
BGPQ: A Heap-Based PriorityQueue Design for GPUs
Yanhao Chen

yc827@cs.rutgers.edu
Rutgers, The State University of New Jersey

New Brunswick, New Jersey, USA

Fei Hua
huafei90@gmail.com

Rutgers, The State University of New Jersey
New Brunswick, New Jersey, USA

Yuwei Jin
yj243@scarletmail.rutgers.edu

Rutgers, The State University of New Jersey
New Brunswick, New Jersey, USA

Eddy Z. Zhang
eddy.zhengzhang@gmail.com

Rutgers, The State University of New Jersey
New Brunswick, New Jersey, USA

Abstract

Programming today’s many-core processor is challenging. Due to
the enormous amount of parallelism, synchronization is expen-
sive. We need efficient data structures for providing automatic and
scalable synchronization methods. In this paper, we focus on the pri-
ority queue data structure. We develop a heap-based priority queue
implementation called BGPQ. BGPQ uses batched key nodes as the
internal data representation, exploits both task parallelism and data
parallelism, and is linearizable. We show that BGPQ achieves up
to 88X speedup compared with four state-of-the-art CPU parallel
priority queue implementations and up to 11.2X speedup over an
existing GPU implementation. We also apply BGPQ to search prob-
lems, including 0-1 Knapsack and A* search. We achieve 45X-100X
and 12X-46X speedup respectively over best known concurrent
CPU priority queues.

CCS Concepts

• Computing methodologies → Massively parallel algorithms;
Parallel algorithms.

Keywords

Priority Queue, GPUs, Batched Heap

ACM Reference Format:

Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang. 2021. BGPQ: A Heap-
Based Priority Queue Design for GPUs. In 50th International Conference on
Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472463

1 Introduction

Due to the expected tapering of transistor density, the performance
improvement of modern applications must be gained from extreme

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472463

parallelism in many-core processors. However, programmingmany-
core processors requires significant time and domain expertise, in-
cluding task decomposition, scheduling, and inter-thread synchro-
nization. To enable simultaneous performance and programmability,
we need efficient data structures and programming methods.

In this paper, we focus on the priority queue data structure which
is a fundamental abstract data type (ADT). Priority queue plays
an important role in well-known algorithm paradigms, including
the Dijkstra’s algorithm in graph theory, the A* search in artificial
intelligence and the branch-and-bound method in combinatorics.

In order to let important applications in combinatorics, AI, and
graph theory take advantage of many-core architecture, the priority
queue must be implemented efficiently. There are currently very
few studies on the implementations of priority queue for many-
core GPU architecture. The lack of GPU priority queue studies
un-matches the popularity and wide deployment of GPUs.

The heap-based priority queue implementation by He et al. [12]
is the first generic priority queue implementation for GPUs. How-
ever, it only supports pipeline parallelism, whereas different types
of parallelism can be exploited in heap-based priority queue imple-
mentations [14, 21]. John et al. implements the bucket heap [4] on
GPUs [15]. A warp-level priority queue implementation is proposed
by Crosetto [7]. Both studies focus on a specific application – the
single source shortest path (SSSP) problem, instead of a generic
class of applications that are built upon priority queue data struc-
ture. The GPU-friendly skip-list is implemented by Moscovici et
al. [20] where the skip-list is partitioned into chunks and lookup
is performed in parallel within each chunk. However, it does not
support DeleteMin operation and is not a priority queue.

It is tempting to think that multi-core CPU priority queue im-
plementations can be directly ported to GPUs. There are exten-
sive studies of multi-core CPU priority queue implementations
[1, 3, 6, 14, 16, 18, 21, 24, 28, 30]. But existing concurrent CPU pri-
ority queue implementations do not necessarily lend themselves to
efficient GPU parallelization.

GPU architecture has two key features: (1) single instruction
multiple thread (SIMT) execution model, and (2) high throughput
but relatively small GDDR memory.

For (1), the SIMT execution model exploits both data parallelism
and task parallelism. Unfortunately, most existing concurrent CPU
priority queue only exploits task parallelism [1, 6, 14, 16, 18, 21, 24,
28, 30] but not data parallelism [8].

https://doi.org/10.1145/3472456.3472463
https://doi.org/10.1145/3472456.3472463
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3472456.3472463&domain=pdf&date_stamp=2021-10-05

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang

For (2), previous concurrent CPU priority queue implementa-
tions use heap [14, 21, 28], skip-list [1, 6, 16, 24], linked list [3, 30],
or a combination [3, 18] thereof, as the underlying data structure.
Those data structures, if directly ported to GPUs, may not fully
exploit memory parallelism. Whether it is a tree-structured heap,
skip-list, or linked list, memory accesses within a short time period
are irregular. It cannot take advantage of high throughput mem-
ory loads/writes for coalesced accesses. Certain implementations
[3, 20] trade memory space for efficiency on CPUs, which is not
immediately possible for GPUs as GPU memory is scarce.

To achieve an efficient GPU priority queue implementation, one
must have a deep understanding of the GPU execution and mem-
ory model, as well as a thorough understanding of many existing
priority queue design choices.

In this paper, we analyze the implementation choices from the
perspectives of parallelism exploitation, underlying data structures,
and thread collaboration. We analyze each of these components
with respect to their friendliness to the SIMT execution model
and GPU memory system. By learning lessons from well estab-
lished multi-core CPU priority queue implementations and taking
the unique features of GPU execution into account, we propose a
heap-based, lock-based, and linearizable priority queue implemen-
tation called BGPQ. The BGPQ design, even in its current simple
form, can deliver significant performance gains over state-of-the-
art multi-core CPU implementations and existing GPU priority
queue implementation. Our main contributions are as follows:
• We present the first implementation of a fully concurrent
heap-based priority queue for GPUs. It explores both data
and task parallelism. The code for BGPQ is open-sourced
and available on GitHub 1.
• As far as we know, BGPQ is the first linearizable GPU pri-
ority queue implementation and the linearizability property
provides a correctness guarantee.
• We evaluate BGPQ on both synthetic data and real-world ap-
plications, including the 0-1 knapsack and the A-star search
problem.We compare BGPQwith well-known CPU and GPU
priority queue implementations [1, 3, 12, 16, 29], as well as
Linden and Jonsson’s skiplist. BGPQ can achieve 8.6X-88.3X
speedup and 7.2X-11.2X speedup compared with CPU and
GPU implementations, respectively.

The remainder of the paper is organized as follows. We introduce
the state of the art multi-core CPU priority queue implementations,
as well as their friendliness to GPU implementation in Section 2.
We present our GPU priority queue implementation in Section 3
and 4. We provide a linearizability proof in Section 5. Related work
is in Section 7 and evaluation results are in Section 6.

2 Anatomy of Concurrent Priority Queue

Design and Optimization Choices

The priority queue ADT supports two operations: Insert, which
inserts a (key, value) pair to the priority queue, and deleteMin,
which returns the (key, value) pair with the smallest key from the
priority queue. The concrete implementations and their associated
complexity may vary depending on the internal algorithm and data
representation. In the following, we discuss well-known multi-core
1https://github.com/ruadapt/BGPQ

CPU implementations and analyze their friendliness to the GPU
execution model. Table 1 presents a summary of design choices for
different implementations including our BGPQ implementation.

2.1 Data Structure

There are different types of underlying data structures that have
been used to implement the priority queue ADT. The fundamental
building blocks are heap, skip-list, and linked list. Existing con-
current priority queue implementations either use one or a combi-
nation of them. The underlying data structure stores (key, value)
pairs, and the priority is associated with the key. For simplicity of
discussion, we describe the operations as key insertion or deletion,
whiles it refers to (key, value) pair insertion or deletion.

Heap is a tree data-structure. Usingmin-heap as an example, the
smallest key is stored in the root node. Each node has two children
nodes except the leaf nodes. A child’s key is larger than or equal to
its parent’s key. An example is shown in Fig. 1 (a).

4 7 12 17 23 34 57HEAD

NIL

NIL
NIL
NIL

(a) (b)

4

7

11 23

12

25 13

10024

Figure 1: Heap and skip-list as underlying data structure

Heap-based priority queues are widely studied, and various ver-
sions have been proposed [9, 14, 21, 25]. It is a simple and elegant
structure. It can be stored as arrays, and the index of child or par-
ent nodes can be calculated using simple arithmetic operations.
Most optimization for the concurrent heap is focused on reducing
contention at the root node.

Skip-list [23] is another typical underlying data structure for
priority queue. It has a probabilistically, balanced tree structure. The
skip-list data structure is constructed with hierarchically ordered
linked lists. The bottom layer linked list contains a sorted sequence
of all keys. A key in level i also appears in level i+1with probability
p. p is typically set to 1/2 or 1/4. An example is shown in Fig. 1 (b).

Skip-list natively supports Insert, Search, and Delete opera-
tions. But Delete operation must know which key to delete, and
it is not the same as DeleteMin operation in priority queue. The
Search and Insert operations have O(logn) complexity where n
is the number of keys.

Shavit and Lotan [24] implemented the first concurrent skip-list
based priority queue using a two-level DeleteMin mechanism. It
first identifies which key is minimal and marks this key with a
logical-delete flag. It then physically deletes the key by searching
and removing the key from corresponding location(s) at different
layer(s) of the skip list. Sundell and Tsigas introduced a lock-free
linearizable implementation of the skip-list [27].

Linden and Jonsson [16] further improved the skip-list imple-
mentation by batching physical deletes, which increases the number
of reads but can significantly reduce the false sharing overhead
caused by cache coherence protocols on CPUs. Other studies on
skip-list based priority queues [6, 10] include optimizations that
make the implementation non-blocking and apply flat combining
as well as elimination to reduce contention.

BGPQ: A Heap-Based Priority Queue Design for GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 1: A summary of priority queue implementation features, and BGPQ’s comparison with existing implementations.Hunt
refers to the implementation by Hunt et al. [14]. GFSL represents the GPU friendly skip-list implementation [20]. STSL refers

to the skip-list implementation by Sundell and Tsigas [27]. LJSL refers to the implementation by Linden and Jonssan [16].

P-Sync refers the GPU implementation by He et al. [12]. BGPQ is our implementation.

Hunt [14] CBPQ [3] STSL [27] LJSL [16] Spray List [1] GFSL [20] P-Sync [12] BGPQ
Data Parallelism ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Task Parallelism ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Thread Collaboration a ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Memory Efficient b ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Linearizable N/A ✓ ✓ ✓ N/A N/A N/A ✓

Data Structure Heap LL + SL SL SL SL SL Heap Heap

aThread collaboration is marked if elimination or flat combining is used or thread doing delete-min steal keys from thread doing insertion in progress
bAn implementation is efficient if and only if it uses k+O(1) memory, where k is the number of keys.

Alistarh et al. [1] invented a relaxed priority queue implementa-
tion based on skip-list, called SprayList. The Delete in SprayList
operation returns a key among the top O(p ∗ loд3p) keys while
p is the number of threads in the system. SprayList reduces the
contention for deleting the smallest key.

There are also other alternative data structures. Zhang et al. [30]
proposed a multi-dimensional linked list. Braginsky et al. proposed
CBPQ [3], a linked chunk-list based priority queue, which performs
well under high contention.

GPU Friendliness: Both heap and skip-list have O(logn) com-
putation complexity, but considering memory management, we
believe heap is more favorable than skip list for two reasons. First,
the skip-list needs more memory space than the heap. Skip-list
needs to store keys (or pointers to them) that appear at different
layers of skip-list. With p = 50%, skip-list may use as much as twice
memory as a heap. GPU memory has more than 10X throughput
than CPU memory, but GPU memory resource is scarce. If running
out of memory on GPU, it needs to transfer data back and forth be-
tween CPU and GPU, causing a memory bottleneck. It then defeats
the purpose of application performance accelerating on GPUs.

Second, skip-list uses a linked list, which requires dynamically
allocation and reclamation of memory. Current GPUs do not have
as good dynamic memory management as that on CPUs. Moscovici
et al. [20] uses a simplified array-based memory reclamation for
chunked skip-list, but dynamic memory management itself is non-
trivial to be parallelized on GPUs for general cases.

2.2 Parallelism Exploitation

Both heap and skip-list based priority queue implementations use
fine-grained locks. Fine-grained lock gives rise to fine-grained par-
allelism. Each key is protected by one lock. When a key is locked by
one operation, it cannot be used by another operation. Operations
on different keys with no mutual exclusion can happen in parallel.
In Table 1, we list the parallelism types for existing well-known
priority queue implementations.

GPU Friendliness: However, most existing approaches exploit
only task parallelism. To maximize performance gains on GPU, one
must exploit both data and task parallelism.

GPU, as well as other computational accelerators, are equipped
with hierarchical parallelism. At the coarse-grained level, it is task
parallelism. At the fine-grained level, it is data parallelism. GPU

hardware is made of multiple streaming multi-processors. Each
multi-processor only has data parallelism. Cores within a data-
parallel multi-processor must execute in lock steps. Executing differ-
ent control branches will cause serialization within one streaming
multi-processor, called thread divergence [31]. Each data-parallel
multi-core processor has at least 32 cores. Hence the slowdown
could be up to 32X if the data parallelism is not well utilized.

In existing concurrent priority queue implementations, an In-
sert, DeleteMin, or Lookup, has to take a tree traversal path in
the heap or skip-list. Different operations typically take different
traversal paths, causing control flows and thread divergence.

Very few studies for concurrent CPU implementations have ex-
ploited data parallelism. Deo and Prasad [8] proposed the only
concurrent CPU heap implementation that we know explicitly ex-
ploits data parallelism. It expands a node to store multiple keys.
Thus when moving a node up and down the heap, it moves multiple
keys at once. He et al. [12] developed a natural extension of Deo
and Prasad’s work [8] to GPUs. However, their method requires to
insert or delete a fixed number of keys at once. Moreover, it only
exploits pipeline parallelism and requires a barrier between every
two pipeline stages. Our BGPQ performance is much better than
this implementation, as shown in Section 6.

CBPQ uses a chunked linked list. There is data parallelism for
lookups within a chunk, but the CPU implementation does not
exploit it. The GPU skip-list by Moscovici et al. [20] is an extension
to the chunked link list idea. It exploits data parallelism in the
Search operation. It partitions each linked list into chunks that
consist of multiple keys. When looking up a key, it lets threads in a
warp check different elements.

2.3 Thread Collaboration

Existing studies have proposed different ways to let threads collab-
orate rather than contend for shared resources. Nageshwara and
Prasad [21] let a DeleteMin thread steal a key an active Insert
thread is holding to refill the root node.

Flat combining is a technique that combines multiple requests
and let them be handled by one thread. Flat combining is used by
Calciu et al. [6] for batching multiple DeleteMin requests in the
concurrent priority queue. It is also used by Braginsky et al. [3] for
collaborating on rebuilding the first chunk in the chunked linked
list of CBPQ.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang

Elimination is a technique that matches inverse requests in a
short time. It was originally introduced to optimize concurrent
stacks. It was used for the first time for concurrent priority by
Calciu [6], where an elimination layer is used in combination with
skip-list. It is also used in CBPQ by Braginsky et al. [3], where
keys are stored in chunks, including the buffer for insert-small
operations, making the elimination technique naturally fit into the
underlying data structure.

GPU Friendliness: Thread collaboration has been introduced
to help scale up priority queue performance when the contention is
high. For GPUs, the number of threads running concurrently is high.
It is important to have thread collaboration features while in the
meantime avoiding problems such as thread divergence, memory
un-coalescing, and memory resource contention.

3 BGPQ Algorithm Overview

We give an overview of the BGPQ algorithm from the perspective
of data structure, parallelism, and thread collaboration. The detailed
algorithm is introduced in Sec. 4.

3.1 Data Structure

We use heap as the underlying data structure, but we extend it to
enable efficient parallelization and thread collaboration. Each node
in the extended heap contains k keys (k > 1) except the root node
and the buffer node. The root node contains ≤ k keys. The buffer
node contains ≤ k − 1 keys. For each node that is not the root node
or the buffer node, the node’s smallest key is larger than or equal
to the largest key of its parent node. The smallest key of the buffer
node is larger than or equal to the largest of the root node. An
example of BGPQ with k = 4, together with its basic operations are
shown in Fig. 2.

3.2 Basic Operations

Our insert API supports the insertion of 1 to k keys to the heap.
Our deleteMin API supports the deletion of 1 to k smallest keys
from the heap. If there are not enough keys as requested, then all
keys will be deleted from the heap.

We use the buffer node to keep track of the keys that need to be
inserted into the heap but have not accumulated to k keys to form
a batch. We denote this buffer node as pBuffer.

We show the workflow of insert operations in Fig. 3. Before the
insertion-keys are placed into the pBuffer node, they are merged
with the root node, such that the root node attains the smallest
|root | keys of the merged keys, where |root | is the number of keys
originally in the root node. The remaining keys are placed in pBuffer.

When the buffer node pBuffer overflows, it triggers a full insert-
heapify process in a top-down manner. When pBuffer does not
overflow, the nodes that are not root or pBuffer will not be modified.
With the pBuffer, it is as if batchingmultiple insertion requests while
still ensuring the root node contains the smallest keys.

We show the idea of deleteMin operations in Fig. 4. A DeleteMin
operation extracts up tok keys at once. Assuming it wants to extract
m ≤ k keys. If the root node has more than m keys, it does not
trigger a full delete-heapify process. If the root node has less than
m keys, it starts the heapify process. It first extracts the keys from
the last node of the heap, merges them with those in the pBuffer

node, obtains the k smallest ones to place them into the root node,
then starts a top-down heapify process. Before the root node is
unlocked, the smallest k keys of the root node and root node’s child
nodes are placed in the root node, part of which will be added to
the retrieved-key set if the original root node has < m keys.

Our implementation encourages thread collaboration in a similar
way as elimination [6]. It is possible that within a short time, the
minimal key(s) inserted by one operation can be fetched by a later
delete-min request. Therefore, it does not have to access the large
heap body below the root node.

We also implement another thread collaboration optimization
[21] where a delete-min thread steals the insertion-keys from an-
other thread that is performing insertion actively and use them to
refill the root node.

3.3 Parallelism

Our design exploits both data and task parallelism. Node merging,
sorting, and swapping can take advantage of data parallelism. In
the classical heap, the basic operation between two nodes is the
comparison and swap of two keys. Here, it becomes the comparison,
merging, sorting, and swapping of two sets of keys, the techniques
of which have already been well optimized for GPUs.

Our design also exploits memory parallelism. We store the heap
as an array. Each batch node is stored in aligned consecutive mem-
ory blocks. When loading a batch node, consecutive memory blocks
are loaded, and thus the memory throughput is maximized.

Task parallelism is exploited for operations on different nodes.
Each node is protected by one unique lock except the root and
pBuffer node. The root node and pBuffer node share one lock. Any
heapify algorithm that exploits task parallelism for single-key node
heap can be applied to our extended heap. We let both insertions
and deletions be top-down during their tree traversal process.

We also implemented an existing approach to reduce root node
contention for task parallelism similar to that for a single-key node
by Hunt et al. [14]. The performance is similar to that of the simple
top-down approach (Sec. 6).

4 Implementation

Our implementation adopts the top-down tree traversal mechanism
for Insert. For DeleteMin operation, after the keys from the root
are extracted, a top-down re-heapify process is triggered to make
sure the keys in the heap still satisfy the heap property. This is a
strikingly simple implementation, however, the performance gains
are significant as shown in our experiments.

Each node is protected by one unique lock except the root node
and the buffer node which share a lock. we let every heap node be
associated with a state. The state of a node can be one of the four:
AVAIL, EMPTY, TARGET, and MARKED. AVAIL and EMPTY are
used to represent whether a node contains keys or not. TARGET and
MARKED are used for the thread collaboration and we will discuss
this later. The state of a node is protected by the corresponding
lock and can only be changed when the node is locked.

We use the Sort_Split operation on heap nodes in our im-
plementation. Here we formally define the Sort_Split operation
between two sorted nodes:

BGPQ: A Heap-Based Priority Queue Design for GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

0 0 1

2 2 3 4 4 5 5 6

6 8 8 9

Root: R

Last Node: L

3 4
Buffer: P

20 0 1 3

2 2 3 4 4 5 5 6

6 8 8 9

3 43 7
Insert Items

7 20 0 1 2

2 3 3 4 4 5 5 6

6 8 8 9

3 4 7

0 0 1

2 2 3 4 4 5 5 6

6 8 8 9

3 4
Delete Items

2 2 3 4 4 5 5 6

3 40 0 1 6 8 8 9 2 2 3 4

4 5 5 6

3 40 0 1

6 8 8 9

(1) (2) (3)

(4) (5) (6)

Figure 2: Underlying Data Structure for BGPQ

Insert largest m
keys to the pBuffer

Insert m keys
to the root

Done

root pbuffer

NO

target

Sort the
pBuffer

pBuffer
overflow?

YES

 m sorted keys

Empty
Heap?

YES

NO

Extract k smallest keys
from the overflowed pBuffer

Insert
Heapify

Merge m keys
with the root

Figure 3: BGPQ Insert Operations

Retrieve all keys
in the root

Done

root pbuffer

NO

last

Empty
Heap?

YES

m retrieved keys

Root has
>m keys?

YES

NO

Retrieve m keys
from the root

Merge with
the pBuffer

Fill the empty
root with the keys

in the last node

DeleteMin
Heapify

Figure 4: BGPQ DeleteMin Operations

(X[1 : Ma], Y[1 : Mb]) ← Sort_Split(Z, Na, W, Nb, Ma)

s.t. (X, Y) = sor ted (Z, W)

Ma +Mb = Na + Nb, max
i=1. .Ma

X[i] ≤ min
j=1. .Mb

Y[j]

∀i ∈ [1, Ma) : X[i] ≤ X[i + 1], ∀i ∈ [1, Mb) : Y[i] ≤ Y[i + 1]

This Sort_Split operation returns two nodes X and Y with size
Ma andMb whileMa+Mb is equal to Na+Nb while Na and Nb are
the numbers of keys in Z andW respectively. X stores the sorted
Ma smallest keys and Y stores the sortedMb largest keys from Z

andW. The most common value of Na , Nb ,Ma andMb is the node
capacity K which represent a Sort_Split operation between two
full nodes. In our pseudo code if the range is not specified, it means
the Sort_Split is performed on two full nodes.

Algorithm 1 BGPQ Insertion
1: procedure BGPQ_Insert(items[], size)
2: items[1:size]← Sort(items[1:size]);
3: LOCK(root);
4: if Partial_Insert(&items, size) then return ;
5: heapSize← heapSize + 1; tar← heapSize;
6: LOCK(tar); Heap[tar].state← TARGET;UNLOCK(tar);
7: cur← Insert_Heapify(NEXT(root, tar), tar, &items);
8: LOCK(tar);UNLOCK(PARENT(cur));
9: if Heap[tar].state = TARGET then

10: Heap[tar]← items; Heap[tar].state← AVAIL;
11: else ▷ A DeleteMin operation is waiting at the root.
12: Heap[root]← items; |root|← K;
13: Heap[root].state← AVAIL; Heap[tar].state← EMPTY;
14: UNLOCK(tar);
15: procedure Partial_Insert(items[], size)
16: if heapSize = 0 then ▷ Heap is empty.
17: Heap[root][1:size]← items[1:size]; |root | ← size;
18: Heap[root].state← AVAIL; heapSize← heapSize + 1;
19: UNLOCK(root);return True;
20: (Heap[root][1:|root|], items[1:size]) ←

Sort_Split(Heap[root], |root|, items, size, |root|);
21: if |pBuffer| + size < K then ▷ Buffer does not overflow.
22: pBuffer[|pBuffer|+1:|pBuffer|+size]← items[1:size];
23: |pBuffer|← |pBuffer| + size;
24: UNLOCK(root); return True;
25: else ▷ Buffer overflows.
26: Sort(pBuffer[1:size]);
27: (items[1:K], pBuffer[1:|pBuffer|+size-K]) ←

Sort_Split(items, size, pBuffer, |pBuffer|, K);
28: |pBuffer|← |pBuffer|+size-K;
29: return False;
30: procedure Insert_Heapify(cur, tar, items[])
31: if cur = tar or Heap[tar].state = MARKED then return cur;
32: LOCK(cur);UNLOCK(PARENT(cur));
33: (Heap[cur], items) ← Sort_Split(Heap[cur], items);
34: return INSERT_HEAPIFY(NEXT(cur, tar), tar, &items);

Splitting a short sequence or merging two sorted sequences can
be efficiently implemented onGPUs. It can take advantage of shared
memory due to the small size of the sequence. There are different
existing parallel sorting primitives for GPUs including bitonic sort,
merge sort, and radix sort. We used the GPU merge path (merging)
algorithm [11] and bitonic sorting [22] in our implementation.

4.1 Insert Operation

The Insert pseudo-code is presented Alg. 1. The inserted keys are
sorted first and then the root is locked (line 2-3).Partial_Insert()
is called to insert keys, either into the buffer or as a new heap node.
If the heap is empty, inserted keys “items" are directly placed in the

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang

root (line 16-19), otherwise, a Sort_Split operation is performed
between the root node and “items" to place the smaller keys in the
root node (line 20). We then check if placing all inserted keys will
overflow the buffer, if not, updated “items" are inserted into the
buffer (line 21-24). Otherwise, a full heap node with k smallest keys
is extracted and it invokes an insert heapify process (line 26-29).

With the help of the partial buffer, the number of insert-heapify
processes is reduced. We can wait for more Insert operations until
the buffer overflows and then invoke an insert-heapify process. The
insert-heapify process needs to propagate k keys down to the target
node. The target’s state will be changed to TARGET for the thread
collaboration (line 6). Insert_Heapify() is called at line 7 for the
insert-heapify process.

The heapify process traverses the path from the root node to the
target node in the tree. Each node on the path is locked before its
parent node’s lock is released (line 32). A Sort_Split operation
is performed between the insert-keys and the current node (line
33). During the insert-heapify process, the target node’s state is
checked repeated. If the state has been changed to MARKED, it will
break out the heapify process immediately and collaborate with
the Delete-Min operation (line 11-13, 31).

When the heapify operation encounters the target node, it locks
the target node and checks the state of the target node. When the
target node is locked, no other operation can change the state. If
the target node’s state is still TARGET, it will place the inserted
keys into the target node, change its state to AVAIL and release the
lock (line 9-10, 14).

4.2 DeleteMin Operation

The pseudo code for DeleteMin operation of BGPQ is shown in
Alg. 2 and 3. A single DeleteMin operation can retrieve up to k
keys from the heap. Partial_DeleteMin() is called to delete
keys from the root node (line 3). If the heap is already empty, we
just release the root (line 16-17).

If there are enough keys in the root, the keys will be extracted
(line 18-20) using Extract_Root() function. If the root does not
contain enough keys and there are no more full nodes in the heap
(line 23), we use the keys in the buffer to fill the DeleteMin opera-
tion. It is also possible that the number of keys requested cannot
be satisfied. In this case, we delete all the keys in the heap and
update the delete size (line 24-29). When there are still full heap
nodes, we change the root node’s state to EMPTY and invoke a
DeleteMin-heapify process (line 31).

Since the root node is empty, Delete-Min operation checks
the target node’s state to see whether there is an opportunity to
collaborate with the Insert operation (line 7-9). After the root node
is refilled , it merges with the buffer to make sure all keys in the
root node are smaller than those in the buffer (line 13). Then the
heapify process DeleteMin_Heapify is called. The items and
remainedSize are used to fulfill the remaining delete keys when
the root node is updated during the heapify process (line 4, 14).

In Alg. 3, during the heapify process, both children of the current
node are locked and a Sort_Split operation will be performed on
the two child nodes first (line 10). Depending on which of the left
and the right child originally has a larger largest key, we say node
x, the largest k keys of the Sort_Splitresult will be placed in node

Algorithm 2 BGPQ DeleteMin
1: procedure BGPQ_DeleteMin(items[], size)
2: LOCK(root);
3: if Partial_DeleteMin(&items, &size) then return ;
4: remainedSize← size − |items|;
5: tar← heapSize; heapSize← heapSize − 1;
6: LOCK(tar);
7: if Heap[tar].state = TARGET then

8: Heap[tar].state← MARKED;UNLOCK(tar);
9: while Heap[root].state , AVAIL;
10: else

11: Heap[root]← Heap[tar]; Heap[tar].state← EMPTY;
12: UNLOCK(tar); Heap[root].state← AVAIL; |root|← K

13: (Heap[root][1:K], pBuffer[1:|pBuffer|]) ←
Sort_Split(Heap[root], K, pBuffer, |pBuffer|, K);

14: DeleteMin_Heapify(root, &items, remainedSize);
15: procedure Partial_DeleteMin(items[], size)
16: if heapSize = 0 then ▷ Nothing to delete.
17: size← 0;UNLOCK(root); returnTrue;
18: else if size < |root| then ▷ Root has enough keys to delete.
19: Extract_Root(&items, size);
20: UNLOCK(root); returnTrue;
21: else ▷ Root needs to be refilled.
22: items[1:|root|]← Heap[root][1:|root|]; |root|← 0
23: if heapSize = 1 then ▷ Fill the root with the buffer.
24: |root|← |pBuffer|; |pBuffer|← 0;
25: Sort(pBuffer[1:|root|]);
26: Heap[root][1:|root|]← pBuffer[1:|root|]
27: size←min(|items| + |root|, size);
28: Extract_Root(&items, size - |items|);
29: UNLOCK(root); returnTrue;
30: else ▷ Fill the root with a heap node.
31: Heap[root].state← EMPTY; returnFalse;
32: procedure Extract_Root(items[], s)
33: items[|items|+1:|items|+s]← Heap[root][1:s];
34: Heap[root][1:|root|-s]← Heap[root][s+1:|root|];
35: |root|← |root|-s;

Algorithm 3 BGPQ DeleteMin Heapify Process
1: procedure DeleteMin_Heapify(cur, items[], remainedSize)
2: (l, r) ← (LEFT(cur), RIGHT(cur));
3: LOCK(l); LOCK(r); maxcur←max (Heap[cur]);
4: if maxcur ≤ min(min(Heap[l]),min(Heap[r])) then
5: if cur = root then
6: Extract_Root(&items, remainedSize);
7: UNLOCK(cur);UNLOCK(l);UNLOCK(r);
8: return ;
9: (x, y) ←max (Heap[l]) > max (Heap[r]) ? (l, r) : (r, l);
10: (Heap[y], Heap[x]) ← Sort_Split(Heap[l], Heap[r]);
11: UNLOCK(x);
12: (Heap[cur], Heap[y]) ← Sort_Split(Heap[cur], Heap[y]);
13: if cur = root then Extract_Root(&items, remainedSize);
14: UNLOCK(cur);
15: DeleteMin_Heapify(y, &items, remainedSize);

x. Then another Sort_Split operation will be performed on the
current node and the other child node y such that the current node
carries the smallest k keys and the child node y carries the largest
k keys. The current node is released after that. These steps repeat
(line 15) until the heap property is satisfied (line 4). It is possible
that the left child and the right child’s states are TARGET, but as
nodes with TARGET status do not carry any keys, thus the heap
properties are automatically satisfied.

4.3 Thread Collaboration

There are different types of thread collaborations being applied to
BGPQ. As we mentioned before, an insertion thread can collaborate

BGPQ: A Heap-Based Priority Queue Design for GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

with a concurrent DeleteMin thread in BGPQ. We support this
collaboration using the two special states TARGET and MARKED.

When the root node needs to be refilled, the DeleteMin thread
checks whether the state of the target node is TARGET or AVAIL.
If it is TARGET, which means there is a chance for thread collabo-
ration, the Delete-Min operation will change the target state to
MARKED to notify the insert operation. The insert operation will
be responsible for moving its insert keys to fill the root node and
change the root’s state to AVAIL. This thread collaboration was
introduced in [21] and fits well with BGPQ.

There are also collaborations between multiple insertion threads
in BGPQ. An insertion will first try to insert keys into the par-
tial buffer. Multiple insertion operations may trigger only one
insert-heapify process, that is, when the buffer overflows. Since the
insert-heapify process is more expensive than only updating the
root/buffer node, such collaboration can reduce the heap overhead.

Similar collaboration idea is also applied to DeleteMin threads.
In BGPQ, deleting a small number of keys from the heap may not
trigger an expensive DeleteMin heapify process. It waits until
the DeleteMin thread requires more keys than the root contains.
Also, a DeleteMin thread with the heapify process being invoked
will refill the root node, so upcoming DeleteMin threads could
potential take the benefit and extract these previously fetched keys.

5 Linearizability

In our implementation, an operation, whether insertion or deleteMin,
has to lock the root first. We let a linearization point be placed in
between the time the root is locked and unlocked by an operation.

We use the following notations. An insertion (ins) or deleteMin
(del) operation takes a certain amount of time to complete. We
denote the starting time as the invocation time, the completion as
the response time.

We denote an operation with a 4-tuple followed by two param-
eters op[s,acR, reR, t] (x) T . The symbol op is the type of the op-
eration: ins or del. s is the invocation time, t is the response time.
acR refers to the time the root is locked; reR refers to the time the
root is unlocked. x refers to the set of keys to be inserted or to be
extracted by the operation op.

A concurrent history H with n operations is denoted as:

H = {opi [si ,acRi , reRi , ti] (xi) Ti | 1 ≤ i ≤ n } (1)

We impose a total ordering of these events with respect to the
lock/unlock of the root. For the u-th and v-th operations, opu [su ,
acRu , reRu , tu] (xu) Tu , and opv [sv , acRv , reRv , tv] (xv) Tv , we
have u < v if and only if reRu < acRv .

We let Ii and Di respectively denote the set of keys inserted and
deleted preceding and including the i-th operation in H.

Ii =
⋃

opm=ins
xm , and Di =

⋃
opn=del

xn

Linearizability We construct a sequential history with respect
to the concurrent history and show that the sequential history is
valid. An important variant of our algorithm is that (1) if a node
(not including the buffer node) is not locked, its key values are
equal to or less than the keys in all its descendent in the heap, and
(2) the root’s keys are always smaller than or equal to that in the
buffer node. It is because we use fined-grained locks. Each insertion

operation keeps a node locked until it has made sure the node have
smaller keys or equal keys than the keys it originally contains. Each
del operation will not unlock a node or its child node(s) until the
node has been made smaller or equal to its child node(s).

Time
ins(Z)P

s1 acR1 reR1

LOCK(root)

t1
NZ

ins(X)T

s2 acR2 reR2

LOCK(root)

t2
NT

del(Y)W

s3 acR3 reR3

LOCK(root)

t3
NY

Figure 5: BGPQ linearization points

Proof. The sequential history is constructed as follows. We
construct n operations, and each one of them takes effect instanta-
neously. We let Ni denote the i-th linearization point, an arbitrary
point between the root locking time acRi and unlocking time reRi
of an operation in H as shown in Fig. 5.

S = {opSi [Ni] (x
S
i) | 1 ≤ i ≤ n, acRi < Ni < reRi } (2)

We let opSi = opi . We let xSi = xi if opi = ins . For each del
operation, it extracts up to the same number of keys as in the
concurrent history, |xSi | = |xi |, if there are at least |xi | keys in
the heap with respect to the execution induced by the sequential
history. Later, we show |xSi | = |xi | always holds.

ISi and DS
i are defined in a similar way as Ii and Di for S in

Equation (2). We let I0 = IS0 = ∅ and D0 = DS
0 = ∅. We prove

that Di = DS
i , Ii = ISi , and xi = xSi by induction. Assuming that

up to the k , Dk = DS
k , Ik = ISk , and xi = xSi . We now prove that

Dk+1 = DS
k+1, Ik+1 = ISk+1. There are two cases.

Case I – the (k+1)-th operation is an insertion:
ins[sk+1,acRk+1, reRk+1, tk+1] (xk+1)Tk+1. Right after threadTk+1
unlocks the root in our implementation, it must have alreadymerged
the keys with the root and the buffer node. See the code line 21 and
29 in Algorithm 1. An insertion of k keys will propagate to the cor-
responding target location if necessary, after the root is unlocked
by thread Tk+1.

Therefore, the heap contains the keys of Ik −Dk +xk+1. We have
Ik+1 = Ik ∪xk+1. It holds for both the sequential execution case too
such that ISk+1 = ISk+1. The D sets remain unchanged, Dk+1 = Dk

and hence DS
k+1 = DS

k .
Since originally the root’s keys are smaller than or equal to all

other keys in the heap, the new |root | keys are smaller than the
original root and the newly inserted keys, and hence smaller than
or equal to all keys in the heap.

Case II – If the (k+1)-th operation is a del operation, it aims to
retrieve r ≥ keys, to be stored in the return ndoe xk+1 (if the heap
contains r keys, it will be |xk+1 | keys).

In our implementation, right after thread Tk+1 has locked the
root, if the root has more than r keys, thenTk+1 will just retrieve k
smallest keys from the root, and unlock the root (line 21 in Algo-
rithm 2). Since the root contains the smallest |root | keys of all keys
in the heap, the r smallest keys in the root will be the r smallest
keys of the entire heap.

If the root has less than r keys, our implementation will lock the
left and right child (if any) of the root, extract keys from the last

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang

node in the heap (if any), fill them in the root. Now before the root
is unlocked, it finds r − |root | smallest keys among the following
nodes: the root, the child node(s) of the root, and the buffer node, if
they have at least r − |root | keys. If they do not contain r − |root |
nodes, then retrieve all the keys. Since root’s child node(s), if not
locked, contains keys that are smaller than the rest of the heap, then
r − |root | smallest keys of these nodes are the r − |root | smallest of
all. Therefore, xk+1 =minr (Ik −Dk), or xk+1 = Ik −Dk if the heap
has less than r keys.

It is trivial to show that in the sequential history S, xSk+1 =
minr (I

S
k − D

S
k) or x

S
k+1 = ISk − D

S
k if the heap has less than r keys.

Hence, we have proved xSk+1 = xk+1, and DS
k+1 = Dk+1. The set of

keys in I remain unchanged, so ISk+1 = Ik+1.
By induction, Ii = Di , and xSi+1 = xi+1, for 1 ≤ i ≤ n. It is proved

that BGPQ is linearizable. 2 □

6 Evaluation

6.1 Experiment Setup

We compare BGPQ with four CPU baselines: TBB [29], the priority
queue in Intel Threading Building Blocks, which is a widely used
C++ library for shared memory parallel programming; CBPQ [3] , a
chunk based lock-free parallel priority queue implementation; LJSL
[16], a skip-list based concurrent priority queue and SprayList [1],
a relaxed skip-list based priority queue implementation. We also
compare one GPU baseline [12] which we refer to as P-Sync.

We use an NVIDIA TITAN X GPU with 28 streaming multi-
processors (SMPs), each with 128 cores. The maximum number of
active threads per SMP is 2048. We use CUDA 10.0. In the following
experiments, we use the configuration of 128 thread blocks per
kernel, 512 threads per block, and 1024 keys per batch, for both
BGPQ and P-Sync.

CPU baselines are evaluated on a server of four Intel Xeon E7-
4870 processors with 1TBmemory. Each processor has 10 cores with
a 2.40 GHz working frequency and can multiplex two hardware
threads. We used 80 threads in our experiments. All these four
priority queues were implemented in C++ and compiled with –O3
optimization level.

6.2 BGPQ Design Choice

Wefirst discuss the design choice of BGPQ.We vary the thread block
size, node capacity, and the number of thread blocks for different
experiments. We show the performance of inserting 64M random
32-bit keys into an empty heap and then deleting all keys in Fig. 6.

BGPQ node capacity: Fig. 6a and 6b shows the performance
with varying BGPQ node capacity and thread block size. Due to
the limits in shared memory size per thread block, the maximum
batch size we used is 1K. When thread block size is the same, for
both Insert and DeleteMin operations, we can observe that the
performance becomes better when the node capacity is larger as it
provides more intra-node parallelism. The results also show that
it is not always good to increase the thread block size. A large
thread block size can increase the overhead of synchronization

2Note that during the collaboration when a delete-heapify operation steals keys from
an insert-heapify operation, the delete-heapify operation holds the lock of the root
node and performs a spinlock until the insert-heapify operation fills the root node.

within a thread block. Among all these configurations, we choose
one with thread block size = 512 and node capacity = 1k for later
experiments as it has the best performance for both Insert and
DeleteMin operations.

Thread block number: The more thread blocks, the more
concurrency we can gain, and also, the more contention on the
heap. The experiment used 512 threads in a thread block with a
1K node capacity. The results are shown in Fig. 6c. Both ins and
del operations’ performance becomes better when the number of
thread blocks is increased since more concurrency can be obtained.
However, the benefit from concurrency is restrictedwhen the thread
block number keeps increasing since more thread blocks also mean
more contention on the heap nodes.

6.3 Performance with Synthetic Data

We evaluate the performance of inserting 1M, 8M, 64M keys into an
empty priority queue and then deleting all keys from the priority
queue while in both stages, it is insertion-only or deletion-only.
We also consider different types of input keys, which are (1) uni-
formly chosen at random among 30-bit sized keys3 (2) sorting the
random keys in ascending order and (3) sorting the random keys
in descending order. The collected results are shown in Table 2 4.

Compared to P-Sync, BGPQ has an average 9.3X speedup. P-
Sync’s bottleneck is its insert operation since it only supports
pipeline parallelism for operations at different levels of the heap.
On the contrary, BGPQ explores the inter-node parallelism for both
insertion and deletion. It shows that the support of fully concurrent
insertion and DeleteMin operations has more potential in exploiting
the parallelism than the strictly synchronized pipelined method.

BGPQ is much better than all CPU parallel baselines. It has 53X,
66X, and 83X speedup compared to TBB with 1M, 8M, and 64M
keys respectively. When the number of keys being operated on the
priority queue grows, BGPQ scales well and has a larger speedup.
For SprayList, BGPQ achieves an average 10.8X speedup. As pre-
vious work showed[1], LJSL does not scale under large numbers
of concurrent threads; thus, the performance is not competitive.
SprayList’s relaxed DeleteMin operation makes it faster than other
algorithms. BGPQ beats CBPQ with around 21X speedup among
all cases. CBPQ scales well with the data structure size since the
most time-consuming part of CBPQ is the chunk splitting stage.

6.4 Performance under Different Heap

Utilization

We measured each priority queue design 5 6 under different utiliza-
tion. Utilization is controlled by initializing the priority queue with
different numbers of keys. In this experiment, each thread performs
a pair of insert and DeleteMin operations, thereby preserving the
utilization of the underlying data structure. We evaluate three dif-
ferent utilization levels: empty, 1M keys, and 8M keys, after which
we execute 64M pairs of insert and DeleteMin operations.

3Open sourced CBPQ implementation only supports 30-bit integer keys.
4Performance is in milli-second.
5P-Sync does not support concurrent insertion and retrieval operations.
6The CBPQ implementation restricts the number of chunks used. In our experiments,
CBPQ runs out of chunks with 1e9 pre-allocated chunks.

BGPQ: A Heap-Based Priority Queue Design for GPUs ICPP ’21, August 9–12, 2021, Lemont, IL, USA

128 256 512 1024
Node Capacity

0

1000

2000

3000

T
im

e
(m

s)

block size: 128
block size: 256
block size: 512
block size: 1024

(a) Insert operation

128 256 512 1024
Node Capacity

0

2000

4000

6000

T
im

e
(m

s)

block size: 128
block size: 256
block size: 512
block size: 1024

(b) DeleteMin operation

2 4 8 16 32 64 128
Thread Block Number

0

1000

2000

3000

4000

T
im

e
(m

s)

Insert
DeleteMin

(c) performance w.r.t thread

block numbers

Figure 6: BGPQ Performance w.r.t thread block sizes, node capacities and thread block numbers

CPU Parallel PQs GPU Parallel PQs Improvement
TBB Spraylist CBPQ LJSL P-Sync BGPQ B/T B/S B/C B/L B/P

In
s&

D
el

Random
1M Keys

1,299 247 556 413 220 28 46.4 8.8 19.8 14.8 7.8
Ascend 1,273 224 492 344 211 22 57.9 10.2 22.3 15.6 9.6
Descend 1,151 212 480 315 197 21 54.8 10.2 22.8 15.0 9.4
Random

8M Keys
12,043 1,822 4,021 8,284 1,517 212 56.8 8.6 19.0 39.1 7.2

Ascend 11,291 1,613 4,017 5,649 1,515 173 65.3 9.3 23.2 32.7 8.8
Descend 11,240 1,640 3,319 5,902 1,483 150 74.9 10.9 22.1 39.3 9.9
Random

64M Keys
107,770 17,612 27,208 67,514 12,194 1,329 81.3 13.3 20.5 50.9 9.2

Ascend 94,361 15,137 24,783 49,016 12,024 1,069 88.3 14.2 23.2 45.9 11.2
Descend 93,850 14,859 22,877 44,911 11,892 1,193 78.7 12.5 19.2 37.6 10.0

U
til
. Empty

64M Keys
53,320 149,803 N/A 51,305 N/A 1,452 36.7 103.2 N/A 35.3 N/A

Init: 1M 57,074 12,721 N/A 52,088 N/A 1,441 39.6 8,8 N/A 36.1 N/A
Init: 8M 72,473 12,967 N/A 53,806 N/A 1,487 48.7 8.7 N/A 36.2 N/A

0-
1
KS

2200 node search tree 60,156 41,988 N/A 75,444 N/A 928 64.8 45.2 N/A 81.3 N/A
2400 node search tree 2,453 1,484 N/A 3,504 N/A 27 90.9 55 N/A 129.8 N/A
2600 node search tree 59,355 36,180 N/A 53,250 N/A 624 95.1 58 N/A 85.3 N/A
2800 node search tree 5,207 2,850 N/A 5,256 N/A 52 100.1 54.8 N/A 101.1 N/A
21000 node search tree 156,670 95,476 N/A 156,249 N/A 1,807 86.7 52.8 N/A 86.5 N/A

A
-s
ta
r

5K*5K 10% obstacles 67,077 28,410 N/A 45,816 N/A 2,294 29.2 12.4 N/A 20.0 N/A
20% obstacles 50,848 25,613 N/A 39,237 N/A 2,061 24.7 12.4 N/A 19.0 N/A

10K*10K 10% obstacles 265,127 128,420 N/A 167,614 N/A 7,386 35.9 17.4 N/A 22.7 N/A
20% obstacles 203,443 111,519 N/A 152,630 N/A 6,939 29.3 16.1 N/A 22.0 N/A

20K*20K 10% obstacles 1,039,827 520,947 N/A 727,108 N/A 22,328 46.6 23.3 N/A 32.6 N/A
20% obstacles 799,997 384,220 N/A 616,596 N/A 21,262 37.6 18.1 N/A 29.0 N/A

Table 2: Parallel Priority Queue Performance

As shown in Table 2, when the utilization increases, the perfor-
mance of BGPQ maintains at the same level. Compared to CPU
baselines, TBB suffers under high utilization, with a 36% slow down.
SprayList performs worse when the initial data structure is empty.
The significant performance degradation comes from the deleteMin
operation, which has 20X more collisions. LJSL has only a 5% slow-
down with high utilization but is still much slower than BGPQ.

6.5 Performance with Real-World Data

0-1 Knapsack We implement the branch and bound based 0-1
knapsack algorithm using different parallel priority queue imple-
mentations. In branch and bound algorithms, all visited nodes in
the search tree are stored in the priority queue. Each time after the
highest priority node is processed, its two branches in the search
tree may be inserted into the heap, depending on if it is pruned by
a bound condition. A thread block in BGPQ always retrieve a full
node from the priority queue for load balancing purpose.

We use the generator [19] to generate large datasets with differ-
ent numbers of items from 200 to 1000 with 2200 to 21000 search
space respectively. In Table 2, we show the performance of the
knapsack application. 7.

7CBPQ’s implementation only supports a 30-bit key thus is impossible to store a
knapsack node that contains weight, profit, and level information. This is also why we
don’t evaluate CBPQ with A-star graph search.

Compared to SprayList, BGPQ achieves a maximum of 58X
speedup for 600 items and a minimum 45X speedup for 200 items.
Compared with TBB, the maximum speedup is 100X for 800 items,
and the minimum speedup is 64X for 200 items. LJSL has similar
performance with TBB.

A-star search for route planning A-star graph search is widely
used in path finding and graph traversal algorithms. We focus on
the A-star version that aims to find the shortest path between a
given source and target node in a 2D grid with obstacles. We use
the Manhattan distance as the admissible heuristic function. The
priority function for any node v is the summation of the current
distance from the source to v and the Manhattan distance from v
to the target node. We use 3 different map sizes with 2 different
obstacle rates. An obstacle rate r means r% of the nodes in the grid
is an obstacle. The obstacles are randomly distributed in the grid,
and there always exists a path from the start node to the target
node. For any node in the grid, it has 8 directions to move.

We show the A-star performance in Table 2. We can observe
that BGPQ based solutions are much faster than TBB, LJSL, and
SprayList. The scaling trends show that with a larger grid, BGPQ
can achieve higher speedup, and with an increased obstacle rate,
the speedup reduces as the number of paths to explore reduces.

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Yanhao Chen, Fei Hua, Yuwei Jin, and Eddy Z. Zhang

7 Related Work

Concurrent priority queues have been extensively studied in the
literature [2, 5, 8, 9, 14, 21]. Nageshwara and Kuma used a fine-
grained lock based heap implementation [21]. Hunt et al. improved
it by combining bottom-up insertion with the LR-algorithm to
reduce root contention [14]. Dragicevic and Bauer introduced a
lock-free and linearizable heap that uses software transactional
memory (STM) [9]. Deo and Prasad increases the node capacity of
the heap to increase the parallelism [8]. However, their algorithm
only supports pipeline parallelism.

Recent years have seen a surging number of skip-list based im-
plementations [10, 13, 16, 24, 26]. Lotan and Shavit were the first to
propose a quiescently consistent skip-list based priority queue[24].
Sundell and Tsigas introduced another skip-list based priority queue
[27]. Linden and Jonsson [16] presented a skip-list based prior-
ity queue that batches physical deletions. Their design alleviated
the contention on the head nodes. Alistarh et al. [1] introduced
SprayList which is a relaxed algorithm that allows delete operations
to randomly select a node within a certain priority range.

There are other data structures to implement concurrent priority
queue ADT. Liu and Spear [17] introduced Mounds which supports
fast insert and delete operations. Braginsky et al. reported a more
involved design called CBPQ whcih consists of a series of linked
chunks. Zhang and Dechev [30] presented a multi-dimensional
linked list based priority queue (MD-List). Nodes in a MD-List con-
tain multiple links to its child nodes arranged by their dimension-
ality which provides convenient concurrent accesses to different
parts of the data structure.

All these concurrent priority queue algorithms are designed for
multi-core CPUs. Our experiments has compared BGPQ with the
state-of-the-art multi-core CPU implementations and demonstrated
significant performance improvement.

8 Conclusion

This work presents BGPQ, a concurrent heap based priority queue
implementation that is friendly to many-core GPUs. BGPQ exploits
both intra-node and inter-node parallelism of the heap-based prior-
ity queue. We have proved the linearizability property of BGPQ. We
implemented two search applications branch-and-bound knapsack
and A-star algorithms with BGPQ. Experiments show a significant
reduction in the execution time and memory footprint on GPUs,
which demonstrates that there is significant potential for using
heap for fine-grained scheduling on GPUs.

References

[1] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The spraylist:
A scalable relaxed priority queue. In Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 11–20.

[2] Rassul Ayani. 1990. Lr-algorithm: concurrent operations on priority queues. In
Parallel and Distributed Processing, 1990. Proceedings of the Second IEEE Symposium
on. IEEE, 22–25.

[3] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. 2016. CBPQ: High per-
formance lock-free priority queue. In European Conference on Parallel Processing.
Springer, 460–474.

[4] Gerth Stølting Brodal, Rolf Fagerberg, Ulrich Meyer, and Norbert Zeh. 2004.
Cache-oblivious data structures and algorithms for undirected breadth-first
search and shortest paths. In Scandinavian Workshop on Algorithm Theory.
Springer, 480–492.

[5] Gerth Stølting Brodal, Jesper Larsson Träff, and Christos D Zaroliagis. 1998. A
parallel priority queue with constant time operations. J. Parallel and Distrib.

Comput. 49, 1 (1998), 4–21.
[6] Irina Calciu, Hammurabi Mendes, and Maurice Herlihy. 2014. The Adaptive Pri-

ority Queue with Elimination and Combining. In Distributed Computing, Fabian
Kuhn (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 406–420.

[7] Paolo G. Crosetto. 2019. CUPQ: a CUDA implementation of a Priority Queue
applied to the many-to-many shortest path problem. https://doi.org/10.5281/
zenodo.3595244

[8] Narsingh Deo and Sushil Prasad. 1992. Parallel heap: An optimal parallel priority
queue. The Journal of Supercomputing 6, 1 (1992), 87–98.

[9] Kristijan Dragicevic and Daniel Bauer. 2009. Optimization techniques for con-
current STM-based implementations: A concurrent binary heap as a case study.
In 2009 IEEE International Symposium on Parallel & Distributed Processing. IEEE,
1–8.

[10] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[11] Oded Green, Robert McColl, and David A Bader. 2012. GPU merge path: a GPU
merging algorithm. In Proceedings of the 26th ACM international conference on
Supercomputing. ACM, 331–340.

[12] Xi He, Dinesh Agarwal, and Sushil K Prasad. 2012. Design and implementation
of a parallel priority queue on many-core architectures. In High Performance
Computing (HiPC), 2012 19th International Conference on. IEEE, 1–10.

[13] Maurice Herlihy and Nir Shavit. 2011. The art of multiprocessor programming.
Morgan Kaufmann.

[14] Galen C Hunt, Maged M Michael, Srinivasan Parthasarathy, and Michael L Scott.
1996. An efficient algorithm for concurrent priority queue heaps. Inform. Process.
Lett. 60, 3 (1996), 151–157.

[15] John Iacono, Ben Karsin, and Nodari Sitchinava. 2019. A parallel priority queue
with fast updates for GPU architectures. arXiv preprint arXiv:1908.09378 (2019).

[16] Jonatan Lindén and Bengt Jonsson. 2013. A skiplist-based concurrent priority
queue with minimal memory contention. In International Conference On Principles
Of Distributed Systems. Springer, 206–220.

[17] Yujie Liu and Michael Spear. 2012. A lock-free, array-based priority queue. ACM
SIGPLAN Notices 47, 8 (2012), 323–324.

[18] Yujie Liu and Michael Spear. 2012. Mounds: Array-Based Concurrent Priority
Queues. In Proceedings of the 2012 41st International Conference on Parallel Pro-
cessing (ICPP ’12). IEEE Computer Society, USA, 1–10. https://doi.org/10.1109/
ICPP.2012.42

[19] Silvano Martello, David Pisinger, and Paolo Toth. 1999. Dynamic programming
and strong bounds for the 0-1 knapsack problem. Management Science 45, 3
(1999), 414–424.

[20] N. Moscovici, N. Cohen, and E. Petrank. 2017. A GPU-Friendly Skiplist Algorithm.
In 2017 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 246–259. https://doi.org/10.1109/PACT.2017.13

[21] RV Nageshwara and Vipin Kumar. 1988. Concurrent access of priority queues.
IEEE Trans. Comput. 37, 12 (1988), 1657–1665.

[22] Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger. 2009. Fast
in-place sorting with cuda based on bitonic sort. In International Conference on
Parallel Processing and Applied Mathematics. Springer, 403–410.

[23] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990), 668–676.

[24] Nir Shavit and Itay Lotan. 2000. Skiplist-based concurrent priority queues. In
Proceedings 14th International Parallel and Distributed Processing Symposium.
IPDPS 2000. IEEE, 263–268.

[25] Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distributed
Computing 10, 2 (1997), 99–116.

[26] Nir Shavit and Asaph Zemach. 1999. Scalable concurrent priority queue algo-
rithms. In Proceedings of the eighteenth annual ACM symposium on Principles of
distributed computing. ACM, 113–122.

[27] Håkan Sundell and Philippas Tsigas. 2005. Fast and lock-free concurrent priority
queues for multi-thread systems. J. Parallel and Distrib. Comput. 65, 5 (2005),
609–627.

[28] Orr Tamir, Adam Morrison, and Noam Rinetzky. 2016. A Heap-Based Con-
current Priority Queue with Mutable Priorities for Faster Parallel Algorithms.
In 19th International Conference on Principles of Distributed Systems (OPODIS
2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 46), Em-
manuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1–16. https:
//doi.org/10.4230/LIPIcs.OPODIS.2015.15

[29] Michael Voss, Rafael Asenjo, and James Reinders. 2019. Pro TBB: C++ Parallel
Programming with Threading Building Blocks (1st ed.). Apress, USA.

[30] Deli Zhang and Damian Dechev. 2015. A lock-free priority queue design based
on multi-dimensional linked lists. IEEE Transactions on Parallel and Distributed
Systems 27, 3 (2015), 613–626.

[31] Eddy Z. Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-
the-fly Elimination of Dynamic Irregularities for GPU Computing. In Proceedings
of the Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Newport Beach, California, USA) (ASPLOS
XVI). ACM, New York, NY, USA, 369–380.

https://doi.org/10.5281/zenodo.3595244
https://doi.org/10.5281/zenodo.3595244
https://doi.org/10.1109/ICPP.2012.42
https://doi.org/10.1109/ICPP.2012.42
https://doi.org/10.1109/PACT.2017.13
https://doi.org/10.4230/LIPIcs.OPODIS.2015.15
https://doi.org/10.4230/LIPIcs.OPODIS.2015.15

	Abstract
	1 Introduction
	2 Anatomy of Concurrent Priority Queue Design and Optimization Choices
	2.1 Data Structure
	2.2 Parallelism Exploitation
	2.3 Thread Collaboration

	3 BGPQ Algorithm Overview
	3.1 Data Structure
	3.2 Basic Operations
	3.3 Parallelism

	4 Implementation
	4.1 Insert Operation
	4.2 DeleteMin Operation
	4.3 Thread Collaboration

	5 Linearizability
	6 Evaluation
	6.1 Experiment Setup
	6.2 BGPQ Design Choice
	6.3 Performance with Synthetic Data
	6.4 Performance under Different Heap Utilization
	6.5 Performance with Real-World Data

	7 Related Work
	8 Conclusion
	References

