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Abstract—NVIDIA’s software does not offer translation of as-
sembly code to binary for their GPUs, since the specifications are
closed-source. This work fills that gap. We develop a systematic
method of decoding the Instruction Set Architectures (ISAs)
of NVIDIA’s GPUs, and generating assemblers for different
generations of GPUs. Our framework enables cross-architecture
binary analysis and transformation. Making the ISA accessible in
this manner opens up a world of opportunities for developers and
researchers, enabling numerous optimizations and explorations
that are unachievable at the source-code level. Our infrastructure
has already benefited and been adopted in important applications
including performance tuning, binary instrumentation, resource
allocation, and memory protection.

Index Terms—CUDA, GPU, Code Generation, Code Transla-
tion and Transformation, Instruction Set Architecture (ISA)

I. INTRODUCTION

The CUDA parallel computing platform developed by
NVIDIA has benefited greatly from the popularity of their
powerful GPU hardware, seeing widespread use. But the
proprietary, closed-source nature of this platform makes re-
search more difficult and limited. Although NVIDIA provides
documentation of the intermediate language, they provide very
little information about the hardware-specific instruction sets.

Open-sourcing of software and hardware has two-fold ben-
efits. The level of documentation that open-sourcing permits
allows for better tuning of specific software. It also allows
the community to spot errors and security flaws that can be
corrected before they become more widespread.

Openness of an instruction set architecture (ISA), in partic-
ular, allows the development of more effective compilation
techniques. The proprietary compiler is not guaranteed to
be optimal when generating executable code. Indeed, it is
usually the case that code can be further tuned to improve its
efficiency. For example, by using known instruction encoding
to tune allocation and scheduling, several works [1] [2] [3] [4]
are able to achieve performance beyond that of what NVIDIA’s
compiler, nvcc, can produce on its own. Furthermore, several
other works [5] [6] [7] [8] [9] [10] demonstrate that modifica-
tions to the binary code can allow for useful techniques that
are impossible for a programmer to fully implement in source
or intermediate language.

An instruction set architecture (ISA) acts as the interface
between software and hardware. The ISA allows independent
development of software and hardware. The details the ISA
describes, such as binary instruction encoding and data types,
are vital to the development of compilers. An open ISA helps
research in GPU micro-architecture. There is a large number

of GPU works that rely on GPUGPU-Sim [11]. However, the
cycle-level GPU simulator is unable to run the binary code
used by actual NVIDIA devices, thus reducing its accuracy
- as well as the accuracy of any works which make use of
it. Further, an open ISA may help enhance GPU security: the
work by Hayes and others [10] showed that understanding
the ISA details is a necessity when tracking and protecting
sensitive data across the whole system.

We develop a framework of techniques that enables easier
interaction with the ISA of various NVIDIA architectures. Our
work has found use in many different settings for program
analysis and performance tuning of GPUs [6] [7] [10] [12].

In particular, we make the following contributions:
• We design a method which largely automates the cre-

ation of a GPU assembler. 1 The method first analyzes
binary code and then generates a translator for converting
assembly code to binary code. This automation allows
researchers to quickly add support for new ISAs.

• We provide the binary encoding for multiple existing
GPU architectures, including how operands and opcodes
are mapped to 0s and 1s, and how instruction dependence
is handled. We have made our findings freely available
on Zenodo, with opcodes at [13], and operands at [14].

• We provide the GPU ELF file format in Zenodo [15],
which is necessary for complete editing of executable.

• Our techniques and framework have demonstrated com-
patibility with at least four consecutive major versions
of NVIDIA devices: Compute Capability 2.x (Fermi),
Compute Capability 3.x (Kepler), Compute Capability 5.x
(Maxwell) and Compute Capability 6.x (Pascal).

• We develop an extensible framework that supports anal-
ysis and transformation of assembly code for use with
the GPU assemblers, which has been used in multi-
ple works [6] [7] [10] [12]. Our framework is avail-
able on GitHub at https://github.com/decodecudabinary/
Decoding-CUDA-Binary.

Prior studies have been trying to understand the hidden
workings of NVIDIA’s devices. The work by Wong et al.
[16] focuses on micro-architecture details such as cache design
and memory latency. There have also been efforts at decoding
binary instructions: Hou et al. [17] created an assembler for
Compute Capability 2.x, Zhang et al. [4] decoded Compute
Capability 3.x instructions used in an SGEMM implementa-
tion, Gray [3] developed an assembler for Compute Capability

1Artifact available at: https://doi.org/10.5281/zenodo.2337060
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5.x, and Jia et al. [18] decoded Compute Capability 7.x
instructions. Each of these existing works is limited to a
specific architectural generation, and in some cases a spe-
cific application. Our work is a comprehensive and cross-
architecture framework that is useful for general-purpose and
future-proof applications.

The rest of the paper is organized as follows. In Section
II, we provide an overview of our framework. We compare
CPU ISA with GPU ISA in Section II-B. Section III describes
our automatic decoding method. Section IV summarizes our
findings for different generations of NVIDIA GPUs. Section
V outlines applications of our framework. We discuss related
works in Section VI.

II. OVERVIEW AND BACKGROUND

The assembly code used for NVIDIA devices is known
as ”SASS”, which corresponds exactly to the actual binary
code. Most details of SASS are kept secret. In addition to
the closed-source compiler, nvcc, NVIDIA provides a closed-
source disassembler called cuobjdump, which can translate
the binary into SASS assembly code. However, NVIDIA
offers no means of translating the SASS to binary, leaving
researchers unable to make use of the assembly code. Our
work fills this gap.

A. Assembler Generating Framework
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Fig. 1. Our assembler generation framework. Our work is highlighted with
black background, and the existing tools are in white background.

We show our assembler generating framework in Fig. 1. We
first use nvcc to generate binary code from source programs,
and then we use cuobjdump to retrieve the SASS assembly,
as well as the mapping between the assembly and binary. Our
ISA Analyzer will automatically generate variants of given
{assembly, binary} pairs to enrich the data set for analysis.

Next, our ISA Analyzer starts analyzing the binary encoding
of different components of each type of instructions, for in-
stance, which bits correspond to opcode, operands, modifiers,
etc. The ISA Analyzer yields a list of recorded operations,
that is, the set of decoded assembly/binary instructions. An
example of the recorded IADD instruction for computing
capability 3.5 is shown in Fig. 2.

Our ISA analyzer exploits the fact that there is one-to-one
mapping between each SASS assembly instruction and each

binary instruction in the listing generated by the disassembler
cuobjdump. An example of cuobjdump’s output is shown in
Fig. 3: every assembly instruction corresponds to one 64-bit
binary instruction (represented as a hex number). By retrieving
enough {assembly, binary} pairs ( Section III-B), we can
decode the instruction set architecture.
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Fig. 2. Decoded IADD instruction for computing capability 3.5. We show
which bits correspond to which component in the IADD instruction.

Our Assembler Generator takes as input the binary encoding
information generated by our ISA Analyzer, and outputs an
Assembler. The generated assembler can convert assembly
code to binary code with respect to the underlying GPU
architecture. This corresponds to the conversion from assembly
to binary in the compilation process shown in Fig. 1.

Performing the decoding analysis manually is a slow and
arduous process, especially considering the frequency with
which the GPU ISA changes - usually once per GPU gen-
eration. The framework we developed is important as it can
automatically decode the ISA and generate assemblers.

Furthermore, we incorporated our assemblers into a larger
framework that permits analysis and transformation of as-
sembly code for multiple GPU architectures, enabling several
applications which we will discuss in Section V.

B. Unique CUDA Binary Instructions & Behavior

In this section we describe the unique features of GPU
ISA compared with CPU ISA. We summarize the differences
from the following aspects: memory instruction, control flow,
dependence handling, register shuffling, barrier setup, and
compile-time instruction scheduling.

Memory Instructions: There are different types of mem-
ory on the GPU, each associated with a type of assem-
bly/binary instructions, as shown in Table I. Global memory
can be accessed by all threads. Local memory is a range of
thread-private memory in GDDR memory. Shared memory
is an on-chip memory that is private to each thread block.
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Fig. 3. An example of output from cuobjdump, compiled for NVIDIA’s
Compute Capability 3.5 architecture. We have omitted certain details such as
instruction address for illustration purpose.
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TABLE I
COMMON MEMORY INSTRUCTIONS ON GPU. WE REFER TO EACH

GENERAL REGISTER AS RX OR RY, AND EACH LITERAL AS 0XA FOR
ILLUSTRATION PURPOSE.

Assembly Description
LDG Ry, [Rx+0xa] Load from global memory
STG [Rx+0xa], Ry Store to global memory
LDL Ry, [Rx+0xa] Load from local memory
STL [Rx+0xa], Ry Store to local memory
LDS Ry, [Rx+0xa] Load from shared memory
STS [Rx+0xa], Ry Store to shared memory
LDC Ry, c[0xa][Rx+0xa] Load from constant memory
TEX Ry, Rx, 0xa, 0xa, 0xa Texture fetch
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Fig. 4. A simple example of thread-warp divergence. (a) is the source and
assembly code, (b) is the control flow graph.

Constant memory is a type of read-only memory that is split
into logical banks. Texture memory is another type of read-
only memory, but is only accessed through texture instructions.

Divergence and Re-convergence: GPU threads are or-
ganized into thread-warps, threads within a warp run the
same instruction at one time. When threads inside a warp
need to diverge on the execution path, the program uses the
SSY instruction to signal the hardware to prepare and specify
the address for re-convergence. Threads that take different
execution paths will be serialized instead of running in parallel.
When every thread in the warp has reached a re-convergence
command - either a .S modifier or a SYNC instruction,
depending on the architecture - it will wait until the thread
warp reaches the instruction whose address is specified by the
SSY instruction, and then return to running in lock-step.

We show an example of divergence and re-convergence
handling in Fig. 4. The source code and assembly code is
on the left, organized into basic blocks. The control flow
graph is on the right, showing the paths the thread-warp
may be split across. The SSY instruction in basic block
BB1 indicates that threads may take different paths (diverge),
and the instruction with 0x238 (BB6) is where they will
re-converge. The conditional SYNC instruction causes some
threads to immediately prepare for re-convergence, but others
in the same thread-warp execute basic block BB2 instead. In
BB2, the already divergent threads hit the next SSY, preparing
for another potential divergence; some take the conditional
branch to BB4, whereas others execute BB3 instead. At the
end of BB3 and BB4, these doubly-divergent threads re-

converge in BB5. At the end of BB5, they finally re-converge
in BB6 with the threads that only executed the first SYNC
from BB1.

Warp-Register Shuffling: Thread-warps are allocated con-
secutive physical registers, aligned to hardware-specified
boundaries. Compute Capability 3.0 introduced the SHFL
instruction, which can read registers from another thread in
the same thread-warp. This permits a thread-warp to perform
internal communication far faster than would otherwise be
possible, thanks to the low latency of the register file as
compared to other memory types.

Barrier Instructions: The BAR instruction is be used for
synchronization, halting the thread until every other live thread
in the same thread-block has reached its position. In Compute
Capability 3.0 the TEXDEPBAR instruction was introduced,
which halts the thread until specified texture operations are
completely resolved; texture dependences are thus handled by
the compiler, rather than determined by the device.

Compile-Time Scheduling: As of Compute Capability
3.0, instruction scheduling is handled by the compiler rather
than by the hardware. On this architecture every 8−th instruc-
tion, rather than being a real instruction, is a set of scheduling
codes inserted by the compiler. These scheduling codes dictate
the minimum number of cycles that the thread must wait
between every two consecutive instructions in the following
seven instructions in order to satisfy dependence constraints.

Starting with Compute Capability 5.0, NVIDIA moved even
more control logic away from the hardware, saving power and
space. Thus instruction-level barrier has been added to the
scheduling codes generated by the compiler. The scheduling
codes on Compute Capabilities 5.x and 6.x occur in place
of every fourth instruction. As of Compute Capability 7.0,
they are embedded into each individual instruction, rather than
controlling larger blocks of instructions.

III. ASSEMBLER GENERATION

The ISA for NVIDIA GPUs changes in almost every
major version. Prior works [17] [4] [3] [18] have analyzed
the ISA, but only for a particular architecture. To ensure
forward compatibility as the ISA continues to change across
generations, we develop a generic method for decoding the
instruction set and create a system which can generate GPU
assemblers for newer architectures in a partially automated
manner. As a result, we can quickly add compatibility for
additional architectures to support open-source research work.

Our Assembler Generator makes use of our ISA Analyzer,
shown in black background in Fig. 1. The ISA Analyzer
takes in a list of binary and SASS assembly instruction pairs
from NVIDIA’s cuobjdump tool, and determines which bits
in the binary instruction correspond to which components in
the assembly instruction. To ensure we have enough input,
we use bit flipping to prepare additional {assembly, binary}
pairs for further analysis, as described below in Section III-B.
Finally, the Assembler Generator component outputs C++ code
capable of converting SASS assembly to binary.
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A. Structure of an Instruction

When decoding an instruction, it is vital to gather and
maintain information about every component of the instruction
that affects the binary encoding. The first component is the
opcode. We treat bits which indicate the expected operand
types as part of the opcode. For example, if two instructions
are both named IADD, but one of them adds two registers
whereas the other adds a register to an integer literal, then
we treat them as two distinct operations due to the different
encoding.

The second component of the instruction is operands.
CUDA operands can be one of the following types such
as literal value, register, predicate register, special register,
bit-field, memory, constant memory, texture shape, texture
channel, and etc. Most of these are encoded with a single
value, but memory operands may be represented by up to two
values (register and offset), and constant memory by up to
three (bank, register, and offset). Many instructions allow for
one or more optional unary operations to be attached to their
operands: arithmetic-negation, bitwise-complement, absolute
value, and logical-negation, each of which is typically encoded
as a single bit.

Hexadecimal (integer literal) operands need to be handled
specially during analysis, because they are encoded differently
depending on the type of instruction. For control flow in-
structions the assembly will typically use absolute addresses
whereas the binary encoding will use relative offsets. Further-
more, a negative value might be handled by directly encoding
a negative value, or by simply enabling a unary arithmetic-
negation bit.

Another important component of the instruction is its op-
tional modifiers. Most modifiers are attached to the opcode

in the assembly, though there are exceptions, in which one or
more of them are instead attached to operands. Some modifiers
act as simple boolean values that flip a single bit, but many
instructions have more complicated modifiers with a range of
possible values. For example, several instructions make use of
a two-bit logic modifier, which can be “.AND” if the operation
will perform a logical and, “.OR” if the operation will perform
a logical or, or “.XOR” if the operation will perform a logical
exclusive-or. The GPU does not have separate instructions
dedicated to each of these logical operations, so an under-
standing of these modifiers is valuable.

Certain instructions expect multiple modifiers of the same
type, in which case their order has important meaning. For
example, the PSETP (predicate set-predicate) instruction uses
two logic steps to reduce three predicate registers into a single
value. PSETP.AND.OR will apply and and then or, whereas
PSETP.OR.AND will do the opposite and has a different
encoding. This is why it is necessary to know the type of these
modifiers. Another example is the format modifiers which can
appear twice in cast instructions, such as the F2F instruction,
which casts a numeric value from one floating-point format
to another floating-point format. Using our knowledge of the
types of each modifier, our Assembler Generator is able to

determine whether or not a modifier follows another of the
same type, and stores information about the first instance
separately from the second instance.

The fact is that every part of nearly every type of instruc-
tions uses predictable rules to enforce values on particular bits
with respect to the assembly instruction.

B. Analyzing the ISA

The first task before analyzing the ISA is to gather enough
instruction {assembly, binary} pairs as input. This is vital,
since with little data, it is impossible to determine precisely
which bits correspond to which parts of the instruction and
which encoding rules are used. We start by gathering multiple
executable from real source programs, extracting the assembly
and binary mapping with cuobjdump, and giving them to
our ISA Analyzer’s parser. We gathered executable from the
CUDA SDK [19] and Rodinia benchmark suite [20]. After
processing all of the input samples, we expand our data set
via our bit flipper module.

Our bit flipper takes the binary instruction of every known
operation as input, and outputs variants of each one, which we
can inject into an executable in order to extract more assembly
code. This is similar to a technique used in [4]. Each variant
generated by the bit flipper is identical to the instruction it
is based on, except that a single distinct bit has been flipped.
These flipped instructions will permit the analyzer to infer
how different parts of the instruction are affected by each
precise bit. Depending on which bits are changed, a new
operation might be generated instead; in this case, we resume
bit flipping, repeating the process until the results converge.

An important consideration for the bit flipper is that the
disassembler may crash without producing output upon en-
countering unexpected instructions. Our solution is to narrow
the range of bits that are flipped - skipping over most of the
opcode bits. An alternate solution would be to disassemble
flipped instructions one at a time, so that the disassembler’s
crashes do not prevent retrieval of any valid instructions.
This alternate solution may lead to more complete data set,
but in practice we find that this is unnecessary; our faster
implementation is sufficient to prepare an assembler which
can reproduce every program we have tried.

The first time the analyzer encounters an operation, it makes
the broadest possible assumptions. For the opcode, each mod-
ifier, and each unary operation, it assumes that every bit in the
binary instruction is important to the encoding (setting every
value to True inside a boolean array), and records the current
values. For each operand, it searches for every subset bits of
the instruction which matches each possible interpretation of
each of the operand’s values, recording the maximum possible
matching bit-sequence(s). Upon encountering another instance
of a known operation, it is compared to the recorded data,
narrowing down which bits are actually important to each part
of the instruction.

For example, suppose we encounter the two instances of
FFMA in Fig. 5, and are trying to decode the first operand.
During the first instruction the operand is R9 (register 9), so
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Fig. 5. Looking for the bits controlled by the first operand.

we look for the value 9 (1001 in binary format) in the binary.
We identify three matching bit-sequences of size 10, 5, and 4,
respectively starting from bit 2, bit 19, and bit 59. Therefore
we set the maximum size at these locations to 10, 5, and 4, and
set the maximum size for other locations to 0. During the next
FFMA, the same operand is R5, so we look for value 5 (101
in binary format) in the opcode. The position (bit 2) which we
previously marked as having the size 10 (for the bit-sequence
length) only has size 8 now, thus we reduce its value to 8. The
other two non-zero positions no longer contain the operand’s
value, so we reduce them each to 0. At this point, we have
correctly identified that the first register in FFMA assembly
instruction controls exactly the eight bits which start at bit 2.

Algorithm 1 Binary Instruction Decoding
Global: knownOps is list of known encodings
Input: a is a parsed assembly instruction
Input: binary is binary code corresponding to a
Result: knownOps is updated

1: procedure ANALYZEINST(ASSEM a, bool[] binary)
2: OPERATION op ⇐ knownOps.lookup(a.opcode)
3: if op == null then

4: op ⇐ knownOps.insert(a.opcode)
5: op.opcodeBinary ⇐ binary
6: op.opcodeBits ⇐ {true, true, ..., true}
7: for each OPERAND ‘oprd’ in op.operands do

8: oprd.comp[0:2].size ⇐ {64, 63, ..., 1}
9: for each bit ‘b’ in binary do

10: if binary[b] != op.opcodeBinary[b] then

11: op.opcodeBits[b] ⇐ false
12: for each string ‘m’ in a.mods do

13: if m not in op.mods then

14: op.mods.insertModifier(m)
15: op.mods[m].binary ⇐ binary
16: op.mods[m].bits ⇐ {true, true, ..., true}
17: for each bit ‘b’ in binary do

18: if binary[b] != op.mods[m].binary[b] then

19: op.mods[m].bits[b] ⇐ false
20: for each OPERAND ‘oprd’ in op.operands do

21: ASMOPERAND asmOprd ⇐ a.operands[oprd]
22: analyzeOperand(oprd, asmOprd, binary)
23: end procedure

Fig. 6 shows the structures used in this section’s pseudo-
code. The key structs here are ASSEM, which is used to hold a
parsed assembly instruction, and OPERATION, which is used to
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Fig. 6. Structures used in our Algorithms’ pseudocode.

Algorithm 2 Binary Operand Decoding
Input: oprd is an operation’s operand
Input: asmOprd is an operand’s assembly
Input: binary is an instruction’s binary
Result: oprd is updated

1: procedure ANALYZEOPERAND(OPERAND oprd, ASM-
OPERAND asmOprd, bool[] binary)

2: for each COMPONENT ‘comp’ in oprd.comps do

3: for each bit ‘b’ in comp do

4: for size = comp.size[b] to 0 do

5: if binary[b:b+size] == comp.value
6: comp.size[b] ⇐ size
7: break

8: for each unary ‘un’ in asmOprd.unary do

9: if un not in oprd.unary
10: oprd.unary.insert(m)
11: oprd.unary[un].binary ⇐ binary
12: oprd.unary[un].bits ⇐ {true, true, ..., true}
13: for each bit ‘b’ in binary do

14: if binary[b] != oprd.unary[un].binary[b]
15: oprd.unary[un].bits[b] ⇐ false
16: end procedure

maintain analysis of an instruction. The ASSEM struct contains
an identifier for the opcode, a list of operands, and a list of
modifier strings. The ASMOPERAND struct, which represents
the assembly for a single operand, contains the components
of the operand’s value (since some memory operands have
up to three discrete values) a list of unary operators (such as
negation, absolute value), and a list of modifier strings. The
OPERATION struct, in addition to lists analogous to those of
the ASSEM struct, contains the ‘opcodeBinary’ array which
holds the binary code from one instance of the associated
instruction, and ‘opcodeBits’ which indicates which parts
of opcodeBinary have remained consistent across different
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instances of the instruction. The Operand struct used by
Operation is analogous to the ASMOPERAND struct. The
COMPONENT struct used by OPERAND contains the ‘size’
array, which holds the maximum valid size for its operand
component at each possible bit position. The UNARYFUNC
struct, representing a unary operator, holds the operator type,
the binary code from a single instance of the instruction
where the operator was present, and the ‘bits’ array which
indicates which parts of the binary have been consistent across
instances. Finally, the MODIFIER struct used by OPERATION
and OPERAND represents a modifier; it includes the modifier’s
name, its type, whether it’s the second instance of its type, the
binary code associated with a single instance of the instruction
in which this modifier was present, and the ‘bits’ array which
indicates which parts of the binary have been consistent across
instances.

Algorithms 1 and 2 describe the ISA analyzer. At a high
level, the goal of these functions is to analyze every individual
component of the instruction’s assembly, by updating and
comparing the instruction’s binary value when these individual
component are present.

Algorithm 1 takes an instruction in its assembly format and
its binary format. It identifies the corresponding operation in
the list of known encodings (by looking up the opcode), or
generates a new one with default values if the given assembly
instruction is not yet a known operation. It then performs the
analysis: examining the instruction’s opcode bits, the predicate
guard, and its modifiers, updating the operation’s encoding
record accordingly. The helper function in Algorithm 2 is
used to analyze each of the instruction’s operands, identifying
the bits associated with their modifiers, unary operators, and
the components of their values (up to three). An example of
the search for the value-components was shown in Fig. 5,
with register operands that have only a single component (the
register ID).

By applying the above algorithm to inputs which include
the extra instruction variants created by the bit flipper, we
obtain the necessary information for the Assembler Generator
to understand all of the instructions and values encountered.

C. Assembler

Once we have provided the assembler generator with suffi-
cient input, we can use it to output an actual assembler in C++
language. Algorithm 3 contains pseudo-code for generating the
assembler and making use of the list of encodings yielded by
Algorithm 1. It loops through the complete list of decoded
operations and creates separate conditional blocks for each
operation. The operation list includes, for each component of
the instruction, a list of its associated bits and their expected
values. For each component of an assembly instruction, Algo-
rithm 3 generates code to set its binary bits appropriately: the
opcode bits, each modifier, and so on.

Fig. 7 shows an example of generated assembler code. The
first conditional block executes if the instruction is an IADD
(integer addition) operation: it sets the opcode bits based on
recorded values for IADD and each of the three operands’ bits

correspondingly. Additional code blocks are generated for each
type of operations. In the end it sets the conditional guard’s
bits, and returns the final binary format.

Our actual implementation is more optimized and compli-
cated than the example in Fig. 7. We omit those details for
illustration purpose. For example, to make the assembler more
efficient, we distinguish between operands that are encoded
the same for every operand-list and those which differ; the
assembler generator only needs to print the shared operands
once for the entire opcode, whereas the others need to be
printed once per operand-list. Additionally, upon encountering
anything unexpected, such as a modifier that the assembler
generator does not recognize, our generated assemblers are
designed to print an error message to the standard error stream.

Algorithm 3 Assembler Generator
Input: operations is the list of binary ISA encodings
Result: output the source code of an assembler

1: procedure GENASSEMBLER(OPERATION[] operations)
2: for each OPERATION ‘op’ in operations do

3: print “if opcode == ” op.opcode
4: for each OPERAND ‘oprd’ in op.operands do

5: for each COMPONENT ‘c’ in oprd.comps do

6: for each bit ‘b’ do

7: integer s ⇐ c.size[b]
8: if s > 0 then

9: print “binary[b:b+”s “] = c.value”
10: print “for each MODIFIER ‘m’”
11: for each MODIFIER ‘m’ do

12: print “if m.name == ” m.name
13: print “if seenModType[m.type] == ” m.2nd
14: for each bit ‘b’ in m.binary do

15: if m.bits[b] then

16: print “binary[” b “] = ” m.binary[b]
17: print “end if”
18: print “seenModType[m.type] ⇐ true”
19: print “end if”
20: print “end for”
21: print “else”
22: print “throw error”
23: print “end if”
24: end procedure

IV. DECODING SUMMARY

In this section we describe the findings we have gath-
ered with the help of our Assembler Generator. Although
instructions are of fixed length, NVIDIA’s instruction sets
lack the relative simplicity of a RISC architecture. It includes
complicated instructions such as multiplication-and-addition,
multi-function operation that performs trigonometric functions
including sine and cosine, and so on. Although we can
make generalizations about which bits are used for which
components of the instruction, there are few consistent rules
across different instructions.
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Fig. 7. A simplified example of an assembler that has been automatically
generated.

TABLE II
COMMON INSTRUCTIONS FOR COMPUTE CAPABILITY 3.X, WITH

OPERANDS DEFINED IN TERMS OF FIG. 8. MEMORY OPERANDS ARE
DENOTED WITH SQUARE BRACKETS. PC REFERS TO THE PROGRAM

COUNTER, LOP REFERS TO AN ARBITRARY LOGIC OPERATION, AND COMP
IS SHORT FOR COMPOSITE.

Instruction Effect
MOV reg1, comp reg1 ⇐ comp
S2R reg1, special reg reg1 ⇐ special reg
IADD reg1, reg2, comp reg1 ⇐ reg2+comp
IMUL reg1, reg2, comp reg1 ⇐ reg2×comp
IMAD reg1, reg2, comp, reg4 reg1 ⇐ reg2×comp+reg4
IMAD reg1, reg2, reg4, comp reg1 ⇐ reg2×reg4+comp
PSETP p2, p1, p3, p4, p5 p2 ⇐ p3 LOP p4 LOP p5;

p1 ⇐ !p2
BRA const/lit comp PC ⇐ const/lit comp
CAL const/lit comp callstack.push(PC);

PC ⇐ const/lit comp
RET PC ⇐ callstack.pop()
LD reg1, [reg2 + 32-bit lit] reg1 ⇐ [reg2 + 32-bit lit]
ST [reg2 + 32-bit lit], reg1 [reg2 + 32-bit lit] ⇐ reg1

Table II shows a set of common instructions used in GPU,
and their effects. We use ‘regX’ to refer to 32-bit general regis-
ters, ‘pX’ to refer to 1-bit predicate registers, and ‘composite’
to refer to operands with multiple possible types. The mapping
between the bit-sequence and the operand/opcode/modifier in
the assembly instruction is shown in Fig. 8, for instance, reg1
bits are 2 to 9 in computing capability 3.x. We have provided
a complete table of opcodes for all decoded instructions in
Zenodo [13].

A. Operands

There are several operand types we observe in the assembly
code. First, 32-bit general registers, which we usually just call
registers, are used in most instructions. Depending on the ISA,
these registers’ index is encoded as either six bits or eight bits.
The register with maximum ID (either 63 or 255) is the read-
only zero register, which always holds a value of zero, and is
written as RZ in assembly code. In operations which use 64-
bit or larger values, the GPU will use a range of consecutive
registers, starting with the register specified in the instruction.

TABLE III
THE MOST COMMON SPECIAL REGISTERS USED ON GPU.

Special Register Encoding Meaning
SR TID.X 33 Thread ID (x-dimension)
SR TID.Y 34 Thread ID (y-dimension)
SR TID.Z 35 Thread ID (z-dimension)
SR CTAID.X 37 Thread-Block ID (x)
SR CTAID.Y 38 Thread-Block ID (y)
SR CTAID.Z 39 Thread-Block ID (z)
SR CLOCK LO 80 Cycle Counter (32 bits)

Predicate registers hold boolean values, and are encoded as
three bits. Additionally, predicates can be used as conditional
guards for most instructions, allowing individual threads to
selectively skip execution of instructions. The conditional
guard’s binary is in a different location for each distinct ISA,
but is always four bits: the lower three bits are the predicate
register ID, and the highest bit is used for logical negation. The
predicate register with ID 7 is the null predicate, which always
holds a value of true, and is written as PT in the assembly
code.

Special registers are only used in the S2R instruction, and
are encoded with eight bits. In the assembly code they can be
written as SRx for some value x, but are more commonly
used with the English name of the associated value. For
example, the special register ”SR CLOCKLO” can be used to
retrieve the lowest 32-bits of the clock value, and the special
register ”SR TID Y” can be used to retrieve the current
thread’s ID along the thread block’s y-dimension. Table III
shows common special registers and their encoded values. The
encodings for most special registers remain the same across
GPU generations, though additional special registers are added
over time. We have provided a more complete list of special
registers in Zenodo [21].

Memory operands have a register and a literal offset, re-
gardless of whether they are used for global memory, local
memory, or shared memory. The literal offset is usually either
24 bits or 32 bits, depending on the instruction.

Constant memory operands point to a type of read-only
memory. There is a dedicated load-constant-memory (LDC)
instruction, but constant memory operands are also usable
in other instructions. They have up to three components: a
memory bank, a register, and a literal offset. The bank and
offset use a combined 19, 20, or 21 bits for their encoding,
depending on the ISA and the instruction. When using 19
or 21 bits, the highest 5 are the bank, and the rest are the
offset. When it uses 20 bits, the lowest 16 are the offset, and
the highest four and lowest one are the bank. The register
component, which is added to the offset, is only used in the
LDC instruction and some control-flow instructions.

Texture operations have a texture operand, whose value is
a shape such as 1D, 2D-Array, CUBE, etc, and is encoded as
three bits. On some architectures, texture operations also have
a channel operand with some combination of ”R”, ”G”, ”B”,
and ”A”, encoded with up to four bits.
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Barrier operations may use an SB operand (written as SBx
for some integer x) and a bitfield operand (written as a set of
bit indices).

Finally, instructions may use literal, numeric values of
various sizes. In assembly code these are usually written as
hexadecimal values, though in floating-point operations they
may be written in decimal instead. Notably, the encoding for
floating-point literals does not quite match the IEEE Standard,
due to lack of enough bits - for example, in some instructions
19 bits may be used to try to hold a 64-bit double-precision
floating point value. These floating point values are handled
by discarding the lowest bits until the remaining portion fits
in the available space.

We use the term ‘composite’ to refer to a single operand
that has multiple possible types. On Compute Capabilities 2.x
and 3.0, the most common composite operand is 20 bits; it
can either hold a 20-bit literal, a 6-bit register ID, or 20-bit
constant memory location without a register component. We
have also seen 16-bit composites that can either hold a literal
or a register.

On Compute Capabilities 3.x through 6.x, the most common
composite is 19 bits; it can either hold a 19-bit literal, an
8-bit register, or a 19-bit constant memory location without
a register component. We have also seen 24-bit and 32-bit
composites which can hold either a literal of that size or a 21-
bit constant memory location without the register component.

In Fig. 8, we show common locations and sizes for different
operands in each of the architectures that we have studied.
In Zenodo [14] we have provided the operands for specific
instructions that have been decoded. In Table II, we show
a subset of this data, with several common instructions for
version 3.x of the ISA. We refer to general registers as regX
and predicate registers as pX with integer values x, and texture
shapes as tex.

B. ISA Change Over Time

Compute Capability 2.x: The earliest hardware we con-
sider is NVIDIA’s ”Fermi” generation, which includes devices
with Compute Capabilities of 2.0 and 2.1. Instructions can be
either 4 bytes or 8 bytes, but we have only seen the compiler
generate 8 byte instructions. We find that the executable uses
little-endian format for instructions, but CUDA’s disassembler
instead displays the hexadecimal values of each instruction
starting with the most significant byte. This architecture han-
dles instruction-level scheduling via the hardware.

Compute Capability 3.0: The earliest of NVIDIA’s ”Ke-
pler” generation has Compute Capability 3.0. For this archi-
tecture, the ISA is very similar to the previous one, with
every pre-existing instruction having exactly the same binary
encoding as before, though some additional instructions have
been added.

The major difference between the ISA of this architecture
and the previous is that some instruction scheduling has been
offloaded from the hardware to the compiler. For Kepler
devices, every eighth instruction (including the first one) is
not a real instruction, but instead contains the instruction

scheduling information for GPU. [17] developed an assembler
for Compute Capability 2.x, but also explored this architecture
due to its similar ISA. The aforementioned latency instructions
have no official name of which we are aware, but Asfermi used
the name SCHI to represent them, which we also use in this
work.

We refer to the least significant bit as bit 0, and the most
significant bit as bit 63. Bits 0-3 of the SCHI instruction
contain the value 7. Bits 4-11 control the minimum number
of cycles that the GPU must wait between dispatching the
first following instruction and the second. Bits 12-19 control
the minimum cycles between the second following instruction
and the third. This continues for the next five groups of eight
bits. Finally, bits 60-63 hold the value 2. The seven dispatch
values can hold a value of 0x4 when the associated instruction
is able to be dispatched in the same cycle as the next, or a
value between 0x20 and 0x3f to mean the minimum number
of cycles between them is the value minus 15.

Compute Capability 3.x: The remainder of the Kepler
generation comprises Compute Capabilities 3.2, 3.5, and 3.7.
Unlike the earlier Kepler devices, these GPUs allow threads
to use up to 256 registers instead of 64, so the six bits which
the previous ISA’s instructions used to indicate the register
are insufficient. Therefore, although the assembly code looks
much like that of the previous generation, every instruction
has a new encoding. A SCHI instruction now holds the value
0 in its two least significant bits and the value 2 in six most
significant bits - the seven dispatch intervals have been shifted
two bits, but are otherwise unchanged.

The manner in which the disassembler presents SCHI
instructions on Kepler is not conducive to analysis or editing.
It provides the 64-bit binary value of the entire SCHI, but
offers no indication of its meaning. Furthermore, since the
SCHI describes a group of consecutive instructions, addition,
deletion, or reordering of instructions becomes more compli-
cated. To solve these issues, we use our framework to split up
each SCHI, and place their values in-line with the assembly
instructions, as described below.

Fig. 9 shows how we extract the separate SCHI values
on Compute Capability 3.x, associating them with individual
instructions. In this example, the scheduling codes indicate
that the thread waits at least 0x2f minus 0x1f cycles (16)
after dispatching the first instruction, 0 cycles after dispatching
the second instruction, 0x23 minus 0x1f cycles (4) after each
of the third and fourth instructions, 1 cycle after the fifth
instruction, 3 cycles after dispatching the sixth instruction, and
9 cycles after dispatching the seventh instruction. The compiler
has determined that these stalls are necessary according to the
latency of the instructions involved.

Compute Capabilities 5.x and 6.x: The ”Maxwell” and
”Pascal” generations, which include devices with Compute
Capabilities 5.0, 5.2, 5.3, 6.0, 6.1, and 6.2, use a different
ISA than the previous generations of NVIDIA devices, with
the opcode contained in bits 52-63.

In the previous generation, the SCHI values contained only
dispatch intervals and one or two rarely-used flags. But in
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Fig. 8. Common operands on different CUDA architectures.
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Fig. 9. An example of how we extract the scheduling information for each
group of seven instructions on Kepler GPUs. These 8-bit values indicate
dispatch behavior.
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Fig. 10. An example of how we extract the scheduling information for each
group of three instructions on Maxwell and Pascal GPUs. The first and second
values indicates dispatch behavior. The third and fourth indicate which barriers
to set. The fifth indicates which barriers to wait for.

Maxwell and Pascal, they have been extended to control
barriers and the register cache. Every fourth instruction on
these architectures is a SCHI, so they each affect the following
three real instructions. Different from previous ISAs, the
binary for a SCHI instruction no longer has any bits dedicated
to its opcode, and is therefore identified purely by its position
in the code.

As with the previous generation, NVIDIA’s dissembler
outputs each instruction group’s SCHI data only as a single,
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combined hexadecimal value. As such, we again break up the
SCHI data, in-lining values with individual instructions so that
the code can be easily understood and edited. Fig. 10 shows
how we extract the separate values, and how they line up with
the following three instructions. The 21 SCHI bits associated
with each instruction are distributed as follows. Bits 0 through
3 are the minimum number of cycles to wait before dispatching
the next instruction. According to [3], bit 4 is a ”yield hint
flag”, which encourages the GPU to switch to another thread.
Higher dispatch values in the lowest bits will fail without the
yield hint. Bits 5 through 7 and 8 through 11 each indicate
a barrier to set after the instruction, or have value 7 when
no barrier needs to be set. Bits 12 through 17 indicate which
combination of the six barriers the thread must wait for before
dispatching the associated instruction. We skip the remaining
four bits, which the disassembler already in-lines as cache
”reuse” modifiers attached to register operands.

Although this architecture allows instructions to set two bar-
riers, trying to set an unexpected barrier can cause erroneous
behavior. The first barrier slot is used to handle true dependen-
cies, for variable-latency instructions that have a destination
register (e.g. loads); the second barrier slot is used to handle
anti-dependencies, for variable-latency instructions that have
source registers (e.g. stores). If an instruction depends on a
barrier, the thread will wait for every instruction that set that
barrier.

In the case of Fig. 10, the thread must wait at least 3
cycles after the first instruction. Upon dispatching the second
instruction, it sets write barrier #1, and then must wait at least
13 cycles. Since the lowest two bits are set for the barrier wait
bit-field, the thread waits for both barrier #0 and barrier #1 to
be released before dispatching the third instruction, and after
dispatch it waits at least 6 cycles.

Compute Capability 7.x: The ”Volta” generation, which
includes Compute Capabilities 7.0 and 7.2, has another new
ISA. In this generation, instructions have been expanded to
16 bytes in size, with scheduling information embedded into
each individual instruction. We have not completely decoded
this ISA yet, but it is in progress, and can be decoded with
similar methods to the previous architectures.

V. APPLICATIONS

There have been several works which interact with the
binary-level GPU code, but due to the closed-source nature of
NVIDIA’s ISAs, they have been forced to make use of third-
party projects. Our work is designed to support as many of
these ISAs as possible, and has already been used by authors
of [7], [10], and [12].

Our framework uses Flex [22] and Bison [23] to parse the
assembly code, generating an intermediate representation (IR)
in which the precise version of the ISA is largely irrelevant.
Applications can directly make use of our framework as a
front-end and back-end, operating on this IR. For example,
if an application needs to convert local memory operations
to shared memory operations, it can simply scan the IR for
local memory instructions, change each one’s memory type,
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Fig. 11. Example of converting local memory instructions to shared memory
instructions.

and change their memory addresses as necessary, as shown in
Fig. 11.

In Fig. 11, (a) shows Compute Capability 3.x binary code
in hexadecimal format, (b) shows the corresponding assembly
code extracted with our front-end, (c) shows the result of
modifying the memory instructions, and finally (d) shows
the new binary generated by our assembler. Our framework
already performs each of these steps except the transformation
from (b) to (c).

Our framework can serve as an architecture-independent
infrastructure for various applications described below. Un-
like existing assemblers, it can provide them compatibil-
ity with multiple generations of GPUs. Our framework
is available at https://github.com/decodecudabinary/Decoding-
CUDA-Binary.
Compilation CUDA developers are currently reliant on
NVIDIA’s closed-source software for compilation. With access
to the instruction encoding, however, the development of an
open-source GPU compiler is possible. This would allow
researchers to easily explore various compiler optimizations,
such as new algorithms for GPU register allocation.
IR Generation Our framework enables versatile control flow
analysis by leveraging our intermediate representation. When
we parse the assembly into its IR, we organize the instructions
into basic blocks. We convert branch targets from literal offsets
to pointers, and break up instruction-scheduling values into
their associated instructions. This organization of the code
results in human-readable assembly, allowing developers to
better understand a program, and facilitates techniques such
as binary instrumentation.
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Fig. 12. Example of instrumenting the code to clear some registers before
exit.

Binary Instrumentation Once we organize the assembly into
basic blocks, code can easily be inserted or deleted, with
scheduling data placed automatically. In [10] our framework
was used to perform GPU binary instrumentation, in order to
protect otherwise vulnerable regions of memory. In Fig. 12, we
show a simple example: (a) is a snippet of raw assembly code,
(b) is human-readable assembly generated by our framework,
and (c) is modified assembly that has been instrumented to
clear some registers before exiting the kernel.

Binary instrumentation can be done even without access to
a program’s source code. Furthermore, since our IR is not
tied to a single version of the ISA, changes to the code can

be compatible with many architectures, using our generated
assemblers to target different devices as needed.

VI. RELATED WORK

There are several works which interact with the binary code,
but are limited to specific architectures, and so could benefit
from our framework in order to support additional devices. In
GPES [5], the authors transform the binary to enable workload
partitioning to be performed in a manner totally transparent
to applications - though they state that more sophisticated
binary analysis is still needed to support complex kernels. [8]
proposes a synchronization scheme which uses binary-level
instructions to achieve greater efficiency than other lock-based
approaches. In [9], the KernelGen framework employs several
instructions that exist only in the binary ISA, modifying the
code and other parts of the ELF.

In [17], the Fermi generation (Compute Capability 2.x) was
examined. In [4], the late Kepler generation (Compute Capa-
bility 3.x) was explored to optimize the SGEMM application.
[3] reverse-engineered Maxas (Compute Capability 5.x), and
[18] looked at Volta (Compute Capability 7.x). But to the best
of our knowledge, ours is the first work that strives to provide
assembler generating framework in order to support as many
NVIDIA architectures as possible.

VII. CONCLUSION

The closed-source nature of NVIDIA’s ISA restricts the ca-
pabilities of developers and researchers. Sufficient knowledge
of the ISA enables better optimization and security, as well as
allowing various applications including register allocation and
binary instrumentation. The assembler generation technique
we developed permits rapid decoding of the machine code
for various GPU generations. Furthermore, the framework we
built makes these assemblers easy to use for architecture-
independent applications. Authors of several works [6] [7] [10]
[12] have utilized our framework.

APPENDIX A
ARTIFACT APPENDIX

A. Abstract

Our artifact includes a copy of our Assembler Generator,
which takes CUDA benchmarks (executables) as input, and
creates CUDA SASS assemblers (written in C++) as output.
Our software and inputs expect a Linux environment, and
for compilation they require GNU C/C++, Flex and Bison,
and NVIDIA’s CUDA Toolkit. There are no explicit hardware
requirements.

This appendix contains detailed information on our artifact
and its usage, including links for obtaining additional inputs
beyond the selection of benchmarks included in our artifact.
Our artifact itself is freely available at Zenodo [24].
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B. Artifact Check-List (Meta-Information)

• Algorithm: CUDA SASS Assembler Generation
• Compilation: Requirements: GNU C/C++; Flex and Bison;

NVIDIA CUDA Toolkit
• Data set: Rodinia Benchmark Suite and CUDA SDK Code

Samples
• Run-time environment: Linux; we used openSUSE and

Ubuntu in our experimentation.
• Output: C++ code for assembling CUDA SASS assembly into

binary
• How much disk space required (approximately)?: 25

Megabytes, or more with additional benchmarks/data.
• How much time is needed to complete experiments (approx-

imately)?: Seconds or minutes, depending on the benchmarks
included in the data set.

• Publicly available?: Yes; complete code will be made available
at a later date.

C. Description

1) How Delivered: A functional copy of our Assembler
Generator for this artifact is freely available at Zenodo [24].

2) Hardware Dependencies: There are no hardware depen-
dencies.

3) Software Dependencies: For full functionality, our tools
require a Linux operating system; we have tested them on
openSUSE and Ubuntu.

Software requirements include C/C++, Flex and Bison, and
NVIDIA’s CUDA Toolkit (https://developer.nvidia.com/cuda-
downloads). We used version 6.5 of the CUDA Toolkit when
preparing this artifact, however, we believe any version be-
tween v5.0 and the latest release (v10.0) should work.

4) Data Sets: Our data sets consist primarily of the Ro-
dinia Benchmark Suite - http://lava.cs.virginia.edu/Rodinia/
download links.htm - and the CUDA SDK Code Samples -
which can be installed as part of the CUDA Toolkit (https:
//developer.nvidia.com/cuda-downloads). Our artifact includes
a small subset of these benchmarks, and a Bash script to
compile them.

In our own experiments, we used all of the following
benchmarks from Rodinia and the CUDA SDK: backprop,
bfs, bicubicTexture, b+tree, cfd, dct8x8, dxtc, FDTD3d, gaus-
sian, heartwall, hotspot, imageDenoising, interval, kmeans,
lavaMD, leukocyte, lud, matrixMul, MC SingleAsianOptionP,
mummergpu, myocyte, nbody, nn, nw, particlefilter, particles,
pathfinder, RAY, recursiveGaussian, srad, streamcluster.

The artifact copy of our Assembler Generator expects
benchmarks to target Compute Capability 3.x, 5.x, and/or 6.x
devices only.

D. Installation

Our Assembler Generator and each of the benchmarks is
accompanied by a Makefile. To build each of them, run make
inside each of their directories. For the provided subset of
benchmarks, we include a Bash script that will compile all of
them and place their executable into a single directory.

E. Experiment Workflow

GPU kernel functions are extracted from compiled bench-
marks and fed into the Assembler Generator one-at-a-time

for analysis; persistent data from analysis is passed through
standard in and standard out. After processing each of the
kernel functions, the Assembler Generator is used to perform
one or more rounds of bit flipping in order to improve its re-
sults: bit-flipped binary code is written into an executable, and
then re-extracted with its assembly and analyzed. Finally, the
Assembler Generator is invoked once more to prepare CUDA
SASS assemblers (written in C++). These new assemblers can
be tested on one or more of the benchmarks to confirm it
produces the same code as the original.

In other words, the basic experiment workflow steps are as
follows: prepare benchmarks, extract kernel functions, analyze
kernel functions, generate bit-flipped code, inject bit-flipped
code into executable, extract bit-flipped kernel function, an-
alyze bit-flipped kernel function, generate assembler code,
assemble code into benchmarks, verify that benchmarks have
not changed.

F. Evaluation and Expected Result

We provide a Bash script, with filename procExes.sh, which
performs all of the above Experimental Workflow steps except
for preparing the benchmarks (the CUDA executables used as
input). Before running the script, all input executables should
be placed in the exes subdirectory.

The script places generated assemblers’ code into files
named generatedAssemblerXX.txt, where XX is the version
number of the target architecture. If a Compute Capability
3.5 assembler is generated, it is placed into the source code
for our included asm2bin tool, and tested on each Compute
Capability 3.5 benchmark to confirm its correctness.

G. Experiment Customization

Additional benchmarks can be used; simply place the de-
sired CUDA executable inside the exes sub-directory before
running our procExes.sh script.

The target architecture for the provided subset of bench-
marks can be changed by modifying their Makefile. For
example, to use Compute Capability 5.0 code instead of 3.5,
change the -arch=sm 35 flag to -arch=sm 50.

H. Notes

When injecting assembled or bit-flipped binary code into an
executable, our program modifies the GPU ELF according to
the specifications we have made available on Zenodo [15].

When generating bit-flipped code, our Assembler Generator
outputs it as a list of BINCODE instructions. BINCODE is not
a real opcode used by NVIDIA, but rather a phony opcode we
use in our own tools to indicate that the instruction contains
only binary code.

A more complete and well-documented copy of our As-
sembler Generator and related tools is available at https:
//github.com/decodecudabinary/Decoding-CUDA-Binary.
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