
Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Locality-Aware Software Throttling
for Sparse Matrix Operation on GPUs

Yanhao Chen and Ari B. Hayes, Rutgers University; Chi Zhang, University of Pittsburgh;
Timothy Salmon and Eddy Z. Zhang, Rutgers University

https://www.usenix.org/conference/atc18/presentation/chen-yanhao

This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-939133-02-1

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs

Yanhao Chen∗

Rutgers University
Ari B. Hayes∗

Rutgers University
Chi Zhang

University of Pittsburgh
Timothy Salmon

Rutgers University

Eddy Z. Zhang
Rutgers University

Abstract
This paper tackles the cache thrashing problem caused
by the non-deterministic scheduling feature of bulk syn-
chronous parallel (BSP) execution in GPUs. In the BSP
model, threads can be executed and interleaved in any
order before reaching a barrier synchronization point,
which requires the entire working set to be in cache for
maximum data reuse over time. However, it is not always
possible to fit all the data in cache at once. Thus, we pro-
pose a locality-aware software throttling framework that
throttles the number of active execution tasks, prevents
cache thrashing, and enhances data reuse over time. Our
locality-aware software throttling framework focuses on
an important class of applications that operate on sparse
matrices (graphs). These applications come from the do-
mains of linear algebra, graph processing, machine learn-
ing and scientific simulation. Evaluated on over 200 real
sparse matrices and graphs that suffer from cache thrash-
ing in the Florida sparse matrix collection, our technique
achieves an average of 2.01X speedup, a maximum of
6.45X speedup, and a maximum performance loss≤5%.

1 Introduction

Operations on sparse matrix and graph are important for
solving linear algebra and optimization problems that
arise in data science, machine learning, and physics-
based simulation. In this paper we focus on a fundamen-
tal sparse matrix operation that relates an input vector x
with an output vector y. Let x be an n× 1 vector, y be
an m× 1 vector, and A be a m× n matrix, the relation
between y and x is defined as y = Ax, where

yi = reduce op{Aik
⊙

xk}, 1≤ k ≤ n.

When the operator reduce op is sum and the binary
operator

⊙
is multiplication, the operation is sparse ma-

∗First authors Chen and Hayes have made equal contributions to
this work and are listed alphabetically.

trix vector multiplication (SpMV). When the operator re-
duce op is min and the binary operator

⊙
is +, the oper-

ation is an iterative step in the single source shortest path
(SSSP) problem [13]. An example is shown in Figure 1.

y1 y2 y3 y4

x1 x2 x3

w0 w1 w2
w3 w4 w5

w0
w1
w2 w3

w4 w4

y = Ax where yi = reduce_op{Aik ⊙ xk, 1 <= k <= N }

Figure 1: A Fundamental Sparse Matrix Operation

However, poor data reuse is often a problem when run-
ning sparse applications on GPUs. Throttling is a useful
technique to improve data reuse. Unlike other locality
enhancement techniques that focus on spatial data reuse
on many-core, for instance, the memory coalescing tech-
niques [33], throttling improves data reuse over time by
limiting the number of actively executed tasks.

Throttling prioritizes the execution of the tasks that
reuse the data in the cache over those that do not reuse
the data in the cache. Figure 2 shows an example of
how throttling improves cache data reuse. Assuming the
cache capacity is 4, in the original case, the cache can-
not hold all the data elements in the execution list which
will inevitably cause cache (capacity) misses. Throt-
tling helps by dividing the execution into two phases and
scheduling one phase after another. Data elements in
each phase can now fit into cache and be fully reused
so that no cache (capacity) misses will occur.

Throttling for GPU has been studied extensively in
the hardware context. Rogers and others [27] discovered
that limiting the number of active wavefronts (warps) en-
hances cache data reuse over time and alleviates cache
thrashing. The DYNCTA framework [19] limits the
number of CTAs for memory intensive applications and
results in better cache performance. The work by Chen
and others [8] augmented cache bypassing with a dy-

USENIX Association 2018 USENIX Annual Technical Conference 413

<X1 Y1>
<X1 Y4>
<X2 Y1>
<X2 Y3>
<X3 Y1>
<X3 Y3>
<X4 Y1>
<X4 Y4>

Cache Capacity: 4

3 Items Cannot Fit in

Capacity Misses Occur

Y3 X3 X4

X1 Y1 X2 Y4

<X1 Y1>
<X1 Y4>
<X4 Y1>
<X4 Y4>

Phase One

Cache Capacity: 4

No Capacity Misses

X1 Y1 X4 Y4

<X2 Y1>
<X3 Y1>
<X2 Y3>
<X3 Y3>

Phase Two

Cache Capacity: 4

No Capacity Misses

X2 Y1 X3 Y3

Figure 2: Throttling Example

namic warp-throttling technique to improve both cache
performance and energy efficiency. However, all these
prior throttling techniques on GPUs have been developed
as hardware modifications.

In this paper, we present a software throttling frame-
work that targets irregular applications operating on
sparse data. Our software throttling framework will first
divide the entire workload into multiple partitions such
that the working set of each partition fits into the cache
and the data communication between different partitions
is minimum (we will refer to each partition as cache-fit
partition or cache-fit work group throughout this paper).
Then we schedule the cache-fit partitions and let each of
them be processed independently to ensure throttling.

There are three main challenges for realizing software
throttling. First, the traditional work partition models
focus on minimizing data reuse among different parti-
tions with load-balancing constraints [2, 6, 29]. How-
ever, cache-fit work partitioning is not necessarily load-
balanced, it should be data-balanced across different par-
titions. Second, inappropriate scheduling of cache-fit
partitions might result in low execution pipeline utiliza-
tion. For each of the cache-fit partitions that have low
data reuse, there may not be enough tasks running con-
currently, which will make the execution pipeline units
not fully utilized and degrade the computation through-
put. Last, reducing the overhead of software throttling
is important and yet challenging, especially for finding
minimum communication cache-fit partitions, which is
the most time-consuming step in software throttling.

To tackle these challenges, we propose the three fol-
lowing techniques. To obtain cache-fit partitions, we de-
velop an efficient data-balanced work partition model.
Our partition model can balance data while minimizing
the communication cost among different partitions. We
also introduce a split-join scheduling model to take ad-
vantage of the trade-off between throttling and through-
put. The split-join scheduling model adaptively merges
partitions to avoid low execution pipeline utilization
and/or use a concurrent queue based implementation for
relaxed barrier synchronization. We reduce the partition
overhead by a coarse-grained partition model which was
built upon a multi-level partition paradigm. Instead of

partitioning the original work matrix (graph), our model
partitions a coarsened matrix (graph) which can signif-
icantly reduce the partition overhead while maintaining
similarly good partition quality.

Our throttling technique is a pure software based im-
plementation. It is readily deployable and highly effi-
cient. Evaluated over 228 sparse matrices and graphs
from Florida matrix collection [11] - the set of matri-
ces which suffer from cache thrashing (their working
set cannot entirely fit into the L2 cache on the Maxwell
GPU and Pascal GPU we tested), our software throttling
method can achieve an average 2.01X speedup (maximal
6.45X speedup).

As far as we know, this is the first work that system-
atically investigates software throttling techniques for
GPUs and is extensively evaluated on real sparse matri-
ces and graphs. The contribution and the outline of our
paper is summarized as follows:

• We introduce an analytical model named data-
balanced work partition for locality-aware software
throttling. Efficient heuristics are developed to
achieve (near-)minimum communication cache-fit
work partitions that can be further scheduled to al-
leviate GPU cache thrashing (Section 2).

• We exploit the trade-off between cache locality
and execution pipeline utilization and provide a set
of practical cache-fit work group scheduling poli-
cies based on adaptive merging and concurrent de-
queuing. We discuss the advantages/disadvantages,
the applicability, and the effectiveness of each
scheduling policy in different settings. (Section 3).

• Our method requires no hardware modification. It
is low overhead and readily deployable. We in-
troduce efficient overhead control mechanisms for
graph(matrix)-based work partition. (Section 4).

• We conduct a comprehensive data analysis for over
200 large real sparse matrices(graphs). Our frame-
work in particular works well for the set of sparse
matrices that have large working sets and suffer
from high GPU cache contention (Section 5).

2 Data-Balanced Work Partition

Our software throttling framework first divides the entire
workload into cache-fit partitions. A cache-fit partition’s
working set fits into the cache such that it will not cause
any cache capacity miss. This section presents the con-
cept and methodology of data-balanced work partition.

414 2018 USENIX Annual Technical Conference USENIX Association

2.1 Graph Representation
In this paper, we focus on a fundamental operation in
sparse linear algebra and optimization applications. It is
defined as follows. Assume we have an m×n matrix A,
an n×1 vector x, and an m×1 vector y such that:

yi = reduce op{Aik
⊙

xk},1≤ k ≤ n (1)

The operator
⊙

is a binary operator, and the operator
reduce op is a reduction operator. When

⊙
is product

× and reduce op is sum, the operation is a sparse matrix
vector multiplication (SpMV). When

⊙
is plus + and

reduce op is min, the operation is a min/product step in
the single source shortest path (SSSP) problem.

We represent a computation unit as a 2-tuple (x j,yi)
which represents (1) one binary

⊙
operation between

x j and Ai j , and (2) one step in the reduction operation
reduce op for obtaining yi. We only focus on vector x
and y, since the matrix entries will be used only once in
Equation (1).

We represent the entire workload as a 2-tuple list. Us-
ing a graph representation, each data element in the 2-
tuple is modeled as a vertex and each tuple is modeled
as an edge that connects the corresponding two vertices.
Performing a work partition is essentially performing an
edge partition on the graph, as illustrated in Figure 3.

2.2 Data-Balanced v.s. Load-Balanced
We formally define the data-balanced work partition
model. The input is a list of 2-tuple modeled as a work
graph and the output is a set of minimum-interaction
work partitions such that the number of unique vertices,
which represent data elements, in every work partition is
less than or equal to the cache capacity.

In contrast to prior load-balanced work partition, we
perform data-balanced work partition. We denote this
problem as a Vertex-balanced Edge-Partition (V-EP)
model and we give the definition below:

Definition 2.1.
Vertex-balanced Edge-Partition (V-EP) Problem
Given a graph G = (V,E) with the set of vertices V and
the set of edges E, and vertex capacity constraint T .
Let x ={e1,e2, ...ek} denote a partition of the edges of
G into k disjoint subsets, and let V (ei) denote the set of
unique vertices in ei. ∀n ∈V , let P(n) denote the number
of subsets that n’s incident edges fall into. We optimize
the total vertex replication cost:

minimize
x

R(x) = ∑
n∈V

(P(n)−1)

subject to ∀i ∈ [1..k], |V (ei)| ≤ T
(2)

In prior work, the Edge-balanced Edge-Partition (E-
EP) problem has been well studied particularly in the dis-

tributed graph processing setting [6, 14] and also for bal-
ancing workloads in GPU [25, 26]. However, the V-EP
problem is not. Both the V-EP and E-EP problems mini-
mize vertex replication cost, while the E-EP model aims
to balance the load among processors in space, and the
V-EP model aims to alleviate cache thrashing and maxi-
mize data reuse over time.

(a) Data-Balanced Work Partition (b) Load-Balanced Work Partition
Partition 1 Partition 2

4 Data Items in Each Partition
4 Data Items in One and

6 Data Items in the Other Partition

Partition 1 Partition 2

y1 y2

x1 x2

y3 y4y3 y4

x3 x4 x3 x4

y1 y2

x1 x2

Figure 3: Data-Balanced v.s. Load-Balanced

We use an example in Figure 3 to illustrate the dif-
ference between the V-EP work partition and the E-EP
work partition. Assuming the cache capacity is 4, Figure
3 (a) shows a 2-way V-EP work partition: one partition
has 4 edges and the other has 2, the unique vertices of
both (4 vertices) fit into cache. Figure 3 (b) shows an-
other 2-way E-EP partition: Each partition has 3 edges,
however partition 2 has 6 unique vertices and do not fit
into cache. Thus the E-EP model might exacerbate rather
than alleviate the cache thrashing problem.

2.3 Partition Framework
We propose a data-balanced work partition framework
that ensure the working set of each partition is of the
same size and in the meantime the data reuse across dif-
ferent partitions is reduced as much as possible.

Our partition framework is a recursive bisection
framework. Bisection is a 2-way balanced edge partition
that ensures minimum vertex replica between two equal-
size edge partitions. The optimal bisection is a well stud-
ied problem [25]. We take the advantage of the bisection
method and perform hierarchical partitioning.

During the recursive partition process, the framework
bisects a sub-graph that has more unique vertices than
specified by the capacity constraint. It keeps bisecting
until no such sub-graph exists.

We use a tree data structure to keep track of the ob-
tained sub-graphs. Starting from the root node that rep-
resents the entire work graph, the framework bisects the
corresponding graph and generates two children nodes:
each of the child nodes corresponds to a sub-graph that
contains half of the edges from the parent node. If either
or both children nodes violate the capacity constraint, ei-
ther or both will be added to the list of sub-graphs that
need to be further bisected. The process repeats until all
leaf nodes become cache-fit work partitions.

USENIX Association 2018 USENIX Annual Technical Conference 415

The detailed algorithm is listed below in Algorithm
1. The data-balanced work partition (DBWP) procedure
takes the work graph G and the cache capacity constraint
T as input, and generates a set of cache-fit partitions P as
output. The bisect function in Algorithm 1 we adopted
is based on the best existing balanced edge partition al-
gorithm named SPAC [26, 24] by Li and others. We will
discuss the implementation details and the overhead con-
trol mechanisms of the bisect function in Section 4.

Algorithm 1 Data-Balanced Work-Partition (DBWP)
Input: work graph G, cache capacity T
Output: cache-fit partition set P

1: procedure DBWP(G, T , P)
2: if |G.data elements|> T then
3: (lchild, rchild) = bisect(G)
4: DBWP(lchild, T , P)
5: DBWP(rchild, T , P)
6: else
7: add G to P
8: end if
9: end procedure

We use an example to illustrate the DBWP procedure
in Figure 4. In this example, the graph has 8 edges and
8 vertices, and the cache capacity constraint is 4. Per-
forming bisect for the sub-graph represented by the tree
root node, we obtain two sub-graphs each of which has 4
edges. The vertex replica cost is optimum: 2, since two
nodes y2 and x2 appear in both partitions.

AllTuples

A  
(x1, y1), (x1, y2)
(x2, y1), (x2, y2)

B, C

B
(x2, y3)
(x3, y3)

C
(x4, y2)
(x4, y4)

(a) Bisection Process (b) Tree Representation

Capacity Constraint: 4

{(x1, y1), (x1, y2), (x2, y1), (x2, y2), (x2, y3), (x3, y3), (x4, y2), (x4, y4)}
AllTuples =

}{

}{ }{

y1

x1

y2 y3 y4

x2 x3 x4

Partition A Partition B Partition C

Figure 4: Hierarchical Bisection Example

The first sub-graph A in Figure 4 (a) has 4 unique ver-
tices and does not violate the capacity constraint, we do
not perform further bisection on sub-graph A. The other
sub-graph, however, has 6 unique vertices and does not
fit into the cache. Therefore we perform the second bi-
section and obtain partitions B and C where the vertex
replica cost is optimum (0 in this case). At this point,
there is no sub-graph that does not fit into the cache,
therefore we terminate the bisection process. The tree
representation is shown in Figure 4 (b).

3 Cache-Fit Partitions Scheduling

DBWP model outputs a set of cache-fit partitions. All
these partitions need to be processed independently to
minimize cache-thrashing interference. However, naive
scheduling of these partitions might result in low exe-
cution pipeline utilization. In this section, we introduce
four different Cache-Fit Partitions Scheduling methods:
Cache-Fit Scheduling (CF), Cache-Fit Queue Schedul-
ing (CF-Q), Split-Join Scheduling (SJ) and Split-Join
Queue Scheduling (SJ-Q).

CF works well when all cache-fit partitions have high
data reuse. SJ is good for cases when the sparsity struc-
ture is already known, for instance, pruned deep leaning
neural networks. Both CF-Q and SJ-Q can loosely en-
force throttling and provide a better performance.

3.1 Cache-Fit Scheduling
A straightforward way to isolate the computation of dif-
ferent cache-fit partitions is to assign each partition a
single kernel function and execute these kernels one by
one. A kernel is a function that is executed on GPU. All
threads within a GPU kernel will need to finish before the
entire kernel complete – there is a strict barrier between
different GPU kernels. Moreover, between two consecu-
tive kernels, the data in the cache will be invalidated.

Here, we propose CF which separates the original ker-
nel functions into multiple kernels, while the number of
which is determined by the number of cache-fit partitions
given by DBWP model. The code of the kernel function
for each cache-fit partition is the same. The only differ-
ence is the input to each kernel. CF ensures that the data
in the cache is fully reused before it was evicted from the
cache within each cache-fit partition.

Original: Kernel<<<blocknum, blockdim>>(TL, N);

Phase 1: Kernel<<<blocknum, blockdim>>(TL’[1], P1);
Phase 2: Kernel<<<blocknum, blockdim>>(TL’[2], P2);……
Phase k: Kernel<<<blocknum, blockdim>>(TL’[k], Pk);

TL is the original tuple list,
TL[i] is the tuple list corresponding to the ith cache-fit partitions

K is # of cache-fit partitions, N is # of tuples, Pi is # of tuples in TL[i]

Figure 5: Kernel Splitting for Cache-Fit Scheduling

We show the idea of CF in Figure 5. The input 2-
tuple task list T L is split into k 2-tuple lists T L′, which
corresponds to each of the cache-fit partitions. Each new
tuple list will be processed by a single kernel.

3.2 Cache-Fit Queue Scheduling
CF makes sure that each cache-fit partition will be pro-
cessed by one kernel. Although CF can provide good

416 2018 USENIX Annual Technical Conference USENIX Association

throttling performance for a lot of matrices, this schedul-
ing method may cause low execution pipeline utilization
for the type of matrices whose data reuse is low. For ex-
ample, for a given cache size T and average data reuse
ratio r for a cache-fit partition, the total work is T ∗ r/2
using our work graph model. The variable T is fixed for
a given architecture. If r is low, the number of concurrent
tasks in one cache-fit partition p is low and may not keep
the execution pipeline busy.

To avoid this problem, we propose CF-Q, which pro-
cesses the whole tuple list in a single kernel instead of
one invocation per cache-fit partition. However, using a
single kernel means that elements in one cache-fit parti-
tion have no guarantee to be executed without any inter-
ference. To enable throttling, we set up a FIFO queue be-
fore launching the kernel. Each queue entry corresponds
to a chunk of tuples so that adjacent chunks are from the
same cache-fit partition. A warp automatically fetches a
chunk from the queue and process the tuples from that
chunk. We show an example of how CF-Q works in Fig-
ure 6.

Figure 6: Queue Based Scheduling Example

Unlike CF which has explicit barriers to strictly en-
force the independent execution of different cache-fit
partitions, CF-Q uses no barrier. It is possible that the
last chunk in one partition and the first chunk in the
next partition are fetched within a very short time pe-
riod. In Figure 6, chunk 1 and chunk 2 from partition
2 will be running concurrently with chunk N from parti-
tion 1. However, CF-Q can still provide relaxed barriers
between different partitions since chunks from the same
cache-fit partition in the queue will always be retrieved in
consecutive time periods so that no following partitions
can be executed before previous one starts. The pseudo
code of CF-Q is provided in Algorithm 2.

3.3 Split-Join Scheduling
Split-Join (SJ) is another method that exploits the trade-
off between locality and execution pipeline utilization.
SJ dynamically merges the cache-fit partitions that has
low data reuse or combines low data reuse partitions with
a high data reuse partition that is less likely to be inter-
fered. SJ first constructs the tree structure that represents
the hierarchical cache-fit partitions which we discussed

Algorithm 2 Cache-Fit Queue Scheduling
Input: cache-fit partition set P

1: procedure CF-Q(P)
2: for each partition p in P do
3: insert p into queue Q
4: end for
5: Kernel(Q)
6: end procedure
7: procedure KERNEL(Q)
8: while Q is not empty do
9: I ← next queue item (chunk) from Q

10: process I[laneID]
11: end while
12: end procedure

in Section 2.3, we will refer to this as SJ-tree. SJ merges
sibling nodes in the SJ-tree conditionally in a bottom-
up manner. We only consider recombining sibling nodes
as the sibling nodes have better data sharing than non-
sibling nodes and the merging is logarithmic time.

SJ is performed with a fast online profiling process.
We define a profiling pass as a profiling of all the nodes
at one level of the SJ-tree which comprises one traversal
of the entire work graph. So, the entire profiling pro-
cess will take d profiling passes, where d is the depth of
the SJ-tree. It takes at least log(k) and up to k profiling
passes for any given SJ-tree, where k is the number of
leaf nodes in the tree. The lower bound log(k) is reached
when the binary tree is balanced and has log(k) levels.
Moreover, in the worst case scenario, when the tree is
not balanced and at every level there is at most one leaf
node, k profiling passes are needed. We run every work
partition that corresponds to a leaf node in the SJ-tree in
stand-alone mode and record the running time.

We use the first d iterations of the linear algebra and
optimization applications to collect information for pro-
filing. Since those applications we tested take between
50 and 22,000 iterations to converge, the overhead of
profiling can be amortized. For example, G3 circuit need
5 iterations for profiling, and the total profiling time for
Conjugate Gradient (CG) solver takes 0.017 s. The run-
ning time for CG with 22824 iterations is 94.331 s which
gives us 0.018% profiling overhead. In practice, among
all the matrices we used in the experiment, we found that
the SJ-tree had at most 8 levels and thus required at most
8 passes for profiling.

The tree node merging problem can be defined as a
tree-based weighted set cover problem. Merging two sib-
ling nodes is as if choosing their parent node. The prob-
lem becomes how to find a subset of tree nodes P that
will cover all possible cache-fit partitions (leaf nodes)
while minimizing the overall running time:

minimize ∑
x∈P

c(x)

subject to
⋃
x∈P

S(x) = L
(3)

USENIX Association 2018 USENIX Annual Technical Conference 417

where L is the set of all leaf nodes, P is the subset of
the tree nodes (both leaf and non-leaf nodes) we want to
find, c(x) is a cost function that denotes the standalone
running time of node x and S(x) is a set function that
returns all leaf nodes of the subtree under node x.

Algorithm 3 Tree Recombination
Input: SJ-tree root
Output: optimal running time of SJ-tree root

1: procedure TREERECOMB(root)
2: return BESTCONFIG(root)
3: end procedure
4: procedure BESTCONFIG(r)
5: le f t t = BESTCONFIG(r.leftChild)
6: right t = BESTCONFIG(r.rightChild)
7: this node t = r.stime
8: r.btime = min(le f t t + right t, this node t)
9: return r.btime

10: end procedure

We develop a linear time algorithm that is capable
of finding the optimum solution for the tree-based set
cover problem. The algorithm processes the tree in post-
topological order. Every node is associated with an at-
tribute btime and an attribute stime. A sub tree’s op-
timum time btime (annotated as an attribute of its root
node) is the minimum of the two items: its root node’s
standalone running time stime and the summation of its
two children subtree’s btime. For a leaf node, its btime
is the same as its standalone running time stime. The
pseudo code is provided in Algorithm 3 together with
an example in Figure 7. This process identifies the best
set cover of the SJ-tree and determines how to recom-
bine cache-fit partitions into every GPU kernel. SJ can
achieve high execution pipeline utilization without sacri-
ficing cache benefits (as data reuse is low for these low
pipeline utilization cases).

stime: 1.2

stime: 0.3

stime: 0.2 stime: 0.2

A

stime: 0.5

B C

D E

A.btime min(A.stime,
B.btime + C.btime) 0.8

B.btime B.stime 0.5

C.btime min(C.stime,
D.btime + E.btime) 0.3

D.btime D.stime 0.2

E.btime E.stime 0.2

{B, C} is chosen as the best configuration.

Figure 7: Tree Node Recombination Example

3.4 Split-Join Queue Scheduling
SJ dynamically merges cache-fit partitions that has low
data reuse to ensure high execution pipeline utilization
and good throttling performance. However, although SJ
can provide Strict Barriers between different (merged)

partitions, SJ cannot guarantee the execution order of
those cache-fit partitions inside the merged partitions.

We propose SJ-Q which uses the idea of CF-Q that
places cache-fit partitions in one merged work group
(kernel) into a queue and each kernel will be using one
independent queue. SJ-Q can provide both strict barriers
between different merged partitions and also relaxed bar-
riers between cache-fit partitions from the same merged
partition. In the mean time, it inherits the advantage of
SJ that avoids low execution pipeline utilization.

Sched. Pipeline Prof. Barrier Queue Code
Util. Change

CF Low No Strict (S) No No
CF-Q High No Relaxed (R) Yes Yes

SJ High Yes Strict No No
SJ-Q High Yes S/R Yes Yes

Table 1: Comparison of Four Scheduling Methods:
Sched. refers to Scheduling Method, Prof. refers to if
profiling is needed, and Util. refers to utilization.

Summary CF enforces strict barriers between different
cache-fit partitions to ensure throttling. However, low
execution pipeline utilization may happen which can de-
grade the computation performance; CF-Q uses a queue
based method that can fully utilize the execution pipeline
and loosely enforce barriers between consecutive cache-
fit partitions; SJ merges those low data reuse partitions
into one based on a tree set cover algorithm and online
profiling; SJ-Q enforces strict barriers between different
merged partitions and relaxed barriers between different
cache-fit partitions within one merged partition.

We summarize the features of four scheduling meth-
ods in Table 1. All methods ensure good throttling per-
formance while different methods impose different levels
of barrier synchronization and code change overhead.

4 Implementation

We perform the adaptive overhead control mechanisms
and data reorganization to make our software throttling
method more efficient. We reduce the overhead of bi-
section in the DBWP Model, which is the most time-
consuming part. In particular, we focus on two bisection
algorithms: 1) Coarsened Bisection built upon the SPAC
model by Li and others [25], and 2) K-D tiling built upon
the k-d tree geometric space partitioning method [5].

We also use CPU-GPU pipelining to make the
scheduling overhead transparent [33]: the CPU deter-
mines the best schedule while GPU is doing the actual
computation. We improve the kernel performance by
transforming data layout after we get cache-fit partitions
such that the data access within the same kernel is coa-
lesced as much as possible.

418 2018 USENIX Annual Technical Conference USENIX Association

4.1 Adaptive Overhead Control

Coarsened Bisection Coarsened Bisection is based on
SPAC [25] an effective sequential edge partition model.
SPAC relies on a multi-level partition paradigm, in
which, a graph is coarsened, partitioned, and refined/un-
coarsened level by level. In Coarsened Bisection, we re-
duce the overhead of SPAC by eliminating the last few
levels of refinement steps. We discovered that the last
few coarsened levels (five to seven levels) of refinement
stages in the multilevel partitioning scheme, if omitted,
do not lead to much performance difference for our soft-
ware throttling methods. While at the same time, a large
amount of partition over can be saved.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

1 2 3 4 5 6 7 8 9

S
P
M

V
 S

p
e
e
d
u
p

Number of Coarsening Levels

cit-Patents

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000

0 2 3 4 5 6 7

P
a
rt

it
io

n
 O

v
e
rh

e
a
d

 (
m

s)

Number of Coarsening Levels

cit-Patents

Figure 8: Trade-off between Eliminated Refinement
Levels and Scheduling Overhead/Benefits

We show the trade-off between the number of levels
where the refinement step is eliminated, and the SPAC
partition overhead, and the SpMV speedup when apply-
ing the SPAC for scheduling, for the sparse matrix cit-
patents [11] in Figure 8. It can be seen from the figure
that by eliminating the last five to seven levels of refine-
ment, the overhead is reduced by up to 7.5x, while the
SpMV speedup only changed from 1.5x to 1.4x.

The detailed algorithm is showed in Algorithm 4. No-
tice that the input graph is already an coarsened graph,
since we can perform first level coarsening while read-
ing data from file. We also parallelize the merging phase
in the coarsening phase to further reduce overhead. The
merging phase is mainly for reconstructing the coarsened
graph in each level and is amenable to parallelization.

Algorithm 4 Coarsened Bisection
Input: Coarsened Graph G
Output: Partition P

1: procedure COARSENBISECT(G)
2: // we call a set of edges - an entity
3: build entity based adjacent list L of G
4: for level ∈ {1, . . . ,maxLevel} do
5: sort L by entity degree
6: for each entity e do
7: merge e with its heaviest avaliable neighbor ne
8: end for
9: build coarsened L by results from above step

10: end for
11: build coarsened graph G′ from L
12: P←graphPartition(G′)
13: end procedure

K-D Tiling Another bisection method we adopted is
a tiling based method: K-D Tiling. Since any graph
can be converted into a sparse matrix representation,
we treat the partition as a partition in a geometric two-
dimensional space. This method is similar to the k-d tree
structure [5] used for partitioning a k-dimensional space.
Every non-leaf node in a k-d tree represents a division
point along a single spatial dimension, recursively split-
ting the space’s points into two groups.

This partitioning method has even lower overhead than
Coarsened Bisection. Each split can be performed in
O(n) average time via the quickselect algorithm [16], and
the number of rounds of splitting is logarithmic. How-
ever, unlike Coarsened Bisection, the tiling approach
does not consider connectivity of the graph, and so it
generates inferior results. This trade-off makes Coars-
ened Bisection preferable in applications where its over-
head can be hidden via amortization, for instance, in op-
timization problems, and the K-D tiling method is better
for overhead-sensitive applications.

4.2 Data Reorganization

After we perform Data-Balanced Work-Partition on the
work graph, we reorganize the data in memory accord-
ing to cache-fit partitions for efficient memory coalesc-
ing. We prioritize the partition that has the smallest
amount of unique data – indicating a high data reuse if
the amount of work in each partition is the same. We iter-
ate over each partition’s tuple list, and place all their non-
boundary vertices (vertices that only appear in one ker-
nel) consecutively in memory using data packing [12].
After non-boundary vertices for each partition have been
processed, we process boundary vertices. The data re-
ordering algorithm is briefly described in Algorithm 5.

5 Evaluation

We perform experiments on two platforms: an NVIDIA
GTX 745 GPU with Intel Core i7-4790 CPU and an
NVIDIA TITAN X GPU with Intel Xeon CPU E5-2620.
The GPU configurations are detailed in Table 2. We eval-
uate our techniques using important real-world work-
loads including sparse linear algebra, neural networks,
and graph analytics.

Table 2: Experimental Environment
GPU Model Titan X GTX 745
Architecture Pascal Maxwell

Core # 5376 576
L2 Cache 3MB 2MB

CUDA version CUDA 8.0 CUDA 8.0

USENIX Association 2018 USENIX Annual Technical Conference 419

Algorithm 5 Data Remapping
Input: Original Partition Set P, Boundary Vertex Set B
Output: Reordered Data D

1: procedure DATAREMAPPING(P,D)
2: for each vertex v in partition p of P do
3: if v /∈ B then
4: unique[p]++
5: end if
6: end for
7: P’ = rank(P, unique[P]); // Rank P by unique[]
8: // Assign non-boundary nodes
9: for each vertex v in partition p of P′ do

10: if !boundary[v] and v is not in D then
11: append v to D
12: end if
13: end for
14: // Assign boundary nodes
15: for each vertex v in partition p of P′ do
16: if boundary[v] and v is not in D then
17: append v to D
18: end if
19: end for
20: end procedure

Sparse Linear Algebra Workloads We use sparse ma-
trix vector multiplication (SpMV) and the conjugate gra-
dient solver (CG). We present performance and sensitiv-
ity analysis, as well as the effectiveness of overhead con-
trol.
Neural Networks We use a pruned form of AlexNet
[15]. The pruned neural network is essentially sparse
matrix operation.
Graph Processing Workloads We use two graph pro-
cessing benchmarks: the Bellman-Ford (BMF) and
PageRank (PR) programs [21]. Bellman-Ford takes a
weighted graph as input and iteratively calculates every
node’s distance – an important, basic operation used in
path and network analysis applications. PageRank takes
a weighted graph as input and calculates the importance
of every node based on its incoming links.
Computational Fluid Dynamics Workloads We use
the CFD benchmark from the Rodinia benchmark suite
[7]. The CFD solver is an unstructured grid finite vol-
ume solver for the three-dimensional Euler equations
for compressible flow. The CFD benchmark is already
highly optimized in terms of data layout [9]. We use
three mesh input sets from Rodinia [7].

5.1 Sparse Linear Algebra

SpMV We treat the sparse matrix as a bipartite graph,
as described in Section 2.1, and then apply our tech-
niques . We use the SpMV kernel function from the cusp
library[10] and the matrix format is COO.

Of the 2757 matrices in the University of Florida col-
lection [11], we extract those where the working set can-
not fit entirely into the L2 (last-level) cache, which leaves
us with 228 matrices on GTX 745, and 192 on Titan X.
Though we optimize for the L2 cache, our techniques can
be generalized to other caches.

The performance summary for SpMV across these ma-
trices is shown in Figure 9. We also include Org+R,
which applies the data reorganization scheme described
in Section 4.2 to the original program to optimize mem-
ory coalescing. Memory coalescing is a technique for en-
hancing spatial locality [33], which is orthogonal to our
technique proposed in this paper. As our work also per-
forms memory coalescing after obtaining and scheduling
cache-fit partitions, we show the performance of memory
coalescing only (Org+R) versus our technique + mem-
ory coalescing for fair comparison and for demonstrat-
ing the significant performance improvement from our
technique.

Among the other methods shown, first is CF, the
Cache-Fit method described in Section 3.1. This splits
the kernel to run each of the cache-fit partitions in stand-
alone mode. Second is SJ, the Split-Join method de-
scribed in Section 3.3 and uses tree-based set cover al-
gorithm to merge cache-fit partitions. Third is CF-Q
from Section 3.2, which applies the concurrent queue
for loosely enforcing cache-fit partition ordering within
a single kernel invocation. Finally we show SJ-Q
from Section 3.4, which applies the concurrent queue to
merged partitions in SJ. We use our Coarsened Bisection
partitioner for all four of these methods. The baseline is
the original program performance.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

Org+R CF SJ CF-Q SJ-Q

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745 Titan X

Figure 9: Average Speedup for SpMV

All four methods provide significant speedup com-
pared to the original case and the Org+R case. But
each method has trade-offs. The SJ and SJ-Q meth-
ods both require runtime profiling, whereas CF and CF-
Q do not need runtime profiling. CF and SJ are eas-
ier to incorporate to a program as the kernel code does
not change (only the input to each kernel invocation
changes), whereas CF-Q and SJ-Q require code modi-
fication in order to implement the queue.

We find that our techniques provide significantly more
improvement in the high contention environments of
larger matrices with lower hit rates. We demonstrate
the effectiveness of these methods with respect to ma-
trix size, working set size, cache hit rate, and original
running time.
Matrix Size In Figure 10 (a), each group of bars shows
average speedup for sparse matrices with the specified
amounts of non-zeros. Every method except Org+R is

420 2018 USENIX Annual Technical Conference USENIX Association

 0.6

 0.8

 1

 1.2

 1.4

0 - 2M
2M - 8M

8M - 16M
16M - 32M

32M - INFN
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745

Org+R CF SJ CF-Q SJ-Q

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

0 - 2M
2M - 8M

8M - 16M
16M - 32M

32M - INFN
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

TITAN X

Org+R CF SJ CF-Q SJ-Q

(a) The effect of sparse matrix size (# of non-zeros) on speedup

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 - 4 4 - 8 8 - 16 16 - INF

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745

Org+R CF SJ CF-Q SJ-Q

 0.5

 1

 1.5

 2

 2.5

 3

1 - 2 2 - 4 4 - 8 8 - INF

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

TITAN X

Org+R CF SJ CF-Q SJ-Q

(b) The effect of working set size (in multiples of cache size) on speedup.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

40 - 100 30 - 40 20 - 30 10 - 20 0 - 10

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745

Org+R CF SJ CF-Q SJ-Q

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

40 - 100 30 - 40 20 - 30 10 - 20 0 - 10

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

TITAN X

Org+R CF SJ CF-Q SJ-Q

(c) The effect of cache hit rate (percent) on speedup.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

0 - 1 1 - 4 4 - 8 8 - 16 16 - INF

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

GTX 745

Org+R CF SJ CF-Q SJ-Q

 0.5

 1

 1.5

 2

 2.5

0 - .5 .5 - 1 1 - 2 2 - 4 4 - INF

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

TITAN X

Org+R CF SJ CF-Q SJ-Q

(d) The effect of original runtime (milliseconds) on speedup.

Figure 10: SpMV Speedup on GTX 745 and Titan X

much more effective on larger matrices than on smaller
ones, but we do see speedup in every group.

Working Set Our techniques become more effective as
the working set grows, alleviating the increased cache
contention. In Figure 10 (b), each group of bars shows
average speedup for matrices with a working set of spec-
ified size. The unit used for the x-axis is the number of
times the working set can completely fill the cache.

We see speedup improve as the working set grows, just
as it tends to do when the matrix size grows. But the
effects are more pronounced, with higher speedup. This
shows working set size is more useful than matrix size for
determining whether we should use locality-aware soft-
ware throttling optimization.

Cache Hit Rate Our techniques are designed to im-
prove matrices that suffer from low hit rates due to cache
thrashing. As such, a lower original hit rate allows us to
achieve higher speedup. In Figure 10 (c), each group of

bars shows average speedup for matrices with a specified
range of cache hit rates for the original case.

For matrices with lowest hit rates, the speedup for the
queue-based approaches is particularly extreme. This
shows that the queue-based approach is especially ef-
fective in environments that have high cache contention.
The implicit communication between thread warps com-
peting for queue reservations allows warps to achieve
higher temporal locality with each other.

Run Time In Figure 10 (d), each group of bars shows the
average speedup for matrices with the specified original
runtime, measured in milliseconds. Since the Titan X
device is much faster than the GTX 745, we use smaller
thresholds for it. In general we can expect that the run-
time correlates highly with the number of non-zeros, and
so this figure shows a similar curve to the others.

CG We show the performance of conjugate gradient
(CG) using SJ-Q. The major computation component

USENIX Association 2018 USENIX Annual Technical Conference 421

is sparse matrix vector multiplication (SpMV). It calls
SpMV iteratively until convergence. Therefore the over-
head is amortized across different iterations. We show
the overall performance in Figure 11 for a representa-
tive set of inputs. We find the performance improvement
of CG with overhead is similar to that of SpMV with-
out overhead. The overhead of Coarsened Bisection and
SJ-Q profiling is well amortized.

 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

Cit-P
atents

RGG

Therm
al2

As-S
kitte

r

HiggsSocia
l

G3-Circ
uit

Cit-P
atents

RGG

Therm
al2

As-S
kitte

r

HiggsSocia
l

G3-Circ
uit

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p GTX 745 TITAN X

2.97 2.43 2.68 4.90

Original SJ-Q

Figure 11: CG Speedup on GTX 745 and Titan X

We also show the L2 cache hit rates for CG in Fig-
ure 12. The changes to cache hit rates correlate with the
performance improvement. The matrix rgg n 2 23 s0
(RGG) has a much smaller cache hit rate on Titan X
(0.44%) than on GTX 745 (36.75%), despite its larger
cache size. There is more cache contention on Titan X
since it uses more cores. We are able to improve the hit
rate to 62.92% without changing the thread number or
the implementation of the kernel code. Only the set of
non-zero elements processed by each kernel is changed.

 0
 10
 20
 30
 40
 50
 60
 70
 80

Cit-P
atents

RGG

Therm
al2

As-S
kitte

r

HiggsSocia
l

G3-Circ
uit

Cit-P
atents

RGG

Therm
al2

As-S
kitte

r

HiggsSocia
l

G3-Circ
uit

L2
 C

a
ch

e
 H

it
 R

a
te

 (
%

)

GTX 745 TITAN X

Original SJ-Q

Figure 12: CG Cache Hit Rate on GTX 745 and Titan X

5.2 Neural Networks
We explore the effectiveness of our techniques on the
AlexNet neural network, achieving an overall speedup
of up to 54% on the Titan X device, which is suited for
deep learning. Each fully connected layer of the neural
network AlexNet operates as a matrix-vector operation;
the matrix is a weight matrix. The work by Han and oth-
ers [15] prunes the AlexNet network to remove elements
of low weight and result in sparse matrices.

Since AlexNet is designed for smaller, embedded de-
vices, we run multiple instances in parallel, allowing the
neural network to analyze 150 different images at once
for our Titan X GPU. This provides a reasonable amount
of computation and data for our more powerful hardware.

In Figure 13, we show the speedup achieved by our
technique on each of the three pruned fc layers of

AlexNet. We include the alternate baseline of the origi-
nal case plus data reorganization, as well as the Cache-
Fit and Split-Join strategies both with and without the
queue-based implementation.

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

fc6 fc7 fc8 Combined

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Org+R CF SJ CF-Q SJ-Q

Figure 13: Speedup for AlexNet layers on Titan X

When only applying data reorganization, we see no
improvement or even some slowdown. But when we ap-
ply any of our partitioning techniques we see speedup up
to 98%, and no degradation on the smaller layers. The
reason for less-speedup in the smaller layers (fc 7 and fc
8) is that their vector size is smaller and can fit into last
level cache entirely in our Titan X GPU. We believe the
performance improvement will be more pronounced for
Alexnet if we test with embedded devices.

5.3 Graph Applications
We show the performance of the Bellman-Ford and
PageRank programs on a set of graphs from the Uni-
versity of Florida Sparse Matrix Collection [11], Stan-
ford Large Network Dataset Collection [23], and DI-
MACS implementation challenge [1]. Information for
each graph is listed in Table 3.

We demonstrate the efficiency of the K-D tiling (SJ-
kdtiling) approach, since both BMF and PR take fewer
iterations to converge compared with sparse linear sys-
tem solvers. Thus we need a fast and approximate par-
titioner so that the overhead can be amortized. We use
SJ rather than SJ-Q, since it still provides good speedup
while avoiding the overhead of the queue.

We summarize the performance with overhead in Ta-
ble 3. We see that our approach improves performance
for both BMF and PR. RoadCal benefits least, due to
small size, but sees improvement in some cases.

Table 3: BMF and PR Performance Summary

Graph GTX 745 TITAN X
BMF PR BMF PR

Pokec [23] 1.62 2.98 1.88 3.17
WebGoogle [23] 2 3.29 1.8 3.37

Wikipedia-051105 [11] 1.24 1.99 1.43 1.97
WikiTalk [11] 1.74 2.57 2.09 2.75

IMDB [11] 2.16 3.22 1.59 2.62
RoadCentral [11] 1.19 1.6 1.69 2.18

RoadCal [1] 1 1 1 1.22

We observe that the speedup for PR is greater than for
BMF. There are more memory accesses in the PR algo-

422 2018 USENIX Annual Technical Conference USENIX Association

rithm than in the BMF algorithm, and so it benefits more
from our locality-aware software throttling.

We show cache hit rates for each program in Figure
14 and Figure 15. We show speedup with and without
overhead for PR on Titan X in Table 4. PR has fewer it-
erations than CG so cannot improve performance with
Coarsened Bisection if overhead is considered. How-
ever, the KD-Tiling method is fast enough that for SJ-
kdtiling’s performance to remain high with overhead.

 0

 10

 20

 30

 40

 50

 60

Pokec

WebGoogle

Wikipedia

WikiTalk
IMDB

RoadCentra
l

RoadCal
Pokec

WebGoogle

Wikipedia

WikiTalk
IMDB

RoadCentra
l

RoadCal

L2
 C

a
ch

e
 H

it
 R

a
te

 (
%

) GTX 745 TITAN X

Original SJ-kdtiling

Figure 14: Cache Hit Rates for Bellman-Ford

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Pokec

WebGoogle

Wikipedia

WikiTalk
IMDB

RoadCentra
l

RoadCal
Pokec

WebGoogle

Wikipedia

WikiTalk
IMDB

RoadCentra
l

RoadCal

L2
 C

a
ch

e
 H

it
 R

a
te

 (
%

) GTX 745 TITAN X

Original SJ-kdtiling

Figure 15: Cache Hit Rates for PageRank

Table 4: PageRank Speedup with and without Overhead

Graph SJ-kdtiling SJ-kdtiling
w/ Overhead w/o Overhead

Pokec 3.17 3.34
WebGoogle 3.37 3.43
Wikipedia 1.97 1.98
WikiTalk 2.75 2.81

IMDB 2.62 2.27
RoadCentral 2.18 2.48

RoadCal 1.22 1.21

5.4 Computational Fluid Dynamics
The graph structure for CFD is a mesh in which every
node has up to four neighbors. Since these meshes are
small, We use SJ instead of SJ-Q for throttling. In Figure
16 we show the performance on GTX 745. We achieve
speedup of up to 10%. Input fvcorr 097 has the smallest
number of nodes, thus the smallest improvement. CFD
already has an optimized data layout [9]. With our throt-
tling method, we nonetheless see some speedup. This
demonstrates the effectiveness of our approach.

6 Related Work
Modern GPUs are equipped with massive amounts of
parallelism and significant computing horsepower. How-

 0.2

 0.4

 0.6

 0.8

 1

fvcorr_097 fvcorr_193 missile

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Random Original SJ

Figure 16: CFD Speedup

ever, this also results in higher levels of cache contention.
To achieve high performance, reusing data in cache is
critical. Both software and hardware approaches have
been proposed to address the cache contention problem.
Warp Scheduling Policy Recent works focus on modi-
fying GPU warp scheduling policy to reduce cache con-
tention by throttling threads [18] [27] [20, 19] or to prior-
itize thread execution based on criticality [22]. However,
all those approaches require hardware modification and
require fine-grained thread scheduling which is compli-
cated in a massively parallel system.

Our approach does not require hardware modification
or fine-grained thread scheduling. Moreover, most warp
scheduling policies aim to reduce the number of active
warps for better performance. However, as we discov-
ered in this paper, it is not always good to reduce the
number of simultaneously running tasks for better cache
performance. In some scenarios, i.e., when data reuse is
low, having higher concurrency actually helps.
Computation and Data Layout Transformation On
GPUs, Baskaran et al. [3] developed a compile-time
transformation scheme coalescing loop nest accesses to
achieve efficient global memory access. Zhang et al. [32]
focused on reducing irregular memory accesses and en-
hancing memory coalescing to improve GPU program
performance. These and other works [28, 31, 8, 17, 30, 4]
all focus on improving memory coalescing for spatial lo-
cality. Our method is orthogonal to these approaches, as
we optimize temporal locality.

7 Conclusion
This paper proposes a locality-aware software throttling
framework that targets irregular sparse matrix applica-
tions on GPUs. We perform d

¯
ata-balanced work parti-

tion on the entire workload to get cache-fit partitions and
use scheduling to exploit the trade-off between cache lo-
cality and execution pipeline utilization. Our framework
is practical and effective. It requires no hardware modi-
fication and achieves an average 2.01X (maximal 6.45X)
speedup on more than 200 real sparse matrices.

Acknowledgement We thank Peter Varman for being
our shepherd and the anonymous reviewers for their con-
structive comments. This work is supported by grants
NSF-CCF-1421505 and NSF-CCF-1628401. Any opin-
ions, findings, conclusions, or recommendations ex-
pressed in this material are those of the authors and do
not necessarily reflect the views of our sponsors.

USENIX Association 2018 USENIX Annual Technical Conference 423

References
[1] Dimacs implementation challenge - shortest paths, July 2013.

[2] AKBUDAK, K., KAYAASLAN, E., AND AYKANAT, C. Hy-
pergraph partitioning based models and methods for exploiting
cache locality in sparse matrix-vector multiplication. SIAM J.
Scientific Computing 35, 3 (2013).

[3] BASKARAN, M. M., BONDHUGULA, U., KRISHNAMOORTHY,
S., RAMANUJAM, J., ROUNTEV, A., AND SADAYAPPAN, P. A
compiler framework for optimization of affine loop nests for gpg-
pus. In Proceedings of the 22nd Annual International Conference
on Supercomputing (New York, NY, USA, 2008), ICS ’08, ACM,
pp. 225–234.

[4] BELL, N., AND GARLAND, M. Efficient sparse matrix-vector
multiplication on cuda. Tech. rep., Nvidia Technical Report
NVR-2008-004, Nvidia Corporation, 2008.

[5] BENTLEY, J. L. Multidimensional binary search trees used for
associative searching. Communications of the ACM 18, 9 (1975),
509–517.

[6] BOURSE, F., LELARGE, M., AND VOJNOVIC, M. Balanced
graph edge partition. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (New York, NY, USA, 2014), KDD ’14, ACM, pp. 1456–
1465.

[7] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,
J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A bench-
mark suite for heterogeneous computing. In Proceedings of the
2009 IEEE International Symposium on Workload Characteriza-
tion (IISWC) (Washington, DC, USA, 2009), IISWC ’09, IEEE
Computer Society, pp. 44–54.

[8] CHEN, X., CHANG, L.-W., RODRIGUES, C. I., LV, J., WANG,
Z., AND HWU, W.-M. Adaptive cache management for energy-
efficient gpu computing. In Proceedings of the 47th An-
nual IEEE/ACM International Symposium on Microarchitecture
(Washington, DC, USA, 2014), MICRO-47, IEEE Computer So-
ciety, pp. 343–355.

[9] CORRIGAN, A., CAMELLI, F., LÖHNER, R., AND WALLIN, J.
Running unstructured grid cfd solvers on modern graphics hard-
ware. In 19th AIAA Computational Fluid Dynamics Conference
(June 2009), no. AIAA 2009-4001.

[10] DALTON, S., AND BELL, N. CUSP: A C++ templated sparse
matrix library, 2014.

[11] DAVIS, T. A., AND HU, Y. The university of florida sparse ma-
trix collection. ACM Trans. Math. Softw. 38, 1 (Dec. 2011), 1:1–
1:25.

[12] DING, C., AND KENNEDY, K. Improving cache performance
in dynamic applications through data and computation reorgani-
zation at run time. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementa-
tion (New York, NY, USA, 1999), PLDI ’99, ACM, pp. 229–241.

[13] FREDMAN, M. L. New bounds on the complexity of the shortest
path problem. SIAM Journal on Computing 5, 1 (1976), 83–89.

[14] GONZALEZ, J. E., LOW, Y., GU, H., BICKSON, D., AND
GUESTRIN, C. Powergraph: Distributed graph-parallel compu-
tation on natural graphs. In OSDI (2012), vol. 12, p. 2.

[15] HAN, S., MAO, H., AND DALLY, W. J. Deep compression:
Compressing deep neural networks with pruning, trained quanti-
zation and huffman coding. International Conference on Learn-
ing Representations (ICLR) (2016).

[16] HOARE, C. A. Algorithm 65: find. Communications of the ACM
4, 7 (1961), 321–322.

[17] JANG, B., SCHAA, D., MISTRY, P., AND KAELI, D. Exploiting
memory access patterns to improve memory performance in data-
parallel architectures. IEEE Trans. Parallel Distrib. Syst. 22, 1
(Jan. 2011), 105–118.

[18] JOG, A., KAYIRAN, O., CHIDAMBARAM NACHIAPPAN, N.,
MISHRA, A. K., KANDEMIR, M. T., MUTLU, O., IYER, R.,
AND DAS, C. R. Owl: Cooperative thread array aware schedul-
ing techniques for improving gpgpu performance. In Proceedings
of the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (New
York, NY, USA, 2013), ASPLOS ’13, ACM, pp. 395–406.

[19] KAYIRAN, O., JOG, A., KANDEMIR, M. T., AND DAS, C. R.
Neither more nor less: Optimizing thread-level parallelism for
gpgpus. In Proceedings of the 22Nd International Conference on
Parallel Architectures and Compilation Techniques (Piscataway,
NJ, USA, 2013), PACT ’13, IEEE Press, pp. 157–166.

[20] KAYIRAN, O., NACHIAPPAN, N. C., JOG, A., AUSAVARUNG-
NIRUN, R., KANDEMIR, M. T., LOH, G. H., MUTLU, O., AND
DAS, C. R. Managing gpu concurrency in heterogeneous archi-
tectures. In Proceedings of the 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Washington, DC, USA,
2014), MICRO-47, IEEE Computer Society, pp. 114–126.

[21] KHORASANI, F., VORA, K., GUPTA, R., AND BHUYAN, L. N.
Cusha: Vertex-centric graph processing on gpus. In Proceedings
of the 23rd International Symposium on High-performance Par-
allel and Distributed Computing (New York, NY, USA, 2014),
HPDC ’14, ACM, pp. 239–252.

[22] LEE, S.-Y., ARUNKUMAR, A., AND WU, C.-J. Cawa: Coordi-
nated warp scheduling and cache prioritization for critical warp
acceleration of gpgpu workloads. In Proceedings of the 42Nd An-
nual International Symposium on Computer Architecture (New
York, NY, USA, 2015), ISCA ’15, ACM, pp. 515–527.

[23] LESKOVEC, J., AND KREVL, A. SNAP Datasets: Stanford
large network dataset collection. http://snap.stanford.

edu/data, June 2014.

[24] LI, A., SONG, S. L., LIU, W., LIU, X., KUMAR, A., AND COR-
PORAAL, H. Locality-aware cta clustering for modern gpus. In
Proceedings of the Twenty-Second International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2017), ASPLOS ’17, ACM,
pp. 297–311.

[25] LI, L., GEDA, R., HAYES, A. B., CHEN, Y., CHAUDHARI,
P., ZHANG, E. Z., AND SZEGEDY, M. A simple yet effective
balanced edge partition model for parallel computing. Proc. ACM
Meas. Anal. Comput. Syst. 1, 1 (June 2017), 14:1–14:21.

[26] LI, L., GEDA, R., HAYES, A. B., CHEN, Y., CHAUDHARI, P.,
ZHANG, E. Z., AND SZEGEDY, M. A simple yet effective bal-
anced edge partition model for parallel computing. In Proceed-
ings of the 2017 ACM SIGMETRICS / International Conference
on Measurement and Modeling of Computer Systems (New York,
NY, USA, 2017), SIGMETRICS ’17 Abstracts, ACM, pp. 6–6.

[27] ROGERS, T. G., O’CONNOR, M., AND AAMODT, T. M. Cache-
conscious wavefront scheduling. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (Washington, DC, USA, 2012), MICRO-45, IEEE Computer
Society, pp. 72–83.

[28] SUNG, I.-J., STRATTON, J. A., AND HWU, W.-M. W. Data lay-
out transformation exploiting memory-level parallelism in struc-
tured grid many-core applications. In Proceedings of the 19th
International Conference on Parallel Architectures and Compila-
tion Techniques (New York, NY, USA, 2010), PACT ’10, ACM,
pp. 513–522.

424 2018 USENIX Annual Technical Conference USENIX Association

[29] TSOURAKAKIS, C., GKANTSIDIS, C., RADUNOVIC, B., AND
VOJNOVIC, M. Fennel: Streaming graph partitioning for mas-
sive scale graphs. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining (New York, NY,
USA, 2014), WSDM ’14, ACM, pp. 333–342.

[30] VUDUC, R. W., AND MOON, H.-J. Fast sparse matrix-vector
multiplication by exploiting variable block structure. In Interna-
tional Conference on High Performance Computing and Commu-
nications (2005), Springer, pp. 807–816.

[31] YANG, Y., XIANG, P., KONG, J., AND ZHOU, H. A gpgpu
compiler for memory optimization and parallelism management.
In Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (New York,
NY, USA, 2010), PLDI ’10, ACM, pp. 86–97.

[32] ZHANG, E. Z., JIANG, Y., GUO, Z., AND SHEN, X. Stream-
lining gpu applications on the fly: Thread divergence elimination
through runtime thread-data remapping. In Proceedings of the
24th ACM International Conference on Supercomputing (New
York, NY, USA, 2010), ICS ’10, ACM, pp. 115–126.

[33] ZHANG, E. Z., JIANG, Y., GUO, Z., TIAN, K., AND SHEN, X.
On-the-fly elimination of dynamic irregularities for gpu comput-
ing. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2011), ASPLOS XVI, ACM,
pp. 369–380.

USENIX Association 2018 USENIX Annual Technical Conference 425

