-
counts of the loop executed by the threads form a sorted
sequence—that is, after the remapping, i < j ⇒ iti ≤ itj .

Thread divergence may also come from non-loop condition
statements, as illustrated by the “if” example in Figure 1.
In this case, the kernel contains no diverging loops but K
(K > 0) other types of condition statements. Each thread
hence has a K-dimensional path vector. From now on, we
say two threads are of the same type if their path vectors
are equal. The basic remapping strategy in this case is to
greedily pack threads of the same type together.

Although the remapping strategies in both cases are straight-
forward, realizing them safely and efficiently requires solu-
tions to a number of issues.
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3. MECHANISMS TO REALIZE THREAD-
DATA REMAPPING

There are two ways to realize a thread-data remapping:
reference redirection and data layout transformation. Al-
though they have both been studied in many CPU program
optimizations (e.g., [4, 6]), their applications in GPUs have
some new complexities. This section first describes the im-
plementation and applicability of the two approaches, and
then discusses their respective strengths and weaknesses.

3.1 Reference Redirection
Reference redirection creates an index array, denoted as

D[ ], to generate a new thread-data mapping. If a new
mapping requires thread i map to the original input data
set SI [j], then D[i] = j. This creation step is put into the
CPU code before the invocation of the GPU kernel (actually
in a pipelining fashion as detailed in Section 4). The index
array D is passed to the GPU kernel at its invocation.

The transformation to the GPU kernel is simple. At the
beginning of the kernel, a statement like “ newtid = D[tid]”
is inserted, where newtid is a new local variable3. The
transformation then replaces all occurrences of tid in the
kernel with newtid.

The transformation is applicable to kernels that contain
no dependencies across threads. It can be proved that in this
case, the transformed program produces the same output
as the original program does. The intuition of the proof is
simple: After the transformation, the computation and data
accesses in all kernel instances remain the same as before,
even though those kernel instances are executed by different
threads. It is not hard to see that the transformation can
also apply to the cases where a kernel consists of multiple
sections separated by barriers and inter-thread dependencies
exist only across sections but not within a section 4.

3.2 Data Layout Transformation
The second mechanism is data layout transformation. If

the new mapping requires thread i map to the original in-
put set SI [j], in this transformation, the content of SI [j]
is copied to the corresponding locations in SI [i] before the
invocation of the GPU kernel (again in a pipelining fash-
ion, shown in Section 4). For instance, suppose in the orig-
inal program, threads i, j, k map to I1[i], I1[j], and I1[k]
respectively, but the new mapping requires these threads
process I1[j], I1[k], I1[i] respectively. The transformation
creates a new array I ′

1 with I ′

1[i] = I1[j], I ′

1[j] = I1[k], and
I ′

1[k] = I1[i], and then replaces I1 with I ′

1 at the invocation
of the GPU kernel. After the invocation of the GPU kernel,
a restoration step is sometimes necessary, in which, the el-
ements in the output arrays are reordered so that they are
consistent with what the original program produces.

For the transformation to be safe, we require the GPU
kernel to meet two conditions:

1) The input sets of two arbitrary GPU threads have no
overlap—that is, SI [i]

T

SI [j] = ∅ (i �= j; 0 < i, j < N).

3Because CUDA uses several built-in variables for thread
indexing, in the actual implementation, a new local variable
is created for each of them, and their values are derived from
the index array D[ ].
4In CUDA, since barriers work only for threads within a
block (containing many warps), in the cases with barri-
ers, the remapping transformation applies inside each thread
block.

And no two threads write to a common memory location.

2) For an arbitrary input data element accessed by thread
i, there must be a counterpart in the input data set of thread
j. Specifically, if Ix[f(i)] ∈ SI [i], where f(i) represents
the relation between the index of the data element and the
thread ID, then Ix[f(j)] ∈ SI [j] (0 < i, j < N).

These two conditions ensure that the data movements
cause no mistaken data overwriting. Fortunately, many GPU
programs satisfy such conditions because of their data-level
parallelism and simple dependencies among threads.

Theoretically speaking, there is another condition to meet:
The only effect of the thread ID, tid, on the kernel execution
is on deciding which data elements of the input and output
arrays a thread references. The thread ID tid must not in-
volve directly in value calculation. For example,

O1[tid] = I1[tid ∗ 2] + I2[tid]
is allowed, but the following one is not:

O1[tid] = I1[tid ∗ 2] + tid .

This condition is necessary for the correctness of the com-
putation results. To see this point, one may consider the case
where I1[2] = −1 and I1[4] = 1 for the example statement
O1[tid] = I1[tid ∗ 2] + tid. Suppose the remapping requires
thread 1 map to I1[4] and thread 2 map to I1[2]. After the
data layout transformation, the execution of the example
would produce O1[1] = 2 and O1[2] = 1, which differ from
the original output O1[1] = 0 and O1[2] = 3. Apparently,
the error cannot be corrected by the operations (i.e. reverse
data movements) in the subsequent restoration step.

Fortunately, this third condition is easy to meet through a
preprocessing step. In that step, an assistant array IDArray
is created before the GPU kernel invocation; its elements are
set as IDArray[tid] = newtid. The array is then passed to
the GPU kernel at the kernel’s invocation as an extra input
array. Inside the kernel, all references to this type of tid are
replaced with IDArray[tid]. This transformation is demon-
strated in the benchmark named reduction in Section 5.

For efficiency, we use asynchronous memory copy for data
transfers between the host and GPU. In some kernels, the
condition arrays determine the loop trip-counts but mean-
while are modified inside the loop body. This work does not
handle such cases.

3.3 Selections of the Mechanisms
The two mechanisms have their respective strengths and

weaknesses. The applicability of data layout transforma-
tion is subject to some conditions as described in the previ-
ous section. In addition, the transformation usually causes
larger transformation overhead than the alternative because
of the data movements and restoration it requires (although
this problem can be alleviated as to be shown in Section 4).

On the other hand, data layout transformation maintains
certain memory reference patterns of the original GPU ker-
nel, whereas, reference redirection does not always do so. In
GPU, memory reference patterns strongly affect the effec-
tive memory bandwidth. For instance, in NVIDIA G200, if
the words accessed by a warp fall into n different segments
of global memory (a segment contains 32, 64, or 128 consec-
utive bytes), the GPU needs to conduct n memory trans-
actions for those accesses. (When the threads in a warp
access memory locations in a small range, all the references
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by that warp may take only one transaction; such references
are termed coalesced memory references.) So the changes
that reference redirection causes to memory reference pat-
terns may result in significant increases in the number of
memory transactions for a kernel, and hence offset the ben-
efits brought by the reduction of thread divergences.

In our implementation, the principle for the selection of
these two mechanisms is as follows. If the reference redi-
rection may be proved to hurt no memory reference effi-
ciency, it is selected. Such cases may happen in two scenar-
ios. One is that the kernel uses texture memory rather than
global memory for data references: Texture memory toler-
ates memory pattern changes better than global memory for
its use of cache. The other is that the redirection applies to
calculations but not data references in the kernel. In other
situations, the alternative mechanism, data layout transfor-
mation, is selected if it is applicable. Section 5 demonstrates
the selection on different benchmarks.

4. TRANSFORMATION ON THE FLY
Because the values that a condition statement produces

typically depend on the input data sets of the GPU ap-
plication, thread-data remapping often needs to be applied
during run time. However, the operations involved in the
remapping are expensive. Without a careful design, the
overhead may easily outweigh the benefits brought by the re-
duction of thread divergences. This section describes how we
enable efficient runtime thread-data remapping through the
use of CPU-GPU pipelining and a linear-time LAM scheme
to hide and minimize remapping overhead.

4.1 Hiding Overhead through Pipelining
The first technique, CPU-GPU pipelining, tries to hide

the transformation overhead by overlapping it with the ex-
ecution of GPU kernels.

Figure 4 illustrates how the basic pipelining scheme can
be implemented for an example GPU program. The CPU
part of the original program is outlined in normal font in
Figure 4 (a). It includes a loop, each iteration of which
invokes an instance of a GPU kernel function gpuKernel to
make the GPU process one chunk of the data. The bold-
font line shows the inserted code to enable the pipelined
thread-data remapping. As shown, a CPU thread is created
before the invocation of the GPU kernel. That thread runs
the function remap(), which contains the transformations
for the remapping, including the computation of the desired
mappings, the creation of indexing arrays, or the generation
of the new data layout on the memory in the host machine
(rather than GPU).

This pipelining scheme resembles the software prefetch-
ing in traditional CPU optimizations. The invocation of
remap() in iteration i transforms the data to be used by
the GPU kernel in the i + Δ iteration (Δ > 0). The data
transformations and the GPU computation hence overlap
as shown in Figure 4 (b). In the first Δ iterations of the
loop, the GPU kernel operates on the data that are not
remapped. Those iterations constitute the warm-up stage
of the pipeline. When iteration Δ or any subsequent iter-
ation starts, the data to be processed by the GPU kernel
in that iteration are already transformed and comply to the
desired thread-data mapping. The remapping benefits start
to show up in the GPU executions.

The actual implementation of the pipelining is more so-

phisticated than illustrated. We develop a flexible interface
encapsulated in a cpuThreadControl component. Remap-
ping functions are registered early in an execution. Trans-
formation threads come from a thread pool, and are reused
rather than created in each iteration. The implementation
allows early termination of the transformation when it ap-
pears to be unprofitable (e.g., when the corresponding GPU
kernel finishes). It uses asynchronous memory copy for data
transfers between the host and GPU for efficiency.

A typical scenario where the pipelining scheme applies
has two features. First, the invocation of the GPU kernel
is within a loop as the one shown in Figure 4 so that the
data are processed chunk by chunk. Second, the data chunks
processed in different iterations have no overlap. Especially,
the data chunks to be processed in future iterations do not
depend on the previous iterations. Note that it is allowed
to have some data shared by multiple iterations, as long
as those data are not what the transformation procedure
operates on.

Such scenarios often exist or can be created in a GPU
application because of its data-parallel property. A common
pattern in many GPU programs is that each thread works
on a separate set of data. Inter-thread communications exist
only within a block of threads; no global synchronizations
are allowed in GPU kernels. If there is no such loop in the
original GPU program, it is possible to partition working
data into chunks for a new loop to iterate on.

It is worth noting that the presence of such loop structures
is not mandatory for the pipelining scheme to work. Con-
sider a program containing two phases of GPU computation,
whose second phase is a GPU kernel with thread divergences.
If the divergences do not depend on the computation in the
first phase, the remapping function may be invoked earlier
for overlapping with the first phase execution.

The value of Δ in the pipelining scheme decides the time
distance between the remapping and the use of a chunk of
data. We call it the pipeline depth. The suitable pipeline
depth depends on the ratio (denoted as r) between the time
a remapping requires and the time an execution of the GPU
kernel takes. If Δ < r, the transformation of a data chunk
cannot finish when the GPU kernel needs to reference those
data. On the other hand, if Δ is much larger than r, the
warm-up stage is unnecessarily long. The appropriate value
of Δ may be selected through profiling runs or runtime adap-
tation. For runtime adaptation, at the beginning of an exe-
cution of the GPU application, the depth may be set to 1 by
default. During the execution, if the layout transformation
cannot finish in time in an iteration, the depth increases by 1
to enlarge the chance for future transformations to succeed.
Detailed explorations are beyond the scope of this paper.

We are not aware of previous uses of such CPU-GPU
pipelining for GPU program optimizations. The pipelining
scheme exploits two distinctive features of GPU computing:
the presence of massive data-parallelism as we have men-
tioned earlier, and the independence of the memory systems
that CPUs and GPUs work on. The second feature is vital
for the data transformations to proceed without interfering
the normal execution of the GPU kernel.

The CPU-GPU pipelining scheme trades certain amount
of CPU resource for the enhancement of GPU computing
efficiency. The usage of the extra CPU resource is not a
concern for most GPU applications because during the exe-
cution of their GPU kernels, CPUs often remain idle.
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..  ...
pData = & data;
for (i=0; i<N/S; i++){
    createThread (&remap, pData+ *S]);
    ...  ...
    gpuKernel <<<... ...>>> (pData, ...);
    ...  ...
    pData += S;
}

Kernel Exec.
(gpuKernel on GPU)

Remapping
(remap on CPU)

start iterations

... 
...    ...

{
(a) The CPU part of an example CUDA

program, with the code (in bold font) for 
launching the thread-data remapping process.

 

(b) Pipeline when the depth  is 3

remap data chunk 

 remap data chunk +1

remap data chunk +2

remap data chunk +3

0 1 2 3 4 5 6

Figure 4: An example illustrating the (simplified) use of CPU-GPU pipelining to hide the overhead in
thread-data remapping transformations.

4.2 Overhead Minimization through LAM
Even though the CPU-GPU pipelining scheme helps over-

lap the remapping process with computation, it is still im-
portant to minimize the overhead of the remapping transfor-
mations. Large overhead leads to a deeper pipeline, which in
turn causes two consequences. First, the warm-up stage of
the pipeline is long, leaving many initial iterations of a loop
unoptimized. Second, many transformation threads must
run concurrently, resulting in a large burden to the host sys-
tem. Further, increasing the pipeline depth cannot always
hide the entire transformation overhead. When the num-
ber of transformation threads is so large that the capacity
of CPU or memory bus is saturated, increasing the pipeline
depth can only prolong the transformation time.

As mentioned earlier, between the two mechanisms for
realizing thread-data remapping, data layout transforma-
tion usually incurs more transformation overhead. This sub-
section hence focuses on data layout transformation.

High-Level Design.
We develop an approximation algorithm to save transfor-

mation overhead. It aims at striking a good tradeoff between
the transformation overhead and the quality of the result-
ing thread-data mapping. The rationale is that sometimes,
sacrificing the optimality of the resulting divergences a little
may significantly reduce both the time for layout computa-
tion and the number of required data movements.

This scheme is named LAM (label-assign-move). Figure 5
outlines the algorithm. For easy explanation, the following
description assumes that the kernel contains only one con-
dition statement. It is a loop, which has data[tid] iterations
in the execution of thread tid. At the end of this section, we
discuss the algorithm in a general setting.

The high-level design of LAM is that it partitions the
possible values in data into a number of classes, and then
constructs a data layout so that most warp segments5 are
pure—that is, containing elements of the same class. To
avoid unnecessary data movements, the scheme first uses
a class ID to label each warp segment of the original data
array. The elements in a warp segment that belong to its
labeled class won’t be moved during the construction of the

5A warp segment is a segment of data mapping to a thread
warp.

new data layout. By ignoring the differences within a class
and avoiding unnecessary movements, LAM may save sig-
nificant transformation overhead.

Detailed Algorithm.
Figure 5 outlines the algorithm of LAM. LAM includes

three steps as suggested by its name. In the “label” step,
it partitions the value range of array data to R sub-ranges,
represented by ri (i = 1, 2, · · · , R). Each element in data
must belong to one sub-range (we say that the sub-range
covers that element). There are two attributes associated
with a sub-range, stored in ri.quota and ri.toF ill. Let ni

represent the number of elements in data covered by ri. The
algorithm sets ri.quota to �ni/warpSize	 initially, indicat-
ing the largest number of warps that can be entirely covered
by ri. The “label” step examines each warp segment in data.
Let rmax be the sub-range with the largest coverage for a
warp segment; the algorithm labels that warp segment with
segmax. Suppose an element in that warp segment a is not
covered by ri, the algorithm puts the location of a into the
array ri.toF ill, indicating that this location should be filled
with some other element of data that is covered by ri. An
exception occurs when the quota of ri is used up, when that
warp segment is labeled as “mixed”.

The “assign” step creates an array destLoc (initial val-
ues are all zeros) of the size of data to store the desired
destination of every element in data. It includes two sub-
steps. It examines every location in the toF ill array of ev-
ery range first, because the data elements in those locations
must move. Let data[i] be one of such elements, and l be
the value range data[i] falls into. Then, destLoc[i] is set
to a location stored in r[l].toF ill, and the algorithm marks
that location as “taken”. An exception happens when all
locations in r[l].toF ill have been taken. In that case, the al-
gorithm puts i into an array toMix, indicating that data[i]
needs to be later moved into a to-be-mixed warp segment;
the exact destination is yet to be determined. At the end of
this sub-step, some locations in some toF ill arrays may not
be taken yet. The second sub-step checks every element in
the “mixed” warp segments to see which can be used to fill
those remaining openings. As soon as a location in “mixed”
warp segments becomes vacant, it is assigned as the desti-
nation of an element in the toMix array.
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When the “label” step finishes, the value of destLoc[i] is
the desired destination for data[i] if destLoc[i] is not zero.
Otherwise, data[i] needs no movements. The final step,
“move”, simply copies the elements of data to dataCopy.

Discussions.
The description of LAM assumes that the kernel contains

only one loop condition statement. If there are more condi-
tion statements, the algorithm works in a similar way. The
only change is on how the R classes are defined: One option
is to consider the path vector of a thread as one point in a
K-dimensional space, and define the R classes by clustering
the points to R groups.

Divergences on different statements may cause different
influence on the overall performance. We may incorporate
such differences into LAM by using weighted distances dur-
ing the clustering process, with weights as the degree of per-
formance influence.

The use of quota and labeling process in LAM ensure that
every data element in the new layout must have one and
only one counterpart in the original layout. This property
determines the correctness of the transformation.

A key parameter in LAM is R. The larger it is, the bet-
ter the resulting mapping is, in terms of eliminated diver-
gences. But meanwhile, more overhead will be incurred by
the transformation. In our experiments, we set it to 10. A
desirable scheme is to dynamically determine its appropriate
value through runtime adaptation, which may happen coop-
eratively with the adaptation of CPU-GPU pipeline depths
(Section 4.1). The detail is left for future explorations.

5. EVALUATION
For the techniques to be useful in practice, we must make

sure there is not only program performance improvement in
divergent scenarios, but also no performance degradations
in other cases. Our evaluation focuses on both aspects:

• Benefits. How effective are the proposed techniques in
removing thread divergences?

• Overhead. How effective are the techniques in reduc-
ing and hiding transformation overhead? Can they
prevent the transformations from degrading the per-
formance of the application, even in extreme scenarios
where no potential benefits exist?

5.1 Methodology
Table 1 shows the five benchmarks selected for evaluating

the techniques in both aspects. The first two come from
real world applications, and the other three come from the
NVIDIA CUDA SDK 2.0 [1]. These benchmarks contain
different amount of thread divergence and hence different
potential gain that can be produced by the transformation
techniques. The first four benchmarks have thread diver-
gences, suitable for the assessment of the effectiveness in
thread-divergence removal. The last benchmark, which con-
tains condition control flows, has no thread divergences. We
include it to test whether the proposed techniques can en-
sure the basic efficiency of the program in the extreme case.

One of the difficulties we come across in the evaluation
process is the lack of standard GPU benchmarks. Many
previous studies have used only kernels in industry released
SDKs (e.g. NVIDIA CUDA SDK). However, because those

Table 1: Benchmarks
Program Description Lines

of
code

Cause of
diverg.

Diverg.
ratio*

3D-lbm lattice
Boltzmann
model for
partial dif-
ferential
equation

3380 condition 50-
100%

gafort Fitness cal-
culation in a
genetic algo-
rithm

3723 condition
& loop

75%

marching-
Cubes

Geometric
isosurface
extraction

2178 condition 99%

reduction Parallel re-
duction

1264 condition 100%

black-
scholes

Option pric-
ing

501 none 0

* Divergence ratio: the number of diverging thread warps over the
total number of warps.

kernels are created partially to show the appealing power
of GPU, most of them have virtually no GPU-unfriendly
features—such as thread divergence 6. Even for program-
mers of real GPU applications, as they are informed that
thread divergence could be a GPU performance killer, they
typically avoid using GPU if the program includes complex
control flows. The consequence is the sparsity of interesting
applications for the evaluation of thread divergence removal
techniques, even in real application suites. The implication
of such a phenomenon is not that thread divergence elim-
ination is unimportant, but the opposite: The current ex-
ploitation of GPU is evidentially limited by the weakness in
handling thread divergences; resolving such a issue may well
extend the use of GPUs in high performance computing.

Our experimental platform is an NVIDIA Tesla 1060 hosted
in a dual-socket quad-core Intel Xeon E5540 machine. The
Tesla 1060 includes a single chip with 240 cores, organized
in 30 Streaming multiprocessors. We use CUDA as the pro-
gramming model.

In our experiments, the transformations are conducted
in a semi-automatic manner. We implement a runtime li-
brary that includes a set of functions that facilitate both
the runtime transformation and overhead reduction. These
functions include the LAM scheme, the pipelining threads
controller, the functions that search for suitable thread-data
mappings, and so on. For each program, we manually insert
invocations of the remapping in appropriate locations to en-
able the CPU-GPU pipelining. As the focus of this work
is on the examination of the effectiveness and feasibility of
the transformation techniques, we leave their integration in
compilers as future work.

In the rest of this section, we report the performance gain
and the transformation overhead of every benchmark. We
summarize the results at the end of this section.

6The program reduction used in the experiment is a version
NVIDIA uses to explain GPU performance hazards in their
tutorials.
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// data[N]: the transformation target
// constants:
//    R: # of val partitions; 
//    WZ: the warp size;

“Label” Step:
mn = min (data); mx = max (data);
createValRngs (R, mn, mx, r);
calQuota (data, r);

for (warp=0; warp < N/WZ; warp++){
    i = warp*WZ;
    l = argmax (coverage(r[k], data[i:i+WZ-1]));
            k 

    if (r[l].quota >0) {
        r[l].quota--;
        label[warp] = l; // label this warp
        for (j=i; j< i+WZ; j++) {
            if (data[j]  r[l]){
                // a to-be-filled location
                r[l].toFill [r[l].ttl++] = j; 
            }
        }
    }
    else
        label[warp] = MIXED; // -1
}

“Assign” Step:
// for elements in toFill locations
toMixN = 0; k = 0;
for (i=0; i< R; i++){
    for (j=0; j< r[i].ttl; j++){
        orgLoc = r[i].toFill[j];
        l = getRng (data[orgLoc]);
        if (r[l].cur < r[l].ttl) { // not full yet
            // put to a to-be-pure warp
            destLoc[orgLoc] = r[l].toFill[ r[l].cur ];
            r[l].cur++;}
        else  // go to a mixed warp
            toMix [ toMixN++ ] = orgLoc; 
}}
// for other elements
for each “MIXED” warp w {
    for (j = w*WZ;  j< w*WZ+WZ; j++){
        l = getRng (data[j]);
        if (r[l].cur < r[l].ttl) {
             // fill an opening in a to-be-pure warp
             destLoc [j] = r[l].toFill[cur]; 
             // use a to-be-mixed element to fill the left opening
             destLoc [toMix[ k++]] = j;}}}

“Move” Step:
// dataCopy is a copy of data created already
for (i=0; i< N; i++)
    if (destLoc[i])  dataCopy [destLoc[i]] = data[i];

Figure 5: The LAM (label-assign-move) scheme for reducing the overhead in data layout transformation.

5.2 3D-LBM
The program, 3D-LBM, is a PDE (partial differential equa-

tion) solver based on the LBM (lattice Boltzmann model),
implemented by Zhao [18] for GPU. The LBM is a model ini-
tially designed to solve fluid dynamics through the construc-
tion of simplified microscopic kinetic models. Its extended
version may help solve the parabolic diffusion equation, a
critical component in the elliptic Laplace and Poisson equa-
tions, widely used in the manipulation of images, surfaces
and volumetric data sets. The developed LBM program is
for 3D fluid simulation. The code has been highly opti-
mized, appearing to be an efficient alternative to traditional
implicit iterative solvers on CPU [18].

Our experiment focuses on a kernel named “streamAnd-
Collision k”, one of the most time-consuming kernels. In
that kernel, each thread works on a fluid node. It checks 19
directions in a 3D space, and performs density calculation
and node update if it finds neighboring nodes in the a direc-
tion. As shown in Table 2, this condition statement causes
50–100% thread warps to diverge, depending on the thread
block dimension and block size.

As the neighboring nodes are input-specific and compile-
time unknown, the divergences can only be handled through
runtime transformations. In our experiment, we use data
layout transformation as the main approach to remapping
because the alternative approach, reference redirection, changes
memory reference patterns and hurts memory coalescing.
But there are some data in the program whose layout changes
are not feasible; we use reference redirection for them.

Table 2 reports the experimental results. Because the pro-
gram performance is sensitive to the size of a thread block,
we experiment with three different block sizes, ranging from
8 to 32 (the largest size is 32 because of the limits on the 3D

Table 2: Experimental results of 3D-LBM
Block size 8 16 32
Diverg. ratio org 50% 100% 100%

opt 0% 0% 0%
Exe. time (μs) org 4627 4951 5601

opt 3961 3360 3901
Speedup 1.17 1.47 1.44

org: original program. opt: the optimized program with thread-data
remapping and efficiency control applied.

space). Half to all of the 1024 warps diverge on the condi-
tion statement. The transformation removes all divergences,
making the kernel run 1.17 to 1.44 times faster than the orig-
inal version does. This one time data layout transformation
overhead is 1900μs, smaller than the execution time of the
kernel. As this is a fluid dynamic simulation application, the
kernel is invoked periodically for many times; the pipelining
scheme well hides all the transformation overhead.

5.3 GAFORT
GAFORT is a CUDA program implemented based on an

OpenMP version in SPEC OMP3.2. It computes the global
maximum fitness in a genetic algorithm. The program starts
with an initial population and then generates children who
go through possible crossover, jump mutation, and creep
mutation with given probabilities. The major computation
components are implemented as GPU kernels to minimize
host-device data transportation. The data is organized in
order to facilitate memory coalescing. In each iteration, run-
time generated random numbers determine where and how
crossover, jump mutation or mutation needs to be done. The
random numbers hence introduce misalignments of control
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Table 3: Experimental results of GAFORT
Block size 32 64 128 256
Diverg. ratio org 100% 100% 100% 100%

opt 56% 56% 56% 56%
Exe. time (μs) org 67225 67237 67243 67232

opt 51309 51325 51377 51344
Speedup 1.31 1.31 1.31 1.31

flow into the GPU kernels. The random number generator
runs on CPU, interleaved with the GPU kernels.

The optimized kernel is the children generation kernel.
Each thread works on one child gene. It first determines
whether a crossover operation needs to be applied to the
child gene. The criterion is based on both the fitness of
every candidate genes and a crossover probability between
every randomly picked pairs. If a crossover is necessary, the
thread conducts such operation on the child gene.

The kernel contains two types of divergences. The first
is due to the decision on whether a crossover is to be per-
formed on the children genes. The second happens in the
crossover computation. That computation contains a loop,
whose trip-count equals the length of the segment of parent
genes the child needs to use, which differs across children
genes. We handle the two types of divergences by combin-
ing them into one: The case of no crossover operations is
equivalent to the case the trip-count of the crossover loop as
0.

Similar to 3D-LBM, the GPU kernel of this program uses
coalescing global memory accesses for most arrays and meets
the conditions listed in Section 3.3. Therefore data layout
transformation is selected. A direct application of the data
layout transformation would add 8000μs overhead, largely
offsetting the benefits it can bring, not to mention the data
restoration step we have to perform after the kernel is fin-
ished (due to the write accesses in the kernel). With the
LAM algorithm and CPU-GPU pipelining, the overhead can
be completely hided.

Table 3 reports the results. Unlike 3D-LBM, this program
appears to be insensitive to the thread block size. In all
the cases, the transformation reduces the divergence ratio
from 100% to the minimum, 56%. The minimum divergence
ratio is still significant because of the large variations in
the trip-counts of the crossover loop. In addition to the
reduction of thread divergences, the transformation on this
kernel reduces the distance between array elements accessed
by adjacent threads, which increases the coalesced global
memory accesses.

5.4 MarchingCubes
The Marching Cube Isosurface application is from CUDA

SDK 2.0. It extracts a geometric isosurface from a volume
dataset using a marching cubes algorithm. The program
uses a mathematical function to create a 3D grid, and then
loads the grid into the GPU device memory. After calcu-
lating the isosurface triangles, it renders the graph immedi-
ately. This program provides an interactive GUI interface,
by which users can perform a variety of actions, such as ro-
tation, zoom in, and recomputation of the isosurface. The
program invokes particular kernels according to the user’s
input. One of the frequently used kernels is the triangle
generation kernel. It is a kernel for graphics rendering. The

Table 4: Experiment results of MarchingCubes
Block size 32 64 256 512
Diverg. ratio org 100% 100% 100% 100%

opt 0.48% 0.48% 0.48% 0.48%
Exe. time (mus) org 17414 16707 16673 17444

opt 12666 12371 12425 13049
Speedup 1.37 1.35 1.34 1.34

kernel runs on the major data structure of voxels. Thread
divergences occur because of the non-uniform distribution
of the number of vertices which intersect the isosurface.

There are two versions of a kernel named generateTrian-
gle2 in the CUDA SDK. One skips the non-occupied voxels
that produce zero intersected vertices, the other scans all
the voxels in the computation. The first version embodies
an algorithmic effort for thread divergence elimination, but
because it classifies voxels only into two classes based on
the number of vertices, some divergences still remain in the
program. We apply our optimizations to both kernels and
observe speedups ranging from 1.1 to 1.37. The following
description concentrates on the second version of the kernel.

Different from the previous two benchmarks, this kernel
uses texture memory. As mentioned in Section 3.3, reference
redirection is an appealing option in such a scenario and is
selected. The remapping takes about 120μs, less than one
kernel completion time, and hence is completely hided by
the CPU-GPU pipelining scheme.

Table 4 presents the experimental results. One run of
MarchingCubes is very short; we measure and report the
time of 50 runs. The speedup ranges from a factor of 1.34
to 1.37.

5.5 Reduction
This benchmark is an implementation of the parallel re-

duction included in the NVIDIA SDK. It computes the sum
of an array through a tree-based approach. The SDK con-
tains multiple versions of the implementation. For our eval-
uation purpose, the version we used is the one containing in-
teresting thread divergences. At each level of the tree, only
part of the threads get involved in the computation. For
instance, on the first level of the reduction tree, a condition
check on whether the thread ID “tid” is an even number.
If so, the thread conducts summation of two elements in
the array; otherwise, it does nothing. This condition check
causes divergences to every thread warp.

According to the principles in Section 3.3, for this pro-
gram, reference redirection is selected as the transformation
technique because its influence is on the computation but
not on the global memory references. The transformation
follows the description in Section 3.1. It includes the cre-
ation of a new array, “newIDArray”, the first half of whose
elements are assigned with even values ranging from 0 to the
thread block size, and odd values for the second half. In the
kernel, the references to “tid” are replaced with “newIDAr-
ray[tid]” (except in the memory loading statement). After
such a transformation, on the first level of the reduction tree,
all of the first half of the threads in a block get involved in
the calculation, hence all of the thread divergences are re-
moved. There are still some divergences on the other levels
of the reduction tree. However, as the first level covers a
large portion of the kernel running time, the performance
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Table 5: Experiment results of Reduction
Input size 221 222 223 224 225

Diverg. ratio* org 100% 100% 100% 100% 100%
opt 50% 50% 50% 50% 50%

Exe. time (μs) org 1010 1626 2007 2851 3986
opt 927 1474 1788 2565 3549

Speedup 1.09 1.10 1.12 1.11 1.12

improvement is evidential as shown in Table 5 on input ar-
rays of different sizes.

We note that as shown in the NVIDIA tutorial, the thread
divergences in this program can be completely removed through
algorithmic changes, leading to further speedup. However,
unlike the transformations conducted in our experiment,
such changes require programmer’s domain knowledge and
complete manual efforts. And that approach is specific to
the reduction problem, rather than a generally applicable,
potentially automatable solution.

5.6 BlackScholes
The Black-Scholes model is widely used in the pricing of

options in financial engineering. This program from NVIDIA
SDK shows an implementation of the model in CUDA for
European options.

The kernel contains a condition statement in the polyno-
mial approximation of cumulative normal distribution func-
tion, “cndGPU”. But profiling results show that no warps
diverge on that condition statement. Applying the thread-
data remapping transformation to such a program would
yield no benefits but possible slowdown due to the over-
head. We use this benchmark as an extreme case to ex-
amine whether the transformations can guarantee the basic
efficiency of GPU programs. This examination has its prac-
tical values. Even though it may be possible to figure out if
transformation is needed beforehand, it is not always easy
to do: For some applications, the existence of divergences
may depend on the input data sets. The guarantee of no
performance loss is important in scenarios like this.

The thread-data remapping step on the CPU computes
the values of the condition variable but does not relocate
any data because the condition variable values suggest no
need for that. The remapping step runs in parallel with a
preceding independent GPU kernel and takes more than 10
times of the kernel execution time. However, with the effi-
ciency control, the remapping is shut down automatically;
the execution time of the kernel shows no noticeable changes
compared to that of the original as shown in Figure 6, indi-
cating the effectiveness of the scheme in preserving the basic
efficiency of a program.

5.7 Summary of Experimental Results
To provide a holistic view of the experimental results, we

put the speedup results of all benchmarks into Figure 6.
The three bars of a benchmark in Figure 6 correspond

to the normalized execution times of three versions of the
kernel: the original version, the version after the thread-
data remapping transformation but without efficiency con-
trol, and the version after the transformation with efficiency
control. (The baseline of the normalization is the execution
time of the original version.)

The large speedups of the third version demonstrate that
the transformation generates significant performance improve-
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Figure 6: Speedup with and without efficiency con-
trol.

ment. The comparison with the performance of the sec-
ond version reveals that the efficiency control techniques are
crucial for software divergence elimination methods. The
blackscholes results especially illustrate the importance of
the efficiency control in maintaining the basic efficiency of
the program in extreme cases.

6. RELATEDWORK
There is a body of work focusing on the optimization of

some specific GPU applications (e.g., [7, 12, 17]), building
general-purpose GPU performance tuning tools [11, 14], or
optimizing memory references [2, 10, 16]. Our studies are
closely related to thread-divergence elimination and data
transformations.

Fung and others [8] have tried to reduce thread diver-
gences through special hardware extensions. Our techniques
do not need special hardware support. Carrillo and others [3]
have proposed loop splitting and branch splitting for opti-
mizing GPU applications that contain loops and branches.
Their techniques aim at the alleviation of register pressure,
rather than the reduction of thread divergences. The goal
of our work is complementary to theirs.

Data layout transformation has been used to reduce cache
and TLB misses in CPU [4–6, 9]. We are not aware of
previous uses of the transformation for thread divergence
elimination in GPU. This paper explores some new chal-
lenges for data layout transformation in GPU, especially
those caused by the distinctive properties of GPU archi-
tectures (e.g., memory coalescing), the conflict between the
large transformation overhead and the need for runtime trans-
formation, and the little tolerance of overhead due to the
massive parallel computing power of GPUs.

7. CONCLUSIONS
This paper describes a systematic exploration in using

runtime thread-data remapping to eliminate thread diver-
gences in GPU computing. It proposes reference redirection
and data layout transformation for the realization of thread-
data mappings. It characterizes the constraints, weaknesses
and strengths of the two mechanisms by analyzing the novel
implications that GPU computing imposes on the uses of
both mechanisms. It presents a CPU-GPU pipelining scheme
and a LAM algorithm which effectively hide and reduce
thread-data remapping overhead. Together, these techniques
remove significant amount of thread divergences for a set
of GPU applications, creating up to 1.47 times of speedup,
demonstrating the feasibility and potential of runtime thread
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divergence elimination, and opening up opportunities for
streamlining GPU applications on the fly.
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