
A Pulse Generation Framework with Augmented
Program-aware Basis Gates and Criticality Analysis

Yanhao Chen∗, Yuwei Jin∗, Fei Hua∗, Ari Hayes∗, Ang Li†, Yunong Shi‡, Eddy Z. Zhang∗
∗Rutgers University, †Pacific Northwest National Laboratory, ‡Amazon Braket

Abstract—Near-term intermediate-scale quantum (NISQ) de-
vices are subject to considerable noise and short coherence time.
Consequently, it is critical to minimize circuit execution latency
and improve fidelity. Traditionally, each basis gate of a transpiled
circuit is decoded into a fixed episode of the device control pulses.
Recent studies investigate the merged pulse generation method
for customized gates through quantum optimal control (QOC).
In this work, we propose PAQOC, a novel QOC framework
that can (i) exploit an augmented program-aware (APA) basis
gate set for the tradeoff between compilation time and circuit
performance, (ii) prune the search space based on a criticality-
centric analytical model and experiment observations we learned
from 150 benchmarks. Evaluations using seventeen applications
show that PAQOC can achieve an average 54% reduction of
the circuit latency, on average 43% reduction in compilation
overhead, and a 1.27× improvement in fidelity. PAQOC is
available on GitHub1.

I. INTRODUCTION

Quantum Computing has garnered considerable attention
due to its potential for enormous computation acceleration.
Quantum algorithms are promising techniques for solving in-
tractable computational problems, such as cryptography [44],
machine learning [7], database search [23], and others [4],
[27], [40]. Google, IBM, Intel, and Rigetti have built a variety
of quantum computers with qubit counts ranging from 5 to
127 [8], [18], [24], [28].

A quantum program is expressed using a gate-level inter-
mediate representation (IR) where a logical circuit consists of
basis gates. To execute it on quantum hardware, it first needs to
be translated into physical circuits and then be compiled into
machine-control pulses as shown in Fig. 1. Machine-control
pulses for generating a single arbitrary gate (unitary) using
quantum optimal control (QOC) [19] have been extensively
studied [2], [15], [29], [31], [38], [47]. In this paper, we focus
on circuit-level pulse generation. The approaches for circuit-
level pulse generation can be categorized into two types.

The first type draws on the fact that every circuit is built
upon a small set of basis gates [37]. It generates machine-
control pulses for each basis gate and stores them in a table.
Then the compiler looks up the table for pulse-generation of
the entire circuit [2], [3], [34]. We refer to this approach as
the fixed-gate approach as it only generates pulses for a fixed
set of universal basis gates. The advantage of this approach is
its low compilation overhead. The disadvantage, however, is

1https://github.com/ruadapt/paqoc

!"#$%&'('&)*+,-.+/)012#1,/

324%&'('&)!,154,1'%6+7721.'5)82-.12&)0+&9'9

32#":,&)8"1:+".)4;)<-"('19,&)=,.'9

0$>9":,&)8"1:+".)4;)

!,154,1'%67':"?":)

@,9"9)=,.'9

01'%:,&"A1,.'5)

82-.12&)0+&9'9)

322B+7)C,A&'

!"#$%&'()$*

(++,-(./

D1'E+'-.)

6+A:"1:+".9)F"-"-#

0$>9":,&)8"1:+".)4;)

010

@,9"9)=,.'9

23,*.34)-5"6$%&

'()$*(++,-(./

728&9(4$%

82-.12&)0+&9'9)

='-'1,.21

8,")".(:");&0<(,$

8+9.2/"G'5)=,.'9)

='-'1,.21

0$>9":,&)8"1:+".),?.'1)F,77"-#;H2+."-#)

Fig. 1. Two different approaches to compile quantum programs to low-
level control pulses. The left one synthesizes high-level quantum circuits
using only fixed hardware-specific basis gates [43]. Our approach on the
right side explores APA-basis gates in circuits and generates criticality-aware
customized gates.

that it usually results in suboptimal circuit performance [9].
This approach is shown in Fig. 1-left.

The second type does not view a circuit as a composition of
universal basis gates. Instead, it views a circuit as a composi-
tion of customized gates. Each customized gate is a group (or a
sequence) of consecutive basis gates, and pulses are generated
for each customized gate. The benefit of this approach is
that it can significantly reduce the latency. The latency of the
pulses generated by QOC does not necessarily increase with
the number of gates in the group as that in the fixed-gate
approach [43]. For instance, generating control pulses for a
sequence of two gates is better than generating pulses for each
and stitching them, as shown in Fig. 2. The latency reduction
benefit has been reported in previous studies [9], [20], [21],
[43]. The disadvantage of this approach, however, is that it
has a high compilation overhead [9], [20], [31]. We refer to
this approach as the customized-gate approach.

Today’s quantum devices continue to be plagued by short

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

773

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
76

52
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
56

54
6.

20
23

.1
00

70
99

0

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

+

110 dt

50 dt

120 dt

Fig. 2. Pulse generation for a group of two gates (consolidated into a single
unitary) is better than that separately for each gate: Hadamard (H) and CX
(CNOT) gates. The latency for the joint unitary is 110 dt (dt is time unit),
while is 170 dt for the separate case.

coherence time. That means quantum machines can only
support a short execution of programs before failing. Latency
reduction can significantly mitigate the decoherence problem
[1], [9], [20], [30], [37], [43]. In this paper, we focus on the
customized-gate approach for latency reduction purposes, with
respect to a given circuit fidelity budget. Our version of the
customized-gate approach is outlined in Fig. 1-right.

In previous studies focusing on the customized gate ap-
proach, Cheng et al. [9] exploit the similarity between cus-
tomized gates and optimize the compilation time by using
a pre-compiled gate as an initial guess to a new similar
gate. Gokhale et al. [20] tackle variational algorithms by
performing partial online and partial offline pulse genera-
tion based on hyperparameter optimization. Shi et al. [43]
apply commutativity-aware instruction aggregation to further
improve pulse generation efficiency.

Compared with prior studies, our main contribution is two-
fold. 1 We propose an augmented program-aware basis
(APA-basis) gate approach. We discover that there are often
recurring patterns in a circuit. A recurring pattern is a subcir-
cuit that frequently appears in a circuit (or different circuits).
An example is shown in Fig. 3. We can replace each frequent
subcircuit as an APA-basis gate to simplify the circuit. Then
we can perform gate grouping and pulse generation. It reduces
the compilation overhead significantly and, in the meantime,
still yields the same or better pulses compared with the state-
of-the-art [9]. Gokale et al. [21] also use augmented basis
gates, but in a hardware-aware way, while ours does it in a
program-aware way.

2 We propose a criticality-based search model for achiev-
ing desired customized gate groups. During the search, we
need to try grouping different sequences of consecutive gates
before determining the best combination. The search space is
large. Considering a dependence graph of n gates that is linear,
if we allow any number of consecutive gates to be grouped,
there are 2n number of ways to group the gates. The reasoning

is that we can break down the sequence at any point in between
two consecutive gates, and there are n locations (omitting the
last one), and we have a binary choice: splitting it or not.

Hence the search space is exponential if enumerating all
gate grouping choices. We develop an analytical model based
on the observation of over 150 benchmarks and based on the
criticality of gates in the circuit. It only allows a monotonic
decrease of the circuit latency at each gate grouping step. A
very simple example is shown in Fig. 4.

We also try to reduce the compilation overhead of pulse
generation for quantum circuits, but in a different way com-
pared with prior approaches. We allow a less restricted search
space. AccQoc [9] exploits the similarity between different
gate sequences to reduce the compilation overhead. However,
due to the similarity comparison, it also has to restrict the
maximum depth of a sequence of gates to a fixed number,
usually 3 to 5. We do not restrict the depth of the sequence
of gates to be merged. Our overhead is also small due to
the analytical model we used in Section III. By doing this, a
relatively less restricted search space gives us a better chance
to find improved circuit pulses with respect to a given fidelity
requirement.

|q0

|q1

|q2

H

H

H

Rz

Rz Rz Rx

Rx

Rx

(a) The original transpiled 3-qubit QAOA circuit.

(b) The 3-qubit QAOA circuit with program-aware recurring patterns.

|q0

|q1

|q2

H

H

H

Rz

Rz Rz Rx

Rx

Rx

P1

P1P1

Fig. 3. The QAOA-maxcut circuit after simplification. Recurring sub-circuits
are identified as APA-basis gates.

Besides these two main contributions, we also have multiple
other contributions: 3 We designed a graph mining model
for automatically searching frequent subcircuits that can be
turned into APA-basis gates, 4 We provide a tuning knob
for the size of APA-basis gate, which allows users to exploit
the recurring pattern in a circuit to some extent, since if too
many gates are grouped in advance, then the search sub-space
is significantly reduced in the criticality-based search, and 5
We can decouple the compilation into the online component
and the offline component, where the offline component can
detect APA-basis gate, even for parameterized circuit. The
online component can generate pulses only for the grouped
gates on the fly. Gokale et al. [20], [21] also divide a circuit
into blocks, but based on which blocks have parameters, not
on whether a sub-circuit block frequently appears.

Overall, we propose a compilation framework that gener-
ates pulses of an entire circuit. We name it as PAQOC, a
Program-Aware QOC-based optimal control pulse generation
framework, as it uses program-aware augmented basis gate and

774Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

(a) Original Circuit

A

C

B

D

(c) Merge A and C

A

C

B

D

(b) Merge A and B

Longer

Critical Path
A

C

B

D

Fig. 4. Different ways to form a 3-qubit customized gate: (a) the original
circuit, (b) merging A and B may elongate the critical path as it creates false
dependence between B and C, and (c) merging A and C does not. The scheme
in (c) is better than that in (b) as it does not increase the critical path. Here
we assume the merged gate latency is smaller than the sum of the individual
gates A and B. Our criticality analysis model is more complex than what is
shown in this example, as shown in Section V-A.

criticality analysis information, as opposed to using hardware-
aware basis gate and other information. PAQOC can achieve
up to 2.17× speedup in circuit latency, with an average 1.75×
compilation speedup and with 1.27X improvement for fidelity
compared to the state-of-the-art.

The rest of the paper is organized as follows: Section II
and III give a background of our work and preliminary obser-
vations. Section IV gives an overview of PAQOC. Section V
describes PAQOC implementation about its key components.
Section VI presents our comprehensive experiment evaluation.
We relate previous works in Section VII and conclude our
work in Section VIII.

II. BACKGROUND

In this section, we provide a brief introduction to gate-
level programming, quantum optimal control (QOC), and our
preliminary observations about customized gates.

A. Gate Level Programming

In quantum computing, an important IR is the gate-level
IR. A quantum algorithm is built upon a universal set of
basis gates. The basis gates in the universal set can be
supported by different hardware vendors, and the low-level
details are hidden from the programmers. A universal gate
set [5] typically consists of one-qubit and two-qubit gates (or
three-qubit gates). For instance, X, SX, CX, ID, and RZ gates
are used for IBM-Q devices [3], [34] and RX, RZ, and CZ are
used for Rigetti devices [36], [46]. A programmer can define
a customized gate based on universal basis gates in QASM
[11], [12]. However, during transpilation, a quantum circuit is
always compiled into machine-dependent basis gates.

A quantum gate performs a unitary transformation on a (set
of) qubit(s). A quantum circuit can be represented as a single
unitary matrix by manipulating the unitaries of the gates in
the circuit. The unitary matrix of a quantum circuit can be
obtained in the following ways: for gates operating on disjoint
qubits, their unitary can be obtained by tensor product, and
for gates operating on the same qubits, their unitary can be
obtained by matrix product [37].

B. Pulse Level Model

The quantum states of quantum hardware are manipulated
by external physical operations, which are system-specific
control fields with a unique and time-dependent quantity called
the Hamiltonian matrix [39], [48], [51]. The Hamiltonian
determines the evolution path of the quantum states. A gate
is translated to a state transfer, which can be interpreted as
a time-evolving process of changing the control field values
at individual time steps. This translation from a gate to the
time-evolving control of machine-level pulses is called pulse
generation.

The combined Hamiltonian for the system can be repre-
sented as follows:

H(t) = H0 +
∑

k
αk(t)Hk (1)

where H0 is the drift Hamiltonian and Hk are the time-
dependent control Hamiltonians [2]. The αk(t) are time-
varying amplitude functions for the specific control fields.

The technique for determining the control fields of an arbi-
trary state transfer is called quantum optimal control (QOC)
[14], [19], [48], which relies on a gradient-based approach
to optimize the control fields and improve the fidelity and
latency of the generated pulses. We use the tool GRadient
Ascent Pulse Engineering (GRAPE) [31] to generate pulses for
a single unitary. An example of generated pulses by GRAPE
is shown in Fig. 2.

Although there are extensive studies on how to generate
pulses for a single unitary, only a few studies [9], [20] focus
on pulse generation for a whole circuit. On one hand, a circuit
can be represented as a single unitary. However, the overhead
grows exponentially with the number of qubits. For example,
generating pulses for a ten-qubit unitary takes over a day even
using GPU-accelerated QOC [31]. Hence, a circuit is usually
further decomposed into multiple unitaries, each of which can
be handled by GRAPE [20], [31]. On the other hand, the
generated control pulses must be optimized. In this paper, we
focus on circuit-level pulse generation.

C. Fidelity

While generating pulses, we need to ensure the fidelity of
the compiled circuit. The QOC tools such as GRAPE requires
as input a given Unitary U and an error term ε such that
| U −H(t) |≤ ε.

The latency of generated pulses is correlated with ε. The
higher ε it is, the lower the latency is. This is, however, the
metric for one grouped gate instead of the entire circuit. To
ensure that we have a metric for the entire circuit, we use the
metric estimated success rate (ESP) such that it is a product
of the success rate of each customized gate:

ESP =
∏

i=1...n

(1− | Ui −Hi(t) |) (2)

n is the number of gates after gate grouping. We ensure our
circuit produces at least the same ESP as the baseline approach
for comparison. In a lot of cases, our ESP is even better. Under
this constraint, we further reduce the circuit latency.

775Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

We also utilize Qutip [26] pulse simulation for the entire
circuit if possible. Our circuit fidelity is also always better or
the same based on the simulation results. We can only perform
pulse simulation for a few benchmarks since the simulation
takes a significant amount of time.

We do not run pulse experiments on real machines. Al-
though the Hamiltonian form [50] can take into account the
error terms, it is prohibitive to perform detailed calibration for
real machines to collect exact error terms [35]. However, the
technique developed in our paper still has its value. Once the
error terms are determined, we only have to update Equation
(1) and apply the same method. Our work along the same line
of research [9], [21], [43] is useful for real machines when
the calibration problem is tackled.

III. KEY INSIGHTS AND OBSERVATIONS

Before going into the implementation details, we talk about
our key insights and observations that lead to the design of
the PAQOC framework. The first one is the APA-basis gate
identification, and the second one is the correlation between
gate latency and gate sizes.

A. APA-basis Gate Identification

We discovered that there are often recurring subcircuits that
frequently in quantum circuits. We can extract these subcir-
cuits and turn them into augmented program-aware (APA)
basis gates to simplify the original circuit.

Programmers can annotate the frequent sub-circuits, but
it adds a programming burden. It may not be trivial since
the physical circuits are different from the logical circuit
that programmers wrote. The physical circuit usually includes
circuit transformation to adapt to a given topology.

To automatically detect frequent sub-circuits, we first con-
struct a labeled directed graph that encloses information from
the original physical circuit. We then exploit the subgraph
mining model [16] to find common sub-circuits.

In our directed graph, each node represents a quantum
gate. Each edge represents that the two quantum gates share
one qubit. There is a direction based on the dependence
relationship of two gates. Each node is labeled with the name
of the quantum operator. For rotation operations such as the
phase shift gate Rz , the rotation degrees are included in the
gate label symbolically to handle parameterized circuits. Each
edge is labeled to indicate whether the control qubit or target
qubit is shared between the two gates if at least one of the two
gates is the two-qubit gate. For example, in Fig. 5(c), the edge
label between the leading CX and Rz gates is ”2-1” indicating
that the sharing qubit is the CX gate’s target qubit and the Rz

gate’s first qubit.
Two subcircuits that are identical imply the number of

nodes, the node connectivity, and the labeling information in
two sub-graphs is all equivalent. The example in Fig. 5 shows
how to convert a physical quantum circuit to a labeled graph
for graph mining and how to disambiguate similar but not
identical sub-circuits using our proposed edge labels.

In practice, different frequent subcircuits may be overlap-
ping. For example, the two kinds of frequent subcircuits in
Fig. 5(c) are overlapped. We consider which frequent sub-
circuits to use based on its coverage of the circuit, i.e., how
many original gates in total are covered by them.

(a) The original logical quantum circuit

(b) Native representation of the quantum circuit as a DAG

|q0

|q1

|q2

Rz

RzRz

CX

0, 1

CX

0, 1
Rz 1 CX

2, 1

CX

1, 2

CX

1, 2
Rz 2

CX

0, 2

Rz 2

(c) Relabeled directed graph with mining result

Rz

CX CX

Rz

CX CX CX
1 - 1

2 - 1 1 - 2

2 - 2 1 - 1

2 - 1

1 - 2

2 - 2

1 - 1

CX

Rz

2 - 1

1 - 1

1 - 2

(d) The simplified circuit

with APA-basis gates

|q0

|q1

|q2
Rz

G0 G0

0

1

2

2

1

0

Fig. 5. Converting a physical quantum circuit to a labeled directed graph.
Each node is labeled with the name of the quantum operation and rotation
angle if needed. Each edge implies how two quantum gates are connected.
The two circuit blocks in (b) are not identical despite they look similar. Our
method can correctly identify it due to the control-target labeling of edges in
our method.

B. Correlations between Gate Latency and Gate Size

We also discover the correlation between merged gate
latency and gate sizes which can be useful for pruning the
search space using an analytical model.

We run experiments on 150 real-world benchmarks from
RevLib and ScaffCC [3], [22], [25], [49]. We extract subcir-
cuits from them. Each subcircuit is a maximum consecutive
sequence of 1-qubit, 2-qubit, or 3-qubit gates sharing the same
qubit(s). We compare two values: (1) Latency of the generated
pulse for the subcircuit as a group, and (2) The summation of
the latencies for each gate in the group. We show them as
Y-axis and X-axis values in Fig. 6.

As can be seen, the merged gate latency is always smaller
than the summation of individual gate latencies. The dashed
line shows when X-axis and Y-axis values are equivalent.
All points fall below the dashed line. This means that if we
evaluate the local effect of universal basis gate merging, it is
always beneficial. In hindsight, it echoes the claims in previous
studies [9], [43] for supporting consecutive gate grouping, but
it is the first time being validated by extensive experiments.

We make the following observations and assumptions based
on the information of these 150 benchmarks. We let NQ(X)
represent the number of qubits in the gate sequence X, L(M)
represent the latency of the merged gate sequence M.

Observation 1: For two quantum gates X and Y that
NQ(X) = NQ(Y) and their corresponding merged cus-
tomized gate XY , we usually have L(XY) ≤ L(X)+L(Y).

We also observe that the latency for the majority of the
merge gates with a bigger qubit count, it is larger than that
with a smaller qubit count. For instance, according to Fig. 6,

776Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

most two-qubit merged gate sequences have a latency larger
than those of single-qubit gates. This holds for the comparison
between two- and three-qubit gates.

Observation 2: For two gate sequences X and Y, we observe
that L(X) ≥ L(Y) if |NQ(X)| ≥ |NQ(Y)|, for most cases.

Fig. 6. Comparing the original and the merged latency of subcircuits from
real benchmarks with up-to three qubits. The more transparent of the marker,
the more gates in the subcircuit. The black dotted curve represents X and Y
values being the same.

We leverage observations 1 and 2 during our compilation
optimization step in Section V-A. For a lot of cases, we can
estimate whether merging a gate sequence is beneficial or
not, without having to actually generating pulses first. We
use criticality information together with observations 1 and 2.
Therefore we can reduce compilation overhead significantly
without sacrificing the generated pulse quality.

IV. PAQOC OVERVIEW

The core of PAQOC is an iterative combinatorial search
engine applied to a (pre-)processed circuit. The frequent
subcircuits mining component of PAQOC allows us to extract
frequent subcircuits and then convert them into APA-basis
gates. The criticality-aware customized gates generator works
hand in hand with the control pulse generator to iteratively
update the decomposition of the circuit until the circuit-level
pulses cannot be further improved (or with respect to a target
goal). Fig. 7 provides a high-level overview of PAQOC.

PAQOC takes as input the following: a physical quan-
tum circuit, Hamiltonian-level pulse information of a given
hardware, and the maximal number of qubits allowed in
a customized gate. It outputs a new circuit consisting of
customized gates with corresponding gate grouping. It also
outputs the generated pulses.

a) Frequent Subcircuits Miner: PAQOC extracts frequent
subcircuits from the input physical circuit. The PAQOC fre-
quent subcircuits miner is used for finding such frequent
subcircuits. With the identified frequent subcircuits, PAQOC
replaces each with an APA-basis gate, thus reducing the
number of gates compared with the original circuit.

b) Criticality-Aware Customized Gates Generator: After
the simplified circuit is generated, it generates a set of candi-
date customized gate grouping choices and then ranks them.
The ranking is performed by our analytical model in Section
V. The top-ranked gate sequences are merged at each iteration.
PAQOC ensures that each step of merging only decreases the
overall latency.

c) Control Pulses Generator: This component works
together with the Customized Gates Generator. During the
ranking step, we need to check whether a candidate cus-
tomized gate is beneficial by trying to generate pulses to get
the actual latency. We only need to generate actual pulses
for some cases, as aforementioned. For other scenarios, we
leverage the observations in Section III.

V. PAQOC IMPLEMENTATION

We now describe the implementation of PAQOC. Since we
have already described how to identify the frequent subcircuits.
We focus on the customized gates generator and the QOC-
based control pulses generator.

A. Customized Gates Generator

In this component, PAQOC constructs customized gates
as units for pulse generation. It takes an input circuit as a
physical circuit. It generates customized gates as groups of
consecutive basis gates. At each iteration, PAQOC chooses
and ranks the gate sequences as merging candidates. It assigns
each candidate a score and chooses the top candidate(s) with
the highest score(s). It then merges the gates in the selected
candidate sets and updates the circuit. These steps repeat until
no more gate-merging can improve the latency of the entire
circuit.

In the following of this section, we discuss our criticality-
aware search space prune strategies and ranking heuristics. In
Algorithm 1, we show the pseudo-code of the entire process.

1) Search Space Prune Strategies: Any sequence of con-
secutive gates in the quantum circuit can form a customized
gate. It leads to a large search space for determining which cus-
tomized gates to construct. It is prohibitive to evaluate each of
these candidate groupings. In PAQOC, we introduce criticality-
aware pruning strategies that effectively reduce the search
space while not hurting the circuit-level pulse efficiency.

First, we perform a hierarchical grouping search. At each
level of the search, we start with considering the candidates
of the two-gate grouping. The multi-level search could enable
the merging of multiple gates. An example of only allowing
two-gate grouping is shown in Fig. 8 (b).

The search space can be pruned by pre-processing based
on Observation 1. The gates that share the same qubit(s), if
merged, are typically beneficial. For instance, the gates A, B,
and C in Fig. 8 can be pre-processed to (ABC) as a merged
gate. After pre-processing, the search space is reduced.

The search space can be further pruned by performing a
criticality-aware analysis. It is important that we only perform
gate-merging that leads to a shorter critical path. We categorize
the gates into two types: (1) The gates on the critical path and

777Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

Generate Candidate

Customized Gates

Criticality-Aware

Customized

Gates Generator

Search Space

Pruning

R
e

p
e

a
t

u
n

ti
l

n
o

 n
e

w
 c

u
st

o
m

iz
e

d

g
a

te
s

a
re

 g
e

n
e

ra
te

d
.

Generate High-Ranked

Customized Gates

Ranking Candidate

Customized Gates

Update the Circuit

Ranking

Heuristics

Optimized Control

Pulses Lookup Table

Calculate

Operator’s Unitary

Return Optimized

Control Pulses

Generate Optimized

Control Pulses

Store the Pulse in

the Lookup Table

Get the Pulse of the

Most Similar Unitary

QOC-based Control

Pulses Generator

Mine Frequent

Subgraphs in the Graph

Frequent Subcircuits Miner

Convert the Quantum

Circuit to the Graph

Convert Frequent

Subgraphs to Subcircuits

Merge Subcircuits and

Generate New Circuit

R
e

p
e

a
t

u
n

ti
l

n
o

 f
re

q
u

e
n

t

su
b

g
ra

p
h

s
a

re
 f

o
u

n
d

.

Logical Quantum Circuit

High-level

Quantum Program

Lo
w

-l
e

v
e

l
H

a
rd

w
a

re
-

S
u

p
p

o
rt

e
d

 C
o

n
tr

o
l

P
u

ls
e

s

Fig. 7. Overview of our PAQOC pulse generation framework.

Algorithm 1 Generate customized gates for a quantum circuit
Require: Original Quantum Circuit(QC)
Require: Control Pulses Generator(PG)
Require: Maximum Allowed Subcircuit Size(maxN)
Require: Number of Generated Customized Gates at Each Iteration(topK)
Ensure: A latency optimized quantum circuit

1: while True do
2: C = preprocess prune(QC.get two gate candidates(maxN))
3: if C is empty then return
4: all_scores = []
5: for gates in C do
6: gate = get customized gates(QC, gates)
7: if NQ(gate) > maxN then
8: continue
9: score ← get ranking(gate, PG)

10: all_scores.append([score, gate])
11: if all_scores is empty then
12: break
13: sort all_scores in the decreasing order
14: for i in range(topK) do
15: customized_gate = all_scores[i].second
16: if customized_gate is no longer valid then
17: continue
18: PG.calculate optimal control pulse(customized_gate)
19: Update QC, replace gates by customized_gate

(2) the gates not on the critical path. There are three scenarios
when it comes to merging gates

• Case I: Both gates are on the critical path.
• Case II: Only one gate of the two is on the critical path.
• Case III: Neither gate is on the critical path.
First, for Case III, merging two gates that are not on the

critical path does not affect the overall latency of the circuit as
a whole. It, at most, reduces the length of the non-critical paths
but does not reduce the length of the critical path. In Fig. 9-(d),
we show such a case where gate A and B are on the critical
path, while C and C’ are not. Even though merging C and
C’ will be faster for only two gates C and C’, it is actually

(a) Original Circuit

A

B

C

E

D

G

F

H

(b) Original (c) Pre-process (d) Prune

(! ")

(! ")

(! ",# $ %)

(# $ %)

(# $ %)

(! ", & ')

(! ")

(! ",# $ %)

$ %

(! ", & ')

(& ')

(, !)

(!, ")

(",#)

(#, $)

($,%)

(", &)

(&, ')

Fig. 8. Candidate space search: (a) Original circuit; (b) All candidates for
merging two gates; (c) Pruned candidate set by pre-processing; (d) Further
pruned candidate sets via criticality-analysis. The red dashed line shows the
critical path before the gate merging.

not beneficial to the entire circuit. It may even adversely affect
the circuit due to the created false dependencies. Hence, in our
pruning, gate-merging that only involves non-critical gates is
not considered. In Fig. 8, candidate (E,F) is pruned since
neither E nor F is on the critical path.

Next, after pruning the candidates not involving critical
gates, we only have to consider Case I and Case II. We only
rank the candidates involving at least one critical gate.

Before describing Case I and Case II, we first describe
our notations. We use XY to represent the customized gate
constructed by merging gate X and gate Y. We let L(X) be
the latency of gate X. We let CP (X) represent the longest
path from gate X to the end of the circuit.

We discuss case II first. For Case II, one gate is on the
critical path, and the other is not. Assuming in this set of two
gates, A is the one on the critical path, C is its successor, and C
is not on the critical path. C must not depend on any successor
of A, otherwise merging A and C will be an invalid choice
for ranking. Merging A and C could cause false dependence
that may or may not elongate the critical path. To model this,

778Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

we assume B is the immediate successor of A on the critical
path. An illustration of this case is shown in Fig. 9 (c). Now
the circuit latency for comparison is the three:

• L(A) + L(B) + CP(B) // the not-merging case
• L(AC) + L(B) + CP(B) // the merging case with one

possible critical path
• L(AC) + CP(C) // the merging case with another possible

critical path
To find the maximum of the last two items, we only need

to compare L(B) + CP (B) with L(C). Since A and B are
on the critical path, it implies that L(B) + CP(B) > CP(C).
Then we compare the first item and the second item to see if
merging is beneficial. We need to perform the merging of A
and C to get L(AC) in order to test if it will be beneficial.

!"#$%&'(')"*$+,-,)+,).,$/01$

!2&'3'."*$4"35$')$6,+#

0

7

2

24!7#

24!2#

0

7

2 28

24!7#

24!28#

!+#$2"9,$:::;$<,'35,&$("3,$

'9$=)$35,$.&'3'."*$-"35

0
7

2

24!7#

24!2#

!>#$2"9,$:;$7=35$("3,9$"&,$=)$

35,$.&'3'."*$-"35

7

0
2

24!7#

24!2#

!.#$2"9,$::;$%),$("3,$'9$=)$35,$

.&'3'."*$-"35$")+$35,$=35,&$'9$)=3

Fig. 9. A simplified example shows how the critical path changes by merging
different gates. Each node in the DAG is a quantum gate. The (dotted) edge
represents the (potential) dependence between gates.

For Case I where we only merge two gates on the critical
path, assuming the two gates are A and B. Assuming A’s
immediate successor that is not on the critical path is C. The
updated critical path of the entire circuit is the maximum of
the following (also illustrated in Fig. 9-b):

• L(A) + L(B) + CP (B)
• L(AB) + CP (B)
• L(AB) + L(C) + CP (C)

Now it is not immediately clear whether the merging is
beneficial. The delta compared with the original critical path
is either L(AB)−L(A)−L(B) or L(AB)−L(A)+L(C)−
L(B) + CP (C) − CP (B). As L(AB) is the common term,
to compare these two, we only need the information on the
latency of the current updated circuit. Again we can use
observation 2, if AB uses more qubits than the maximum of A
or B, the L(AB) must be the dominant factor. We approximate
AB with the average gate latency of that size to check whether
merging is beneficial. If AB uses the same number of qubits
as the maximum of A or B, we use observation 1 to compare
the first item and the second item. In either case, we do not
have to generate pulses for merging A and B to test if the
merging is beneficial.

2) Ranking Heuristic: For each merging option, we give
it a score that is the delta between the original whole-circuit
latency and the updated circuit latency, assuming the merging
takes effect. We choose the top-k (disjoint) options and merge
gates correspondingly. The parameter k controls the number
of newly generated customized gates at each iteration. With
a larger k, more customized gates being generated in one
iteration, this may result in a less optimized final latency,
as each merging might change the critical path of the entire
circuit again.

B. Optimal Control Pulses Generation

To generate pulses for a customized gate, we use quantum
optimal control (QOC) similar to that in previous studies
[9], [20]. It calculates the minimum duration of the control
pulses of a customized gate by binary search. GRAPE [31] is
the state-of-the-art tool for quantum optimal control. We use
GRAPE to achieve this.

PAQOC uses a lookup table to store previously generated
control pulses for different customized gates. For customized
gates that frequently appear in the circuit, we only need to
generate the optimal control pulse once. Moreover, for the
same customized gate with permuted qubits, it will also be
detected in PAQOC. For a customized gate that has a similar
unitary to that of a previously generated customized gate, we
use the previous gate’s pulses as the initial guess to GRAPE,
as GRAPE requires an initial guess of the pulse sequence, and
a closer pulse sequence will reduce the convergence time and
speedup pulse generation. This is similar to AccQOC [9].

C. Putting Everything Together: Exploiting the Tradeoff

When using PAQOC, users can specify the maximal size
of the APA-basis gates. Moreover, users can specify whether
the frequent subcircuits miner component and the customized
gates generator component be enabled for exploring the trade-
off between the compilation overhead and the circuit latency.

With the use of the frequent subcircuits miner and a
specified size of the APA-basis gate, it simplifies the circuit by
converting frequent subcircuits into APA-basis gates. This will
reduce the search space for the later customized gate grouping
thus achieving less compilation overhead.

Note that we can disable the customized gates generator
completely to construct a simplified circuit with only APA-
(and potentially universal) basis gates. Our APA-basis gate
sets are chosen in a way that it will guarantee not to increase
the critical path based on our observations in Section III-B.

VI. EVALUATION

In this section, we present the evaluation results of our
proposed PAQOC framework. We begin with a broad analysis
of 17 benchmarks in terms of circuit latency and circuit
compilation overhead. Then, we select five representative
benchmarks to demonstrate the frequent subcircuits miner’s
performance and discuss the tradeoff between circuit latency
and compilation overhead.

779Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OVERVIEW OF APPLICATION BENCHMARKS

Name Description # 1q-gate 2q-gate
qubits number number

mod5d2 64 Toffoli network 16 28 25
rd32 270 Bit adder 5 48 36

decod24-v1 41 Binary decoder 5 47 38
4gt10-v1 81 4 greater than 10 5 82 66
cnt3-5 179 Ternary counter 16 90 85
hwb4 49 Hidden weighted bit 5 126 107
ham7 104 Hamming code 16 171 149

majority 239 Majority function 16 345 267
bv Bernstein Vezirani 21 43 20

adder Cuccaro Adder 18 160 107
qft QFT 16 16 120

qaoa QAOA 10 65 90
supre Supremacy 25 245 100
simon SImon’s algorithm 6 14 16

qpe QPE 9 28 33
dnn Deep neural network 8 192 1008
bb84 Crypto. proto 8 27 0

a) Benchmarks: We select seventeen representative
benchmarks from existing quantum programs libraries, includ-
ing RevLib [49], ScaffCC [25] and Qiskit [3] that are used in
previous studies [9], [52], [54]. These benchmarks cover im-
portant quantum applications, including quantum bit decoder,
Toffoli network synthesis, and quantum fourier transformation.
The selected benchmarks have a range of qubit numbers from
5 to 25 and have up to 1200 gates. These input quantum
circuits are built upon universal basis gates. We provide the
information of these benchmarks in Table I.

b) Baseline: We use the state-of-the-art approach Acc-
QOC [9] as our baseline. AccQOC divides the quantum circuit
into small fixed-size subcircuits. In particular, AccQOC allows
a maximum of two qubits in each customized gate, and each
customized gate must have a fixed depth. To ensure a fair
comparison, we use an extended version of AccQOC that
supports customized gates with a maximum of three qubits.
We use two variants of the extended AccQOC in which the
depth of each fixed-size subcircuit is set to three and five. We
refer to the two versions as accqoc n3d3 for three-qubit group
size and a depth of five and accqoc n3d5 for three-qubit group
size and a depth of five, respectively.

c) Platform: We perform simulation based on the super-
conducting architecture with XY interaction. We use a 5x5
grid topology with Sabre [32] qubit routing and mapping
heuristic. We apply the same setup that has been used in the
baseline [9], and other optimal control pulse generation studies
[20], [43]. We assume that the control fields of all two-qubit
interactions and single-qubit rotation are identical. The control
field limitation of the XY interaction is set to µmax = 0.02GHz
and the single qubit rotation control field is set to 5µmax.

We limit the maximum qubit number of any APA-basis
gate or customized gate, maxN , to 3 in this experiment.
In practice, PAQOC can accept any number of maxN . The
maximum number of the additional APA-basis gates allowed
in the circuit, M , is also taken as an input to PAQOC. M is
the size of the set of APA-basis gates that are different from

the universal basis gates. By using different values of M , we
can explore the tradeoff between the circuit latency and the
compilation overhead.

In particular, we provide three versions of our PAQOC
framework with a different numbers of APA-basis gates (M)
allowed to merge in the circuit:

1) paqoc(M = 0) It assumes the gate count in each
frequent subcircuit is one and thus does not add any
additional APA-basis gate. This can be considered as
a special version of PAQOC with only the customized
gates generator being enabled.

2) paqoc(M = inf) sets no limit on M, thus considers all
frequent subcircuits found by the frequent subcircuits
miner as APA-basis gates (any gate sequence that ap-
pears more than twice).

3) paqoc(M = tuned) tunes the value of M, it selects the
smallest M makes the APA-basis gates the majority in
the circuits 2.

d) Control Pulses Generator Setup: We use GRAPE [31]
to generate the optimal control pulses for APA-basis gates and
customized gates. In GRAPE, the total time of the control
pulses of the quantum gate is specified as a static parameter
total time. GRAPE requires the target unitary matrix of the
quantum gate, together with the gate fidelity as the input
parameters. We set the fidelity as high as possible such that
it ensures that the whole circuit ESP is no worse than that
of the baseline. GRAPE allows the user to select different
optimization methods for evaluating the gradient, and we
choose ADAM as our optimization method for generating
the control pulses. We simulate the control pulse under the
assumption of using a transmon superconducting architecture
as the underlying hardware, which has been used in previous
works [20], [43] and our baseline [9].

A. Impact on Overall Latency

In Fig. 10, we show the overall circuit latency reduction
of PAQOC compared with two AccQOC methods normalized
to the baseline accqoc n3d3. The latency of paqoc(M=0)
achieves the most significant reduction with an average of
54% latency while paqoc(M=inf) achieves a minor improve-
ment with an average of 40% reduction. The improve-
ment of paqoc(M=inf) is smaller than paqoc(M=0) because
paqoc(M=inf) uses the APA-basis gates and the usage of APA-
basis gates excludes specific ways to group the consecutive
gates. However, paqoc(M=inf) reduces the compilation time,
as will be discussed in the next section.

Further, this set of experiments also demonstrates that
depth-limited customized gates generation yields less desired
performance. One of the issues is that a fixed depth may not fit
all benchmarks. For the two AccQOC methods, accqoc n3d5
with depth 5 for most of the time give a smaller latency than
accqoc n3d3 with depth three as it merges more gates in a
customized gate. However, for qaoa and supre, accqoc n3d3

2The majority here means the total count of APA-basis gate use is larger
than the total count of original basis gate use in the circuit.

780Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 10. The normalized circuit latency reduction for 17 benchmarks.

Fig. 11. The normalized circuit compilation time reduction for 17 benchmarks.

Fig. 12. The normalized ESP improvement for 17 benchmarks.

has a smaller latency as the depth of a frequent subcircuit 3,
and by setting depth to 3, it happens to find the frequent sub-
circuit which implies the desired gate merging. For instance,
in Fig. 13, we show a part of the qaoa benchmark and show
how two methods partition into customized gates. As we can
see, accqoc n3d3 divides the circuit into two CPHASE gates
which benefits the performance, but accqoc n3d5 does not.
With PAQOC, we can automatically detect the CPHASE gates
using our frequent subcircuits miner without setting the depth

parameter, which will be discussed in detail in Section VI-F.

B. Impact on Circuit Compilation Time

The comparison of the overall circuit compilation time is
shown in Fig. 11, which is normalized to accqoc n3d3. The
most time-consuming part of PAQOC is the step of generating
optimized control pulses, which contributes to an on-average
95% of the overall compilation time. For those APA-basis
gates, the corresponding optimized control pulses only need
to be calculated once and can reduce the overall compilation

781Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

(a) accqoc_n3d3

Rz Rz Rz Rz

(b) accqoc_n3d5

Fig. 13. Different gate grouping results from depth-limited AccQOC ap-
proaches: (a) Depth-3 limit happens to discover the CPHASE gate pattern,
and (b) Depth-5 however does not.

overhead. Thus paqoc(M=inf) has a smaller compilation over-
head than paqoc(M=0) and has a much smaller compilation
overhead compared with the two accqoc baselines. In the
meantime, it achieves much better circuit latency than Acc-
QOC.

Moreover, the trade-off between the circuit latency reduc-
tion and the compilation time reduction is well-considered
in paqoc(M=tuned). Using paqoc(M=tuned) can achieve a
relatively better latency than paqoc(M=inf) and a faster com-
pilation time than paqoc(M=0). In the meantime, its latency
is comparable to that of paqoc(M=inf). It takes advantage
of both the frequent sub-circuits miner and the critical-aware
customized gates generator.

C. Impact on Circuit ESP

In Fig. 12, we show the improvement 3 of the circuit
ESP of PAQOC compared with the AccQOC methods nor-
malized to the baseline accqoc n3d3. The circuit ESP is the
product of the success rate of each customized gate using
the fidelity reported by GRAPE as described in Eq. 2. For
all benchmarks, paqoc(M=0) obtains the best ESP with an
average 27% improvement compared with the baseline, and
paqoc(M=tuned) is not bad either while maintaining a small
compilation overhead.

D. Scalability of PAQOC

In Fig. 14, we show the scalability of paqoc(M=inf) with
respect to the number of APA-basis gates in the transpiled
circuit. The blue dashed linear regression line is calculated
based on the results of all benchmarks. The compilation time
of PAQOC scales well (almost linearly) with respect to the
number of gates in the circuit, it takes less than an hour
to compile a circuit with around 2,000 gates. paqoc shows
a similar trend as generating the optimized control pulses
dominates the compilation overhead. Moreover, the frequent
subcircuit miner simplifies the circuits and further reduces the
compilation overhead.

Note that the maximal compilation time of PAQOC for
almost 1,200 gates is < 25 minutes (majority 239). Every
25 minutes PAQOC can make a recompilation, which is much
less frequent than the daily calibration frequency of today’s
quantum computers. If the error terms in Hamiltonian can be

3The value of those out-of-scale bars are listed next to the bar in the order
of the labels in the legend

calibrated quickly, our method will be readily deployable on
the machines to account for real errors.

Fig. 14. paqoc(M=inf) circuit compilation time

E. Fidelity Improvements Shown by Pulse Simulation

Table II shows fidelity improvement using PAQOC, com-
pared with AccQOC. We use Qutip [26] pulse simulator
to calculate the fidelity of the generated pulse circuit. For
all benchmarks, our method run with the best fidelity. The
fidelity improvements come from the shorter control pulses
generated by PAQOC and our criticality-aware customized
gates generation method.

TABLE II
THE QUALITY OF EXECUTION, LARGER IS BETTER.

accqoc accqoc paqoc paqoc paqoc
n3d3 n3d5 (M=0) (M=tuned) (M=inf)

4gt10* 29.75% 18.09% 29.49% 35.24% 34.85%
decod24 8.73% 6.03% 35.32% 30.93% 29.13%
hwb4 49 7.32% 14.59% 16.54% 7.20% 4.57%
rd32 270 20.99% 2.16% 35.34% 36.31% 8.29%

bb84 2.25% 2.24% 7.12% 4.04% 2.84%
simon 6.07% 7.61% 9.31% 10.11% 7.47%

F. APA-Basis Gates Generation

PAQOC’s frequent subcircuits miner generates the APA-
basis gate set, which can be further used to simplify the
original circuits. We show the frequent subcircuits found by
PAQOC. Due to the space limit, we only show the frequent
subcircuit for five benchmarks. These five benchmarks are
Bernstein Vezirani [6] (bv), Cuccaro Adder [13] (adder),
Quantum Fourier Transform [10] (qft), Quantum Approxima-
tion Optimization Algorithm [17] (qaoa) and the Supremacy
algorithm used in [4] (supre). We only showcase the most
frequent and second most frequent subcircuits in Table III4

For bv, the major component of the circuit is its oracle
which consists of a linear sequence of CX gates and the
DAG of the CX gates follows a linear pattern [6]. As today’s

4Due to limited space, the Toffoli gate represents the combination of
multiple single- and two-qubit universal gates.

782Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

!" #$$%& '()&%*+,- ./0 .#1#

!"#$%&'()*(+$%

,*-./'.*/$

0%"..*''(+.(12 3 43 51 67

,(."+8%9"#$%

&'()*(+$%

,*-./'.*/$

0%"..*''(+.(1: 3 43 :7 17

!

! !

!

!

!

!"!! # $%& '
!

! !

!

! !

!

! !

!

!

! !

!

!"!! # $%& !"# $% %!"# $%&'

TABLE III
THE MOST AND THE SECOND MOST FREQUENT SUBCIRCUITS FOUND BY PAQOC.

superconducting architectures have sparse connectivity, SWAP
gates are inserted [3], [32], [55]. At the low-level representa-
tion of the circuit, PAQOC finds that three concatenated CX
gates form the most frequent subcircuit, which happens to be
a SWAP gate in the high-level representation of the circuit.
Aside from that, PAQOC finds the second most frequently
occurring pattern is the three concatenated CX gates on the
same two qubits plus one CX gate with a target on a third
qubit. This is because SWAPs are performed to enable the
original CX gates in bv in the circuit.

For adder, PAQOC also finds the most frequent and sec-
ond most frequent subcircuits. We discovered that the most
frequent subcircuit matches the majority gate (MAJ), and
the second most frequent subcircuit matches a part of the
”unmajority and add” gate (UMA) [13], according to the
literature on the quantum adder algorithm. In hindsight, UMA
and MAJ are the main components of a one-bit adder, which
are the building blocks of a general adder. PAQOC is able
to find them automatically, which further demonstrates the
effectiveness of PAQOC in finding frequent subcircuits as the
basis of the APA-gate set.

For supre, it starts and ends with a Hadamard (H) gate on
each qubit and arranges nearest neighbor controlled-Z (CZ)
gates in a repeated pattern [4]. One-qubit

√
X ,
√
Y and T

gates are randomly interspersed between CZ gates. Thus the
frequent subcircuits mined in supre depend on the input circuit.

For qft, the circuit has a pattern of a leading H gate followed
by a controlled-U1 (CU1) gate between each pair of qubits.
As QFT requires more communication between qubits, SWAP
gates are added. Again, PAQOC detects SWAP gates as the
most frequent pattern, and an H gate applying on the target
qubit of a CU1 gate as the second most frequent subcircuit.

For qaoa, the circuit has a pattern of the CPHASE gate
[17]. The CPHASE gate is usually a non-native gate for most
hardware [3], [42]. One possible decomposition of a CPHASE
gate consists of two CX gates and one Rz rotation gate
between [1]. Again, PAQOC is able to extract the CPHASE

gate as a very frequent subcircuit automatically.

VII. RELATED WORK

Quantum computing’s traditional gate-based workflow has
been extensively studied. Techniques for optimizing the com-
piler front-end and the hardware mapping problem have been
proposed [32], [35], [45], [52], [53].

Recent research has discovered that even with GPU accel-
eration, using QOC to generate the optimal control pulses for
circuits with a large number of qubits still has a significant
overhead [9], [20], [31]. Gokhale et al. [20] applies QOC for
a specific type of quantum algorithms that have an iterative na-
ture, such as VQE [33], [41] and QAOA [17]. These programs
are executed iteratively while between different iterations, the
parameters of these variational gates (rotation angles) are
determined by the previous iteration and the remaining non-
parameterized gates are unchanged. To reduce the compilation
time, the authors use precomputation to obtain the hyperpa-
rameters for QOC calculation. This strategy, however, does not
work for non-variational quantum algorithms in general.

Shi et al. [43] proposed CLS that increases flexibility in
pulse generation with the help of commutativity. Their work
is orthogonal to ours. Our framework can also take commu-
tativity into account and further improve circuit performance,
which is left as future work.

A more recent study proposed by Cheng et al. [9] called
AccQOC reduces the compilation overhead. AccQOC divides
the circuit into small, fixed-size subcircuits. They keep the
subcircuit size to two qubits and create a pulse database for
sub-circuits where pulses have already been generated. They
use a similarity graph based on the distance between different
subcircuits of fixed sizes, and also not in the database. Then,
the MST of the similarity graph is used to determine the
construction order of the corresponding control pulses for
these subcircuits to further reduce the compilation time.

Gokhale et al. [21] use an augmented basis gate set that adds
flexibility and exploits low-level optimizations for quantum
programs. Their augmented basis gates are based on specific

783Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

hardware, not based on quantum applications. And they do not
consider merging gates to improve circuit performance. Rather
they use the fixed-gate approach, just with more hardware
basis gates.

Compared with these recent works, our proposed PAQOC
framework provides a better exploration of different ways
to construct customized gates. Additionally, by extracting
program-aware basis gates, PAQOC is able to further reduce
the compilation overhead while in meantime improving circuit
pulse performance.

VIII. CONCLUSION

In this paper, we propose PAQOC, a pulse optimization
framework that transforms general physical circuits into low-
level control pulses using Quantum Optimal Control (QOC)
technique. PAQOC extracts frequent subcircuits in the quan-
tum circuit to build an APA basis gate set. Moreover, PAQOC
constructs a lightweight criticality-aware customized gate
grouping strategy to reduce the pulse generation overhead
and improve circuit performance. PAQOC consists of three
components: a frequent subcircuits miner, a customized gates
generator, and a pulse database. Compared with the state-of-
the baseline, PAQOC achieves up to 2.17X speedup in latency
and an average of 1.75X compilation overhead.

IX. ACKNOWLEDGEMENT

This work is supported by Rutgers Research Council grant
and NSF-CCF-2129872. This work is also supported by the
U.S. Department of Energy, Office of Science, National Quan-
tum Information Science Research Centers, Co-design Center
for Quantum Advantage (C2QA) under contract number DE-
SC0012704. Any opinions, findings, conclusions, or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of our sponsors.

REFERENCES

[1] M. Alam, A. Ash-Saki, and S. Ghosh, “Circuit compilation method-
ologies for quantum approximate optimization algorithm,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 215–228.

[2] T. Alexander, N. Kanazawa, D. J. Egger, L. Capelluto, C. J. Wood,
A. Javadi-Abhari, and D. C. McKay, “Qiskit pulse: programming
quantum computers through the cloud with pulses,” Quantum Science
and Technology, vol. 5, no. 4, p. 044006, 2020.

[3] M. S. ANIS, H. Abraham, AduOffei, R. Agarwal, G. Agliardi, M. Aha-
roni, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, M. Amy,
S. Anagolum, E. Arbel, A. Asfaw, A. Athalye, A. Avkhadiev, C. Azaus-
tre, P. BHOLE, A. Banerjee, S. Banerjee, W. Bang, A. Bansal, P. Bark-
outsos, A. Barnawal, G. Barron, G. S. Barron, L. Bello, Y. Ben-Haim,
M. C. Bennett, D. Bevenius, D. Bhatnagar, A. Bhobe, P. Bianchini, L. S.
Bishop, C. Blank, S. Bolos, S. Bopardikar, S. Bosch, S. Brandhofer,
Brandon, S. Bravyi, N. Bronn, Bryce-Fuller, D. Bucher, A. Burov,
F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal, A. Carriker,
I. Carvalho, A. Chen, C.-F. Chen, E. Chen, J. C. Chen, R. Chen,
F. Chevallier, K. Chinda, R. Cholarajan, J. M. Chow, S. Churchill,
CisterMoke, C. Claus, C. Clauss, C. Clothier, R. Cocking, R. Cocuzzo,
J. Connor, F. Correa, A. J. Cross, A. W. Cross, S. Cross, J. Cruz-
Benito, C. Culver, A. D. Córcoles-Gonzales, N. D, S. Dague, T. E.
Dandachi, A. N. Dangwal, J. Daniel, M. Daniels, M. Dartiailh, A. R.
Davila, F. Debouni, A. Dekusar, A. Deshmukh, M. Deshpande, D. Ding,
J. Doi, E. M. Dow, E. Drechsler, E. Dumitrescu, K. Dumon, I. Du-
ran, K. EL-Safty, E. Eastman, G. Eberle, A. Ebrahimi, P. Eendebak,
D. Egger, ElePT, Emilio, A. Espiricueta, M. Everitt, D. Facoetti, Farida,

P. M. Fernández, S. Ferracin, D. Ferrari, A. H. Ferrera, R. Fouilland,
A. Frisch, A. Fuhrer, B. Fuller, M. GEORGE, J. Gacon, B. G. Gago,
C. Gambella, J. M. Gambetta, A. Gammanpila, L. Garcia, T. Garg,
S. Garion, J. Garrison, T. Gates, L. Gil, A. Gilliam, A. Giridharan,
J. Gomez-Mosquera, Gonzalo, S. de la Puente González, J. Gorzinski,
I. Gould, D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, H. Gupta,
N. Gupta, J. M. Günther, M. Haglund, I. Haide, I. Hamamura, O. C.
Hamido, F. Harkins, K. Hartman, A. Hasan, V. Havlicek, J. Hellmers,
Ł. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, J. Huang,
R. Huisman, H. Imai, T. Imamichi, K. Ishizaki, Ishwor, R. Iten, T. Itoko,
A. Ivrii, A. Javadi, A. Javadi-Abhari, W. Javed, Q. Jianhua, M. Jivrajani,
K. Johns, S. Johnstun, Jonathan-Shoemaker, JosDenmark, JoshDumo,
J. Judge, T. Kachmann, A. Kale, N. Kanazawa, J. Kane, Kang-Bae,
A. Kapila, A. Karazeev, P. Kassebaum, J. Kelso, S. Kelso, V. Khanderao,
S. King, Y. Kobayashi, Kovi11Day, A. Kovyrshin, R. Krishnakumar,
V. Krishnan, K. Krsulich, P. Kumkar, G. Kus, R. LaRose, E. Lacal,
R. Lambert, H. Landa, J. Lapeyre, J. Latone, S. Lawrence, C. Lee,
G. Li, J. Lishman, D. Liu, P. Liu, Y. Maeng, S. Maheshkar, K. Majmudar,
A. Malyshev, M. E. Mandouh, J. Manela, Manjula, J. Marecek, M. Mar-
ques, K. Marwaha, D. Maslov, P. Maszota, D. Mathews, A. Matsuo,
F. Mazhandu, D. McClure, M. McElaney, C. McGarry, D. McKay,
D. McPherson, S. Meesala, D. Meirom, C. Mendell, T. Metcalfe,
M. Mevissen, A. Meyer, A. Mezzacapo, R. Midha, D. Miller, Z. Minev,
A. Mitchell, N. Moll, A. Montanez, G. Monteiro, M. D. Mooring,
R. Morales, N. Moran, D. Morcuende, S. Mostafa, M. Motta, R. Mo-
yard, P. Murali, J. Müggenburg, T. NEMOZ, D. Nadlinger, K. Nakan-
ishi, G. Nannicini, P. Nation, E. Navarro, Y. Naveh, S. W. Neagle,
P. Neuweiler, A. Ngoueya, J. Nicander, Nick-Singstock, P. Niroula,
H. Norlen, NuoWenLei, L. J. O’Riordan, O. Ogunbayo, P. Ollitrault,
T. Onodera, R. Otaolea, S. Oud, D. Padilha, H. Paik, S. Pal, Y. Pang,
A. Panigrahi, V. R. Pascuzzi, S. Perriello, E. Peterson, A. Phan, F. Piro,
M. Pistoia, C. Piveteau, J. Plewa, P. Pocreau, A. Pozas-Kerstjens,
R. Pracht, M. Prokop, V. Prutyanov, S. Puri, D. Puzzuoli, J. Pérez,
Quant02, Quintiii, I. R, R. I. Rahman, A. Raja, R. Rajeev, N. Ra-
magiri, A. Rao, R. Raymond, O. Reardon-Smith, R. M.-C. Redondo,
M. Reuter, J. Rice, M. Riedemann, Rietesh, D. Risinger, M. L. Rocca,
D. M. Rodrı́guez, RohithKarur, B. Rosand, M. Rossmannek, M. Ryu,
T. SAPV, N. R. C. Sa, A. Saha, A. Ash-Saki, S. Sanand, M. Sand-
berg, H. Sandesara, R. Sapra, H. Sargsyan, A. Sarkar, N. Sathaye,
B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten, E. Schoute,
M. Schulterbrandt, J. Schwarm, J. Seaward, Sergi, I. F. Sertage, K. Setia,
F. Shah, N. Shammah, R. Sharma, Y. Shi, J. Shoemaker, A. Silva,
A. Simonetto, D. Singh, P. Singh, P. Singkanipa, Y. Siraichi, Siri,
J. Sistos, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding, J. A. Smolin,
M. Soeken, I. O. Sokolov, I. Sokolov, V. P. Soloviev, SooluThomas,
Starfish, D. Steenken, M. Stypulkoski, A. Suau, S. Sun, K. J. Sung,
M. Suwama, O. Słowik, H. Takahashi, T. Takawale, I. Tavernelli, C. Tay-
lor, P. Taylour, S. Thomas, K. Tian, M. Tillet, M. Tod, M. Tomasik,
C. Tornow, E. de la Torre, J. L. S. Toural, K. Trabing, M. Trein-
ish, D. Trenev, TrishaPe, F. Truger, G. Tsilimigkounakis, D. Tulsi,
W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, A. Vartak, A. C.
Vazquez, P. Vijaywargiya, V. Villar, B. Vishnu, D. Vogt-Lee, C. Vuillot,
J. Weaver, J. Weidenfeller, R. Wieczorek, J. A. Wildstrom, J. Wilson,
E. Winston, WinterSoldier, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood,
R. Wood, S. Wood, J. Wootton, M. Wright, L. Xing, J. YU, B. Yang,
D. Yeralin, R. Yonekura, D. Yonge-Mallo, R. Yoshida, R. Young,
J. Yu, L. Yu, C. Zachow, L. Zdanski, H. Zhang, C. Zoufal, aed-
dins ibm, alexzhang13, b63, bartek bartlomiej, bcamorrison, brandhsn,
charmerDark, deeplokhande, dekel.meirom, dime10, dlasecki, ehchen,
fanizzamarco, fs1132429, gadial, galeinston, georgezhou20, georgios
ts, gruu, hhorii, hykavitha, itoko, jessica angel7, jezerjojo14, jliu45,
jscott2, klinvill, krutik2966, ma5x, michelle4654, msuwama, ntgiwsvp,
ordmoj, sagar pahwa, pritamsinha2304, ryancocuzzo, saswati qiskit,
septembrr, sethmerkel, shaashwat, sternparky, strickroman, tigerjack,
tsura crisaldo, vadebayo49, welien, willhbang, wmurphy collabstar,
yang.luh, and M. Čepulkovskis, “Qiskit: An open-source framework for
quantum computing,” 2021.

[4] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505–510, 2019.

[5] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates
for quantum computation,” Physical review A, vol. 52, no. 5, p. 3457,

784Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

1995.
[6] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM

Journal on computing, vol. 26, no. 5, pp. 1411–1473, 1997.
[7] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and

S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp.
195–202, 2017.

[8] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush, N. Ding,
Z. Jiang, M. J. Bremner, J. M. Martinis, and H. Neven, “Characterizing
quantum supremacy in near-term devices,” Nature Physics, vol. 14, no. 6,
pp. 595–600, 2018.

[9] J. Cheng, H. Deng, and X. Qian, “Accqoc: Accelerating quantum
optimal control based pulse generation,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 543–555.

[10] D. Coppersmith, “An approximate fourier transform useful in quantum
factoring,” arXiv preprint quant-ph/0201067, 2002.

[11] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open
quantum assembly language,” arXiv preprint arXiv:1707.03429, 2017.

[12] A. W. Cross, A. Javadi-Abhari, T. Alexander, N. de Beaudrap, L. S.
Bishop, S. Heidel, C. A. Ryan, J. Smolin, J. M. Gambetta, and B. R.
Johnson, “Openqasm 3: A broader and deeper quantum assembly
language,” arXiv preprint arXiv:2104.14722, 2021.

[13] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv preprint quant-ph/0410184,
2004.

[14] D. d’Alessandro, Introduction to quantum control and dynamics. Chap-
man and hall/CRC, 2021.

[15] P. De Fouquieres, S. Schirmer, S. Glaser, and I. Kuprov, “Second order
gradient ascent pulse engineering,” Journal of Magnetic Resonance, vol.
212, no. 2, pp. 412–417, 2011.

[16] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami: Fre-
quent subgraph and pattern mining in a single large graph,” Proceedings
of the VLDB Endowment, vol. 7, no. 7, pp. 517–528, 2014.

[17] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[18] E. Farhi and A. W. Harrow, “Quantum supremacy through the quantum
approximate optimization algorithm,” arXiv preprint arXiv:1602.07674,
2016.

[19] S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger,
R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen et al.,
“Training schrödinger’s cat: quantum optimal control,” The European
Physical Journal D, vol. 69, no. 12, pp. 1–24, 2015.

[20] P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 266–278.

[21] P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong,
“Optimized quantum compilation for near-term algorithms with open-
pulse,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 186–200.

[22] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 333–342.

[23] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, 1996, pp. 212–219.

[24] J. Hsu, “Intels 49-qubit chip shoots for quantum supremacy,” 2018.
[25] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,

and M. Martonosi, “Scaffcc: a framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers, 2014, pp. 1–10.

[26] J. R. Johansson, P. D. Nation, and F. Nori, “Qutip: An open-source
python framework for the dynamics of open quantum systems,” Com-
puter Physics Communications, vol. 183, no. 8, pp. 1760–1772, 2012.

[27] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M.
Chow, and J. M. Gambetta, “Hardware-efficient variational quantum
eigensolver for small molecules and quantum magnets,” Nature, vol.
549, no. 7671, pp. 242–246, 2017.

[28] W. Knight, “Ibm raises the bar with a 50-qubit quantum computer,”
Sighted at MIT Review Technology, 2017.

[29] V. F. Krotov, Global Methods in Optimal Control Theory. Boston,
MA: Birkhäuser Boston, 1993, pp. 74–121. [Online]. Available:
https://doi.org/10.1007/978-1-4612-0349-0 3

[30] L. Lao, P. Murali, M. Martonosi, and D. Browne, “Designing calibration
and expressivity-efficient instruction sets for quantum computing,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2021, pp. 846–859.

[31] N. Leung, M. Abdelhafez, J. Koch, and D. Schuster, “Speedup for quan-
tum optimal control from automatic differentiation based on graphics
processing units,” Physical Review A, vol. 95, no. 4, p. 042318, 2017.

[32] G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001–1014.

[33] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, “The
theory of variational hybrid quantum-classical algorithms,” New Journal
of Physics, vol. 18, no. 2, p. 023023, 2016.

[34] D. C. McKay, T. Alexander, L. Bello, M. J. Biercuk, L. Bishop, J. Chen,
J. M. Chow, A. D. Córcoles, D. Egger, S. Filipp et al., “Qiskit backend
specifications for openqasm and openpulse experiments,” arXiv preprint
arXiv:1809.03452, 2018.

[35] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015–1029.

[36] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen,
and C. H. Alderete, “Full-stack, real-system quantum computer studies:
Architectural comparisons and design insights,” in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2019, pp. 527–540.

[37] M. A. Nielsen and I. Chuang, “Quantum computation and quantum
information,” 2002.

[38] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi,
H. Bernien, A. S. Zibrov, H. Pichler, S. Choi et al., “Generation and
manipulation of schrödinger cat states in rydberg atom arrays,” Science,
vol. 365, no. 6453, pp. 570–574, 2019.

[39] A. P. Peirce, M. A. Dahleh, and H. Rabitz, “Optimal control of
quantum-mechanical systems: Existence, numerical approximation, and
applications,” Physical Review A, vol. 37, no. 12, p. 4950, 1988.

[40] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
p. 4213, 2014.

[41] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue
solver on a photonic quantum processor,” Nature communications, vol. 5,
no. 1, pp. 1–7, 2014.

[42] Rigetti. (2020) Rigettiqpu. [Online]. Available: http://docs.rigetti.com/
en/1.9/qpu.html

[43] Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1031–1044.

[44] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2,
pp. 303–332, 1999.

[45] M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira,
“Qubit allocation,” in Proceedings of the 2018 International Symposium
on Code Generation and Optimization, 2018, pp. 113–125.

[46] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical quantum
instruction set architecture,” arXiv preprint arXiv:1608.03355, 2016.

[47] C. Song, K. Xu, H. Li, Y.-R. Zhang, X. Zhang, W. Liu, Q. Guo,
Z. Wang, W. Ren, J. Hao et al., “Generation of multicomponent atomic
schrödinger cat states of up to 20 qubits,” Science, vol. 365, no. 6453,
pp. 574–577, 2019.

[48] J. Werschnik and E. Gross, “Quantum optimal control theory,” Journal
of Physics B: Atomic, Molecular and Optical Physics, vol. 40, no. 18,
p. R175, 2007.

[49] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “Revlib:
An online resource for reversible functions and reversible circuits,” in
38th International Symposium on Multiple Valued Logic (ismvl 2008).
IEEE, 2008, pp. 220–225.

785Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

[50] L. Xie, J. Zhai, Z. Zhang, J. Allcock, S. Zhang, and Y.-C. Zheng,
“Suppressing zz crosstalk of quantum computers through pulse
and scheduling co-optimization,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 499–513.
[Online]. Available: https://doi.org/10.1145/3503222.3507761

[51] J. You and F. Nori, “Quantum information processing with supercon-
ducting qubits in a microwave field,” Physical Review B, vol. 68, no. 6,
p. 064509, 2003.

[52] C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-
optimal qubit mapping,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 360–374.

[53] A. Zulehner, A. Paler, and R. Wille, “Efficient mapping of quantum
circuits to the ibm qx architectures,” in 2018 Design, Automation Test
in Europe Conference Exhibition (DATE), 2018, pp. 1135–1138.

[54] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for map-
ping quantum circuits to the ibm qx architectures,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 7, pp. 1226–1236, 2018.

[55] A. Zulehner and R. Wille, “Compiling su (4) quantum circuits to ibm qx
architectures,” in Proceedings of the 24th Asia and South Pacific Design
Automation Conference, 2019, pp. 185–190.

786Authorized licensed use limited to: Rutgers University Libraries. Downloaded on December 11,2023 at 17:06:17 UTC from IEEE Xplore. Restrictions apply.

