
CaQR: A Compiler-Assisted Approach forQubit Reuse through
Dynamic Circuit

Fei Hua
huafei90@gmail.com
Rutgers University

USA

Yuwei Jin
yj243@scarletmail.rutgers.edu

Rutgers University
USA

Yanhao Chen
chenyh64@gmail.com
Rutgers University

USA

Suhas Vittal
suhaskvittal@gmail.com

Georgia Institute of Technology
USA

Kevin Krsulich
kevin.krsulich@ibm.com

IBM T. J. Watson Research Center
USA

Lev S. Bishop
lsbishop@us.ibm.com

IBM T. J. Watson Research Center
USA

John Lapeyre
john.lapeyre@ibm.com

IBM T. J. Watson Research Center
USA

Ali Javadi-Abhari
ali.javadi@ibm.com

IBM T. J. Watson Research Center
USA

Eddy Z. Zhang
eddy.zhengzhang@gmail.com

Rutgers University
USA

ABSTRACT
Quantum measurement is important to quantum computing as it
extracts out the outcome of the circuit at the end of the computation.
Previously, all measurements have to be done at the end of the cir-
cuit. Otherwise, it will incur significant errors. But it is not the case
now. Recently IBM starts supporting dynamic circuit through hard-
ware (instead of software by simulator). With mid-circuit hardware
measurement, we can improve circuit efficacy and fidelity from
three aspects: (a) reduced qubit usage, (b) reduced swap insertion,
and (c) improved fidelity. We demonstrate this using real-world
applications Bernstein Verizani on real hardware and show that
circuit resource usage can be improved by 60%, and circuit fidelity
can be improved by 15%. We design a compiler-assisted tool that
can find and exploit the tradeoff between qubit reuse, fidelity, gate
count, and circuit duration. We also developed a method for identi-
fying whether qubit reuse will be beneficial for a given application.
We evaluated our method on a representative set of important ap-
plications. We can reduce resource usage by up to 80% and improve
circuit fidelity by up to 20%.

CCS CONCEPTS
• Computer systems organization→ Quantum computing.

KEYWORDS
qubit reuse,mid-circuit measurement, circuit fidelity, qubit usage
ACM Reference Format:
Fei Hua, Yuwei Jin, Yanhao Chen, Suhas Vittal, Kevin Krsulich, Lev S.
Bishop, John Lapeyre, Ali Javadi-Abhari, and Eddy Z. Zhang. 2023. CaQR: A

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9918-0/23/03. . . $15.00
https://doi.org/10.1145/3582016.3582030

Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit. In
Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 3 (ASPLOS
’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3582016.3582030

1 INTRODUCTION
Quantum computation is important as it can solve classical in-
tractable problems such as factoring [23] [23], chemistry simula-
tion [12, 21], and large database search [10]. Due to the spectacular
advances in quantum hardware, quantum systems have undertaken
significant improvement in the past two decades. Now domain ex-
perts can run small-scale experiments on real machines for their
specific domain problems.

Quantum measurement is at the very heart of quantum com-
puting. It allows classical systems to extract information from the
quantum realm. By allowing repeated executions, measurement
can gather information of the final state of a qubit in the form of a
discrete probability distribution. Previously on IBM Q systems, the
measurement is done at the end of a program, for all qubits [28].

Recently IBM started providing hardware support formid-circuit
measurement, as the very first step for supporting dynamic circuit
[11]. It has improved measurement gate duration and fidelity on its
Falcon family processors [3, 9].

Mid-circuit measurement performed when circuit execution is in
flight is very useful. It has two types of functionalities: (1) boolean
test of state and (2) qubit reuse. For the boolean test of state, it can
be used for stabilizer measurement for quantum error correction
code [2] to tell if there is an error in the state. It can also be used for
asserting certain properties of a qubit for post-processing purposes.
Further, it can be used for steering the computation in a useful direc-
tion, for instance, the repeat-until-success (RUS) implementation
for synthesizing an arbitrary single-qubit rotation gate [18].

We focus on the functionality of qubit reuse enabled by mid-
circuit measurement. In this case, mid-circuit measurement must
be combined with mid-circuit qubit reset, which allows the users to
reset the qubit state to the ground state at any point of the program

59

https://doi.org/10.1145/3582016.3582030
https://doi.org/10.1145/3582016.3582030
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582016.3582030&domain=pdf&date_stamp=2023-03-25

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

execution. Mid-circuit reset is also supported by IBM hardware
recently. After a qubit is reset, it can be reused for any other qubit
which hasn’t started any operation. This capability of saving qubits
is important since today’s quantum computer size is in the range
of 100 qubits. Being able to efficiently reuse the qubits can increase
the capacity of the hardware system to run programs.

We show a real application in which qubit count can be signif-
icantly reduced by mid-circuit measurement. It is the Bernstein
Vazirani (BV) algorithm in Fig. 1. The original circuit uses 5 qubits,
but in fact, we can use as few as 2 qubits. We start with the 1-qubit
saving case, where for qubit q1, we can perform measure-and-reset
after its last gate Hadamard, as shown in Fig. 1 (b). Immediately
we let q1 be reused for the gates originally applied to qubit q2. We
repeat the same process to reuse q1 for q3, and q4 until we cannot
reuse anymore, which results in a 2-qubit circuit, as shown in Fig.
1 (c). In this case, it has reduced as much as 60% usage of qubit
resource. Interestingly, for a 𝑛-qubit BV application, the minimal
number of required qubits is always 2, despite how many qubits
are in the original circuit.

Motivated by the resource-saving benefit of qubit reuse, we de-
velop a compiler-assisted approach for automatically transforming
circuits exploiting the mid-circuit measurement and reset func-
tionality. Finding proper qubit reuse is challenging. We must also
identify the set of applications that can benefit from qubit reuse.
With our compiler-assisted tool, users do not have to manually
specify whether to reuse or what qubits and when to reuse. Our
compiler-assisted tool helps users run large quantum programs on
small quantum computers.

Prior studies [5, 19, 27] also optimize qubit usage, but our work
is orthogonal to these studies. CutQC [27] spatially distributes the
workload of a quantum circuit at a cost of worst-case exponential
time classical post-processing. Ancilla qubit reuse [5, 19] requires
un-computation. The Square framework [5] explores the trade-
off between un-computation cost and qubit saving. However, our
qubit reuse through mid-circuit measurement does not require un-
computation and explores a different tradeoff. And in our setting,
one qubit can be reused by any other qubit (whether ancilla or
non-ancilla) as long as two conditions are satisfied. Therefore the
ancilla qubit reuse technique cannot be applied to our problem in
this paper.

To our best knowledge, our work is the first to automatically
identify qubit-reuse opportunities in general applications. If our tool
has identified any qubit-reuse opportunity, it can perform circuit
transformation to exploit the trade-off between circuit duration,
resource usage, and circuit fidelity. Our tool can handle two different
types of applications: the ones with non-commuting gates, and the
ones with commuting gates. Furthermore, our tool can also be tuned
towards different purposes, towards more qubit saving, or towards
gate-count reduction and improved fidelity.

To summarize, our contributions are as follows:

• We discovered non-trivial potential for qubit reuse in real
quantum applications through extensive experimentation.

• Our compiler-assisted tool is able to identify if there is any
qubit reuse opportunity. If there is any, our tool can yield
transformed circuit with respect to different qubit budget
level, optimized for circuit duration and fidelity.

• We explore the full spectrum of factors that affect the tradeoff
between qubit-reuse and compiled circuit efficiency. We dis-
cover that in addition to the benefit of reduced qubit count,
qubit-reuse can potentially reduce SWAP insertion and im-
prove circuit fidelity. Hence we designed two versions of our
tool such that one emphasizes qubit saving and the other
emphasizes SWAP reduction and fidelity.

• Our tool can handle gate commutativity, which is an impor-
tant feature in modern quantum applications.

• Our experiments show that we can reduce qubit usage by
up to 80% while keeping circuit duration similar – slightly
larger than the non-reused version by 9.9% on average.

• We also provide experiment results on a real quantum ma-
chine IBMMumbai. We perform experiments on both regular
circuit without commuting gates and applications with com-
muting gates such as QAOA. In both bases, our results show
better performance. TVD is improved by 17%. The success
rate of finding correct answer increased by 20%. QAOA can
converge faster and find better minimal energy. Note that
they are under the condition of using fewer qubits.

The rest of the paper is organized as the following. We introduce
the background and motivation of qubit reuse in Section 2. We
describe the two versions of our compiler-assisted qubit reuse in
Section 3. We provide comprehensive experiment evaluation in
Section 4. Section 5 describes all related works. Section 6 concludes
the paper.

2 BACKGROUND AND MOTIVATION
2.1 Hardware Support for Dynamic Circuit
Recently IBM started providing the dynamic circuit support [11]. In
dynamic circuit, it supports mid-circuit measurement operation and
mid-circuit reset operation as the example shown in Fig. 2 (a). The
measurement operation reads out the qubit. The reset operation
forces the state of the measured qubit back to the ground state.

We have made improvements to this combination of measure-
ment and reset. If a qubit is measured as |1> in the standard compu-
tation basis, and if we want to reuse this qubit, we must re-initialize
it to |0>. If a qubit is measured as |0>, we do not do anything.
However, the built-in reset operation denoted as a box containing
|0> implicitly contains measurement pulses, which is redundant.
So instead of using a combination of a measurement + a reset, we
use a measurement + a classical/quantum control not. For the clas-
sical/quantum control gate, we use the classical bit to control the
quantum bit, as shown in Fig. 2 (b). We can reduce the duration by
around 50% with this optimization, from 33.179 dt to 16.467 dt, in
IBM Mumbai machine. 1 dt is 0.22 nano-seconds.

To improve readability, we use two vertical bars to represent the
combination of mid-circuit measurement and conditional reset, as
shown Fig. 1 (a) for the rest of the paper.

2.2 Potential of Qubit Saving
To evaluate the potential of qubit reuse for modern quantum ap-
plications, we developed a tool that can automatically generate
transformed circuit with (near-)minimal depth/duration for any
qubit reuse count, if such reuse is possible. We have created the

60

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a) Original circuit (b) Reuse 1 qubit once

q1
q2
q3
q4
q5 X

H

H

H

H

H

H

H

H

H

H
H
H
H
X H

H
H

H
H

q1
q2
q3
q4
q5 X

H

H

H
HH

HH
HH

X H

HH
HH

HH
HH

q1
q2
q3
q4
q5 X

H

H

H

H

H
HH

H
H
X H

HH
HH

HH
HHMeasure &

set to |0>

Measure

(c) Reuse 1 qubit 3 times

Figure 1: Using Dynamic Circuit Support for the BV Application to Reduce Qubit Usage. (a) Original logical circuit with 5
qubits; (b) Reusing q1 for q2 results in 4 qubits in total; (d) Reusing q1 for q2, q3, and q4 results in 2 qubits in total usage.

X

1 0

q

c

|0>

1 0

q

c

(a) (b)
33,179 dt (system cycles) 16,467 dt (system cycles)

Figure 2: Our improvement for "measurement + reset". (a)
Built-in measurement and reset operations in Qiskit; (b) Mea-
surement + classical control which takes half of the time of
(a);

(a) Input as a power-law graph with density 30%.

(b) Input as a random problem with density 30%.

Figure 3: The Potential of Qubit Saving by Qubit Reuse

data points with all qubit counts. The design of our tool is described
in details in Section 3.2.

We discovered that there are significant opportunities for qubit
reuse in real applications. We show experimental results of the
QAOA application with 64 qubits for two different input problem
graphs – the power law graph and the random graph, both with a
density of 30%. It can be seen that qubit usage can be reduced from
64 to as few as 5, which is a significant saving in terms of resources.

It also indicates that as the qubit number decreases, the depth of
the circuit increases. However, both cases show (near) heavy-tail
distribution, implying that we can potentially reduce qubit usage
significantly only by increasing the circuit depth by a reasonably
small amount. For the power law graph input to the QAOA pro-
gram, we can save over 80% qubit while only increasing the circuit
duration by at most 25%, as shown in Fig. 3. For the random graph
input, we can save 33% qubit by increasing the circuit duration by
at most 20%.

2.3 Tradeoffs for Exploiting Dynamic Circuit
After demonstrating the large potential of qubit saving by qubit
reuse, now we discuss different factors that affect the final circuit
performance/fidelity. As aforementioned, increased qubit reuse may
increase the depth (or duration if real gate time is available) of a
circuit. However, we discover that there are other benefits brought
by qubit reuse, which can potentially offset the disadvantage of
increased depth. In a nutshell, by selectively using qubits with
higher fidelity and more reliable physical links, we can potentially
reduce the number of qubits needed while improving the fidelity
and performance of the transformed circuit. We list all benefits
of qubit reuse: (1) Qubit Saving, (2) Reduced SWAPs, and (3)
Improved Fidelity, and describe each below.

Qubit Saving. We have already described this benefit of reducing
qubit usage in Section 1 and Section 2.2.

SWAP Reduction. In addition to the benefit of reducing qubit
usage, we can also reduce the number of swaps through qubit reuse.
Assuming that the hardware is a 5-qubit physical coupling graph,
as shown in Fig. 4 (a).

Note the qubit interaction graph for the 5-qubit BV circuit is a
star graph, where q5 has a degree of 4 and all other nodes have a
degree of 1, as shown in Fig. 4 (b). However, the maximal degree of
a physical qubit is 3. Therefore the 5-qubit logical circuit needs to
add SWAPs before it is hardware-compliant.

In contrast, the 4-qubit BV circuit with 1 qubit reuse does not
need to have any SWAP inserted if properly mapped to hardware.
The qubit-interaction graph’s maximal degree is 3, as shown in Fig.
4 (c), by sharing one qubit for q1 and q2. This qubit interaction

61

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

(a) (b)

Q2Q1 Q3

Q4

Q5

q5q3 q4

q1 q2

q5q3 q4

q1 (q2)

(c)

Figure 4: Compiling BV circuit for real architecture. (a) Physi-
cal architecture; (b) The qubit interaction graph(if two qubits
have a gate, there is an edge) corresponding to the 5-qubit
circuit in Fig. 1 (a); (c) The qubit interaction corresponding to
the 4-qubit BV circuit in Fig. 1 (b), where q1 is reused by q2.
It can be seen that (c) can fit into the physical architecture
while (b) cannot.

graph happens to be isomorphic to the hardware architecture in
Fig. 4 (a). No SWAP is needed.

Even though the 4-qubit logical BV circuit has a larger depth
than the 5-qubit logical BV circuit before SWAP insertion, the final
circuit after the hardware mapping stage may end up having a
similar duration because of the additional SWAP(s) inserted. A
comparison is shown in Fig. 5 (b) and (c).

The reason is that by reusing qubits as if merging multiple nodes
into one in the qubit interaction graph, we can potentially alleviate
the pressure on hardware connectivity imposed by the original
logical circuit.

(b)
(Q18)

(Q21)

(Q17)

q5

(Q15)

q1

Q18Q15 Q17

Q21

Q2313%

2.5%

1.8% 1.6% 0.96%

1.5%

1.4%

1.5%

0.7%

(a)

q2
q3
q4

(Q18)

(Q21)

(Q17)

(Q23)

q5

(Q15)

q1
q2
q3
q4

(c)

(Q23)

(Q21)

Figure 5: Tackling error variability. For illustration purpose,
we eliminate the drawing of Hadamard gates in the figure.

Improved Fidelity. Qubit reuse happens to have the side benefit
of improving the fidelity of the compiled circuit. Today’s quantum
hardware is presented with the challenge of error variability. Some
single-qubit gates or two-qubit gates may have larger error rate
than others. By reusing qubits, One strategy to improve the overall
performance of a quantum system is to selectively exclude qubits
with lower fidelity or physical links with higher error rates.

We still use the same example of BV. We map it to the real IBM
machine qubits Q15, Q17, Q18, Q21, Q23 on Mumbai. The error
rates are listed in Fig. 5 (a). It can be seen that the qubit Q23 has a
much higher read out error (13%) than any other qubit (≤ 2.5%). By
mapping the 4-qubit BV to only qubits of Q15, Q17, Q18, and Q21,

as shown in Fig. 5 (b), we can completely avoid the high readout
error on qubit Q23. Since the duration of the two circuits are similar
as we measured, the overall circuit of 4-qubit BV is actually better.

We run this experiment on Mumbai to compare the 5-qubit BV
(with a SWAP inserted) with the 4-qubit BV circuit in Fig. 6. It
shows that the 4-qubit BV is better than 5-qubit BV, in terms of the
probability of finding the correct answers, 58% versus 55%. Note
that in addition to higher fidelity, we also saved 20% qubit usage.

Interestingly, we find that using 3 qubits is even better (the circuit
duration does not increase significantly due to the dependence
relationship in the particular circuit). 3-qubit BV does not use SWAP
either. We use Q15, Q17, and Q18, since Q15/17/18 all have better
readout error rates than Q21, and the link of Q17-Q18 error is
similar to that of Q21-Q18. Now the probability of finding the
correct answer is improved to 64%, from 55% originally, with 40%
qubit saving. In fact, we also tried the 2-qubit BV, but since the
circuit duration increase is much larger in 2-qubit BV due to extra
measure-reset operations, the 2-qubit BV is not as good as the
3-qubit BV. So we skip the histogram of 2-qubit BV in Fig. 6.

Discussion. To summarize, reusing qubits with dynamic support
is useful in that it can save resource usage, reduce SWAP gates, and
also potentially improve fidelity. Themain disadvantage is increased
circuit duration. If the benefits can offset the disadvantage, then
qubit-reuse is worth it. It requires a careful analysis to determine
which qubits and when to reuse by weighing in all these factors.

We take these factors into consideration in Section 3. We provide
two versions of our design: one can save qubits precisely to user
demand, and also allows a tradeoff-based tuning, and the other one
primarily improves SWAP insertion.

3 DESIGN AND IMPLEMENTATION
In our design, we provide two different versions of compiler-assisted
qubit reuse (CaQR). In the first version, we allow users to precisely
control the amount of qubit-saving. We generate a transformed and
optimized circuit with respect to a given qubit count if there is any.
We can also exploit a tradeoff between qubit count, duration (or
depth), and fidelity if a range of qubit-saving amount is allowed.
We name it qubit saving CaQR (QS-CaQR).

To precisely control the number of qubits in a circuit, we must
perform qubit-reuse transformation at the logical circuit level. It
is because after the hardware mapping stage, the inserted SWAPs
may reduce the opportunities where we can save qubits. After the
qubit-reuse transformation is done at the logical circuit level, we
perform hardware mapping. The QS-CaQR version is described in
Section 3.2.

In the second version, we primarily optimize SWAP-reduction
through qubit-reuse. We name it SR-CaQR. For this scenario, the
resource is not a problem, i.e., there are enough qubits to imple-
ment a circuit. But we want to minimize the gate count and in the
meantime, we want to mitigate the impact of error variability in
the architecture. Hence, we perform dynamic-circuit aware SWAP
insertion and save qubit as a side effect. This version is described
in Section 3.3.

Before describing either of the two versions, we first formally
define the conditions when a qubit could be reused.

62

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(a)
5-qubit BV on IBM Mumbai on qubits 15, 17, 18, 21, 23

(b)
4-qubit BV on IBM Mumbai on qubits 15, 17, 18, 21

(c)
3-qubit BV on IBM Mumbai on qubits 15, 17, 18

Figure 6: BV outcome for 5-qubit, 4-qubit, and 3-qubit cir-
cuits.

3.1 Qubit Reuse Conditions
Condition 1. If a logical qubit 𝑞𝑖 is reused by a logical qubit 𝑞 𝑗 ,
then, there should not be any gate between 𝑞𝑖 and 𝑞 𝑗 .

The Condition 1 for qubit reuse is straightforward. If a logical
qubit 𝑞𝑖 is to be reused by another logical qubit 𝑞 𝑗 , we have to make

sure all gates on 𝑞𝑖 finish before all gates on 𝑞 𝑗 . If the two qubits
have a gate, it is not possible to ensure that.

Condition 2. If a logical qubit 𝑞𝑖 is reused by a logical qubit 𝑞 𝑗 ,
then, all operations that apply to 𝑞𝑖 should not depend on any
operations on 𝑞 𝑗 directly or indirectly.

For example, for the DAG graph of a logical circuit in Fig. 7(a),
if we reuse q1 for q4 as is shown in Fig. 7(b), gate g(q3, q1) must
be finished before gate g(q4, q2), however, gate g(q3, q1) indirectly
depends on gate g(q4, q2), leading to a conflict. To detect this au-
tomatically, we can see a cycle between the two groups of gates
using q1 and q4. And if we insert an M gate standing for the mea-
surement and reuse in between the two groups of gates, the cycle
is also manifested. The cycle indicates that a reuse pair is invalid.

(a) (b)

g(q1, q5)

g(q2, q5)

g(q3, q1) g(q2, q3)

g(q4, q2)

Reuse pair (q1 q4)→

g(q1, q5)

g(q2, q5)

g(q3, q1) g(q2, q3)

g(q4, q2)M

Figure 7: An invalid qubit reuse pair according to Condition 2.
(a) DAG of the circuit; (b) DAG with measurement-and-reset
for the (invalid) qubit reuse pair (q1→ q4).

3.2 QS-CaQR: Targeting Qubit Saving
Given a limit of qubits, we want to see if a circuit can use these lim-
ited number of qubits, and if so, provide a compiled and optimized
circuit with respect to this qubit count.

We handle two different types of circuits, one without any com-
mutable gates, and the other with commutable gates. We refer to
the former as regular applications.

In both cases, we first propose how to find qubit reuse opportuni-
ties which the mid-circuit measurement and resetting could apply
to. Second, since it’s possible that there are many different qubit
reuse opportunities, we explore the search space of qubit reuse
given the same qubit limit and choose the best reuse strategy. An
example of two different transformations with the same amount of
qubit saving but resulting in different circuit efficiency is in Fig. 8.

3.2.1 Regular Applications. To handle a given regular circuit with
a limited number of qubits, we first construct a directed acyclic
graph (DAG) that encodes the gate dependency. By analyzing the
DAG graph, we can check if a qubit could be used by another. The
depth of the circuit can be analyzed on the assumption that this
type of reuse occurs.

We use Condition 1 and 2 to check if a qubit can be reused. With
Condition 1, we check if there is any gate for the reuse pair. If
Condition 1 is satisfied, we check Condition 2.

With Condition 2, we group all the gates that use qubit 𝑞𝑖 , and
then all the gates that use qubit 𝑞 𝑗 . If there are only directed edges

63

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

Q3Q4 Q5

Q2

(c)

(Q2)
(Q1)

(Q3)
(Q4)

q2
q1

q3
q4

(a) (b)

(d)

q5

Q1

q2
q1

q3
q4
q5
q6

g1

g2

g3
g4

g5

q6
(Q5)

g1

g2

g3
g4

g5

(Q2)
(Q1)

(Q3)
(Q4)

q2
q1

q3
q4
q5
q6

(Q5)

g1

g2

g3
g4

g5

Figure 8: Using different qubits to reuse. (a) Physical archi-
tecture; (b) Original circuit (c) Compiled circuit with q1 (Q1)
reused. This circuit has depth of 3. (d) Compiled circuit with
q3 (Q3) reused. This circuit has depth of 4.

(transitively) from 𝑞𝑖 to 𝑞 𝑗 , but no directed edges from 𝑞 𝑗 to 𝑞𝑖 , then
Condition 2 is satisfied. Otherwise, it means there is a cycle if we
create such a reuse between 𝑞𝑖 and 𝑞 𝑗 , and it means that such a
reuse pair is invalid. By applying Conditions 1 and 2, we can find
all possible candidate qubit pairs (𝑞𝑖 → 𝑞 𝑗).

We evaluate one qubit pair at a time. For the qubit pair (𝑞𝑖 → 𝑞 𝑗),
we add a new node 𝐷 to the DAG graph indicating a measurement-
reset operation needs to be applied between the usage of 𝑞𝑖 and 𝑞 𝑗 .
We make all gates involving 𝑞𝑖 point to 𝐷 and make node 𝐷 point
to all gates involving 𝑞 𝑗 . The qubit reuse pair with a smaller critical
path length (or circuit duration) in the corresponding DAG is better.
For example, Fig. 9(a) is the DAG graph for BV circuit. To make
qubit q1 be reused by qubit q3 first and make qubit q3 be reused by
qubit q4 later, we added two dummy nodes D1 and D2 in the DAG
graph indicating the new imposed dependency in Fig. 9(b).

g(q1, q5)

g(q2, q5)

g(q3, q5)

g(q4, q5)

g(q1, q5)

g(q2, q5)

g(q3, q5)

g(q4, q5)

D1

D2

(a) (b)

(q1 q3)→

(q3 q4)→

Figure 9: (a) The DAG graph of BV circuit in Fig.1(a); (b) Two
added dummy nodes in the DAG graph for two-qubit reuse
pairs.

Qubit Usage v.s. Circuit Duration. Qubit reuse may potentially
increase circuit duration since the qubit reuse enforces the depen-
dency between two (sets of) gates. So in the search of qubit reuse
opportunity, we must carefully select qubit reuse pair (𝑞𝑖 → 𝑞 𝑗)
and find the one that is less harmful to circuit depth.

Our overall strategy is to start with the original qubit count, and
gradually reduce it, one at a time, until we reach the qubit count
specified by the user. If the user has provided a range of qubit counts,
we can generate multiple transformed versions and choose the one

with the best circuit duration or fidelity (depending on the fidelity
metric, for instance, estimated success probability). After logical
circuit transformation, we apply a state-of-the-art qubit mapper to
it. The candidate circuits for selection are the ones that are finally
hardware mapped.

One qubit can be reused multiple times. Our approach allows
this type of scenario flexibly, since it picks one qubit-reuse pair
at one time. After one pair of reuse pair is picked, we update the
circuit, and keep checking more reuse opportunities.

3.2.2 Applications with Commutable Gates. Another type of cir-
cuits is those that have non-trivial amount of gate commutativity.
For instance, in the building block of the QAOA application, the
CPHASE gates can commute. So there is no such gate dependency
as in regular applications.

Maximal Qubit Saving. Note that for any given application, there
is a bound for the maximal number of qubit saving that can be
achieved. For the regular applications, we need to keep reducing
qubit count and test if a limit works. But for commuting gates,
due to the flexibility of reordering gates, we develop an algorithm
that gives the minimal number of qubits. The only constraint for
commutable-gates circuit is Condition 1 that two qubits in a reuse
pair do not perform 2-qubit gate. This inspired us to use graph
coloring to obtain the minimum number of qubits.

We define the qubit interaction graph𝐺𝑖𝑛𝑡 = (𝑉𝑖𝑛𝑡 , 𝐸𝑖𝑛𝑡), where
𝑉𝑖𝑛𝑡 is the set of nodes representing the qubits in the original logical
circuit, and 𝐸𝑖𝑛𝑡 is the set of edges in 𝐺𝑖𝑛𝑡 representing the gates.

Since the graph coloring algorithm requires that any two con-
nected nodes do not share the same color. So we can apply the
graph coloring algorithm on the qubit interaction graph𝐺𝑖𝑛𝑡 . The
minimum number of color found means the minimum number of
qubits needed. For the qubits sharing the same color, one can be
reused for another, as long as all operations involving one qubit
are finished before any operations involving target-reuse-qubit.

For example, we apply graph coloring algorithm to the graph
with 5 vertices in Fig. 10 (a). We found out that the graph can be
colored by at minimal three colors.

q0q1q4

q2

q3 g1g2g3

g4g5

q0
q1
q2
q3
q4

g1

g5
g4

g3
g2

(a) (b)

Figure 10: (a) QAOA input graph. Node q0,q2,and q4 in white
color. Node q1 in blue and node q3 in red. (b) Transformed
QAOA circuit with reuse qubit pair (q0→q4).

Handling Commutativity. To handle a circuit with commuting
2-qubit gates, we perform it in a similar way to the regular circuits.
Firstly, we still list all valid candidate qubit pairs for reuse, (𝑞𝑖 → 𝑞 𝑗).
Then we evaluate each of them individually. To generate such
a candidate set, we have to apply Condition 1 and 2. Applying
Condition 1 is trivial. Two qubits in a reuse pair cannot engage in the

64

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

same gate. However, Condition 2 is a bit trickier. The original circuit
of programs like QAOA does not have pre-determined dependence
ordering between gates, hence it is difficult to test if a reuse-pair
causes any circle in the execution order.

We handle Condition 2 in the following way. To make the qubit
𝑞 𝑗 reuse the qubit 𝑞𝑖 , we need to schedule all gates on 𝑞𝑖 first, and
gates on 𝑞 𝑗 later. A qubit reuse pair imposes the gate dependency
between two set of gates. Hence, we let all gates on 𝑞 𝑗 point to
all gates on 𝑞𝑖 . As we keep adding reuse pairs, there are more and
more dependence edges added to the graph. Each time we add a
qubit reuse-pair, we can test if it creates a cycle in the dependence
graph with respect to Condition 2. If not, then such a reuse pair is
a valid pair.

Algorithm for Evaluating the Impact of A Reuse. Now we describe
our algorithm for evaluating the impact by applying a particular
qubit-reuse pair. We maintain a list of gates in the frontier, that is,
the set of gates that either do not depend on any other gate due
to qubit-reuse or its dependence is resolved. Every iteration, we
choose gates in the frontier to schedule, and we repeat this until
no gates are left. That is, until no edges are left in 𝐺𝑖𝑛𝑡 . Below are
three steps:

(a) (b)

q0q1

q2

q3
g1g2

g4g5
51

1 1
q1q3

g2
1

Iteration 1

q1q4

q2

q3
g2g3

g4
1 1

1

Iteration 2 Iteration 3DAG for
reuse q0->q4

g1

g3

M

Figure 11: (a) Partial DAG graph for QAOA circuit correspond-
ing to Fig. 10 (a) with reuse pair (q0→ q4). TheM in themiddle
stands for a measurement and reset; (b) Gates g1 and g5 are
selected at iteration 1 after perfect matching; Gates g3 and g4
are selected at iteration 2; and gate g2 is selected at iteration
3. The weight of edge is in red. Transformed circuit in Fig. 10

Step 1: We use the pair (𝑞𝑖 → 𝑞 𝑗) to update the current depen-
dence graph 𝐺𝐷 , or to create dependence edges if it is the first
qubit-reuse pair to apply. The qubit reuse pair imposes the depen-
dency on the gates related to 𝑞𝑖 and 𝑞 𝑗 . We add a new node that
represents the measurement-and-reset operation between two sets
of gates. That is, all gates contains 𝑞𝑖 should point to the new gate,
and all gates contains 𝑞 𝑗 should be pointed to by this new gate.

Step 2: We temporarily remove all gates that correspond to
the gates with none-zero in-degree in the dependence graph 𝐺𝐷

from the qubit interaction graph 𝐺𝑖𝑛𝑡 . The reason for this is that
those gates rely on other gates and cannot be scheduled until their
dependencies are resolved.

Now we assign weights to the edges in 𝐺𝑖𝑛𝑡 . We want to priori-
tize the gates that have gates depending on it – the type of gates
involving qubits to be reused. So we assign larger weights to these
gates as a parameter |𝐸𝑖𝑛𝑡 | > 1, while all other edges’ weight is 1.

Step 3: We apply maximum weight perfect matching algorithm
to 𝐺𝑖𝑛𝑡 . Those gates with higher priority would be more likely
selected. The maximal matching algorithm will select as many
gates as possible to improve the parallelism. Those selected gates

are scheduled and the corresponding edges in𝐺𝑖𝑛𝑡 and nodes in𝐺𝐷

are removed permanently. Then we place the temporarily removed
gates back to𝐺𝑖𝑛𝑡 . We now go back to Step 2 until the frontier has
no gate.

With the above three steps, we can get the duration of the circuit
after applying the reuse pair. Since we have tried to maximize
the parallelism by perfect matching, we got a circuit that has good
duration. We associate the duration with such a qubit reuse pair. An
illustration of the complete QAOA circuit transformation process
is depicted in Fig. 11.

Similarly, for this type of applications, our compiler takes a
circuit as input, and a limit of qubits. It outputs two types of results:
(1) Yes, there exists a way to build the circuit with this limit on
qubits, or (2) no. For each given qubit limit, we process it in the
same way as that for regular applications. We evaluate and rank
different qubit-reuse pairs, and choose the best one with respect to
circuit duration/fidelity. At each time, we save one qubit. Then we
keep saving until we reach the given qubit limit, or until no more
qubit can be saved. If we are given a range of qubit-counts, we will
be able to generate different versions of logical circuits that can be
used for further selection with respect to user requirement.

3.3 SR-CaQR: Targeting Reduction of SWAPs
and Improved Fidelity

Now assuming we have enough resources. We design SR-CaQR to
compile a given circuit and treat the SWAP gate reduction as the
primary goal through qubit reuse.

The main reason we can achieve SWAP gate reduction is because
we can delay the first gate for some qubits without extending the
critical path. Those qubits that have not started any operations
can map to two type of physical qubits. One is the fresh physical
qubit that is not used by any logical qubits. The another one is
the used physical qubit but which has done all operations on that.
With a broader selection of physical qubits, we can pick the one (or
two) with smaller distance (or with lower error rate) in architecture
coupling when one (or two) new logical qubit has to be mapped
such that the SWAP gates are reduced. Since the gate delay would
not extend the critical path of circuit but SWAP gates are reduced,
the depth of compiled could be potentially reduced as well.

SR-CaQR considers the solution for both application types as
QS-CaQR. The details of the design are in the following.

3.3.1 Regular Applications. For regular program compilation, we
take the logical circuit and the hardware information as the inputs.
Then, we compile the circuit layer by layer and map the logical
qubit to physical quit when necessary. The new logical qubit will
pick the best available physical qubit to minimize the SWAP gates
and improve fidelity.

Step1: We construct the DAG graph𝐺𝐷 for the input circuit and
maintain a list of physical qubits that are available to use in the
list 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 . Initially, 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 contains all physical qubits.
By doing the analysis on DAG graph, we can easily find out that
whether a gate is in critical path or not.

Step 2: Considering the gate with qubit(s) not mapped. For all
gates with in-degree = 0 in the frontier of DAG, if the gate is not on
the critical path, we delay it. If the gate is on the critical path, we
must run it. It it possible that this gate has both qubits not mapped,

65

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

then we map the qubit with more gates on it first. This logical qubit
will pick a physical qubit from 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 that also can benefit
future gates involving it (by lookahead). Or it will map to a physical
qubit with better connectivity. The mapped physical qubit is then
removed from 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 .

For another unmapped logical qubit of the gate with only one
qubit already mapped, we pick the one from 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 with
minimum distance to its already mapped qubit. If there is a tie, we
pick the qubit with smaller readout error or the qubit connected
by a physical link with smaller CNOT error. The mapped physical
qubit is removed from 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 .

Step 3: Considering the gate with both qubits mapped. For all
gates in the frontier of DAG whose both qubits are mapped, if the
gate is hardware-compliant, we schedule it. If two qubits are not ad-
jacent to each other, we add SWAP gates. We use a heuristic method
to insert SWAP gate with the consideration of error variability and
the side-effect on the following gates.

Step 4: If any gates are scheduled, we update the frontier in DAG
graph 𝐺𝐷 . If there is any qubit done with all operations on it, we
added this qubit back to 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 . We repeat the step 2-4 until
the frontier is empty.

We use an example to explain our method. Fig. 12 (a) is a logical
circuit with the physical coupling graph on the top of it. There is
nothing mapped on the coupling graph. In Fig. 12 (b), only two
qubits q4 and q0 are mapped and g2 are scheduled. This is because
gate g1 is not on the critical path which is delayed and g2 is on the
critical path. q4 is mapped first since more gates apply on it and is
mapped to the middle of the architecture coupling graph.

In Fig. 12 (c), after gate g2 is scheduled, we reclaim the qubit q0
and save it to 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝐿𝑖𝑠𝑡 since there is no more gates on qubit
q0. Now gate g1 and g3 are both on the critical path. For gate g1,
we map q1 first since it involves more gates. Qubit q1 will interact
with q4 later, so we map it close to q4. For gate g3, q4 is already
mapped, then we map q3 close to it.

In Fig. 12 (d), we free q3 and q2 since they are done with all oper-
ations. Gate g4 has two mapped qubits and is hardware-compliant.

In this example, SR-CaQR added zero SWAP gate by applying
qubit reuse. However, the original circuit at least takes one SWAP
gate to make the circuit hardware-compliant.

(a) (b)

(c) (d)

q1
q0

q3
q2

q4

q1
q0

q3
q2

q4

q0 q4

q1
q0

q3
q2

q4

q3 q4 q1 q2

q1
q0

q3
q2

q4

q4 q1

g1

g2

g3 g4

g2

g2 g1

g3

g4g2 g1

g3

Figure 12: Example of SR-CaQR for regular applications

3.3.2 Applications with Commuting Gates. SR-CaQR also considers
the solution for compiling applications with commutable gates such
as QAOA. The main idea is similar to that for regular applications.
We try to delay the start time of some qubits such that those qubit
would have more options of candidate physical qubits. However,
unlike the regular applications, applications with commutable gates
do not have gate dependency. To solve this problem, we can utilize
QS-CaQR to manually impose gate dependency for a part of the
gates. The details are in the following.

Step 1: Constructing a partial DAG 𝐺𝐷 . For the given QAOA
circuit, we use QS-CaQR to find a sweet point of number of qubit
reuse and the corresponding qubit reuse pairs (𝑞𝑖 → 𝑞 𝑗). Then, we
construct a partial DAG based on the qubit reuse pairs. All gates that
apply to qubit𝑞 𝑗 depend on all gates that apply to qubit𝑞𝑖 . The DAG
𝐺𝐷 also contains gates that do not involve the qubit reuse. Those
gates have in-degree = 0. After graph 𝐺𝐷 constructed, we update
the degree information since the imposed qubit reuse and gate
dependency increase the degree of 𝑞𝑖 . Then, we start scheduling
those gates with in-degree = 0.

Step 2: Delaying gates. For the gate with one qubit or two qubits
not mapped, we want to delay it based on the following two con-
ditions. Firstly, if the gate is in the reuse dependency graph, we
do not delay it. Since all gates in the reuse dependency have to be
scheduled first such that the corresponding qubit can be measured
and reused by other reuse-target qubits. Secondly, if the gate has
one or two qubits with high degree on QAOA graph, we do not
delay it. The highest degree in the QAOA graph determines the
lower bound of depth of compiled circuit, so delaying gate with
high degree qubit would potentially increase the circuit depth.

Step 3: Scheduling gates. If the gate is not delayed or has both
qubit mapped, we schedule it. For the gate with both qubits mapped,
we schedule it if it is hardware-compliant. Otherwise, we add SWAP
gates for it heuristically. For the gate with one or two qubits un-
mapped (but not delayed), we map its logic qubits with the consid-
eration of qubit distance and error variability which is the same as
the regular application solution. Then, we schedule it or add SWAP
gates for it.

Step 4: Update information and repeat. We remove those sched-
uled gates from 𝐺𝐷 and update the degree information. Here, we
still reclaim qubits if they are done with all their operations. Then
we repeat step 2-4 until 𝐺𝐷 is empty.

3.4 Overhead Analysis
We consider two methods QS-CaQR and SR-CaQR, both having a
time complexity for general circuits expressed as O(𝑘𝑛3), where k
is the number of qubits and n is the number of gates in the circuit.

This main time complexity arises from the iterative process of
checking Condition 2 for each qubit-pair in the circuit. We track
the direct/indirect dependence between each pair of gates, which
is O(𝑛2). Such dependence information also implicitly gives us
the valid qubit-reuse pairs. For each qubit-reuse pair, we need to
calculate the resulted circuit critical path, which is O(n). In the
outermost loop, it takes at most 𝑘 iterations, since at least 1 qubit is
reduced once. Hence, the worst-case time complexity is O(k𝑛3). For
both methods, the general circuit is similar in structure and thus
has the same time complexity.

66

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

For QAOA benchmarks, the major overhead of the time com-
plexity comes from finding the maximum matching, which we
accomplish using the Edmonds’ Blossom algorithm. This algorithm
has a time complexity of O(𝑛3), where n is the number of gates in
the circuit (which also means the number of edges in the problem
graph). This occurs for each qubit-pair under consideration. There-
fore, the worst case time complexity for QAOA benchmarks in both
methods becomes O(𝑘3𝑛4). In practice, we do not actually incur
the worst case overhead. Moreover, note that Edmond’s algorithm
finds optimal matching. We can replace it with the standard greedy
algorithm for computing a maximal matching, which is more ef-
ficient and in practice computes a matching that is very close to
optimal. We leave this as our future work.

4 EVALUATION
In this section, we evaluate our proposed methods by using differ-
ent types of quantum circuits: regular circuits without commutable
gates, and circuits with commutable gates. We explore qubit reuse
opportunities in a given circuit and analyze the trade-off between
qubit usage, circuit depth/duration, and gate count. We also per-
form real machine experiments to show that qubit reuse could help
improve end-to-end circuit fidelity and performance.

4.1 Experiment Setup
Architectures and Backend. Both QS-CaQR and SR-CaQR are

using IBM heavy-hex as the backends. When the qubit number is
large, we use the scaled heavy-hex architecture.

For real machines, we use IBM Mumbai which also exhibits a
heavy-hex pattern. We also use the real calibration data exported
from the IBM systems including the CNOT duration, CNOT error
for each physical link, and qubit readout errors.

Metrics. To assess our proposed method, we use qubit usage,
two-qubit gate count, and circuit depth/duration as metrics. We
use total variant distance (TVD) if necessary. We also use the final
application outcome on real machines as a way to evaluate the
effectiveness of our method.

Qubit reuse enforces extra gate dependency in the circuit and
potentially increases the circuit duration. A circuit with a smaller
duration has less decoherence error. So we need to evaluate circuit
duration. Two-qubit gate count is another concern. Qubit reuse
could potentially save the number of SWAP gates inserted. Since
we can reuse a nearby qubit if both conditions in Section 3.1 are
satisfied to reduce the communication cost for a gate involving two
distant qubits.

Baselines. We use IBM Qiskit as the baseline, with optimization
level 3 turned on. It compiles both regular and commutable-gate
circuits. QAOA is a classical-quantum application. Our optimization
is on the quantum part. It also needs a classical optimizer. For
running QAOA for the full experiment, we use the well-known
"COBYLA" classical optimizer provided by IBM Qiskit by default.

Benchmarks. We have two types of benchmarks, regular quan-
tum applications, and commutable-gate quantum applications. We
have the regular quantum applications: Rd-32, 4mod5, Multiply_13,
System_19, CC_10, XOR_5, and BV_10 [4][14]. For the commutable-
gate circuits, we use QAOA circuits for the max-cut problem. We

have two different types of input problem graphs, random graph
and power-law graph, with different sizes, from 16 to 128.

4.2 QS-CaQR Evaluation
In this section, we evaluate the qubit-saving version: QS-CaQR.
QS-CaQR first applies qubit reuse on logical circuits.

For each application, we tried different qubit limit numbers, and
generate different compiled circuits. For each circuit corresponding
to a desired qubit usage, we use the Qiskit transpiler to insert
SWAPs. We show the results for both regular applications and
QAOA applications.

4.2.1 Regular Applications. We show the results of three regular
applications, Multiply_13, System_9, and BV_10 in Fig. 13. The
bars on the right half of Fig. 13 (a), (b), and (c) represent the depth
of logical circuits with respect to qubit usage reduction, and the
grey bar plots on the left half figures represent the depth of final
compiled circuits with hardware mapping. We can see that, for all
logical circuits, when the number of qubit usage decreases (from
right to left in the x-axis), the circuit depth increases. However, the
results for the final circuit show a different pattern. When the qubit
number decreases, the depth decreases slowly in the beginning and
increases in the end. It is potentially because when qubit-saving is
too aggressive, it does not help SWAP insertion.

Depending on user request, we can choose different compiled
circuits. If the users demand to have a minimal depth circuit, we
need to choose a version that saves some qubits moderately. The
sweet spot is usually in the middle. If the users demand to save
qubits, it will not have the best depth.

4.2.2 QAOA Applications. We also explore the trade-off between
circuit depth and qubit usage in QAOA circuits. We did experiments
on random and power-law graphs with the number of vertices of
16, 32, 64, and 128. Each of the graphs has a density of 30%. We
show results in Fig. 14. The result of graphs with 64 vertices are
already shown in the motivation section, we only present results
of 16, 32, and 128 qubits here.

It turns out that the QAOA circuit has more qubit reuse opportu-
nities than regular quantum applications, especially for large cases.
The minimum qubit usage of the power-law graph is closer to zero.
For both random graphs and power-law graphs, QAOA can save at
least half of the qubits in the extreme case.

Compared with the random graphs, the power-law graphs have
more reuse and a better tradeoff between depth and qubit number.
This makes sense since the power-law graph contains more vertices
with low degrees and the corresponding qubits have fewer gates
on them. And the large degree node dominates the overall depth.
This makes those qubits could be reused easily without sacrificing
too much circuit depth.

4.2.3 Tradeoff Analysis. Since we generated different versions of
circuits with respect to different qubit numbers for the same appli-
cation, we can perform a tradeoff analysis shown in Table. 1.

We compare the version that has maximal reuse, the version
that has minimal depth, and the baseline of Qiskit with the highest
optimization level. It shows that if targeting maximal reuse, then
the circuit depth and duration will be affected adversely. If targeting
minimal depth using the QS-CaQR version, we have moderate qubit

67

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

(a)

(b)

(c)

Figure 13: QS-CaQR: Reuse vs depth for regular circuits.

saving. But for both versions of QS-CaQR, we are better than the
baseline surprisingly for circuit depth/duration in a lot of cases. This
demonstrates the usefulness of qubit reuse has extended beyond
qubit saving.

4.3 SR-CaQR Evaluation
To evaluate the performance of SR-CaQR, we compare it with QS-
CaQR. Firstly, we use SR-CaQR to compile the given circuit. Then
for fairness, we use the version in QS-CaQR that has a minimal
SWAP number (we exhaust all possible qubit-saving count). Both
experiments are conducted on IBMMumbai’s architecture.We show
results in Table 2.

4.3.1 Regular Applications. For all regular applications, SR-CaQR
has the same or better SWAP gate count. For the 4mod5 circuit,
SR-CaQR minimizes the SWAP gate count to zero. For System_9
circuit, SR-CaQR has 20.5% of SWAP gate reduction.

(a)

(b)

(c)

Figure 14: Reuse vs depth for QAOA circuit (logical circuits)

4.3.2 QAOA Applications. For the QAOA applications, SR-CaQR
has a similar SWAP number compared with QS-CaQR for small
applications since the near-optimal compilation is achieved by both
solutions. For larger input graph size which has nodes larger than
15, the SR-CaQR uses fewer SWAPs, and the duration time is also
reduced. This demonstrates the usefulness of SR-CaQR.

4.4 Real Machine Experiments
We run BV_5, BV_10, Multiply_13, CC_13 circuit, QAOA 10-0.3,
QAOA 10-0.5 circuit at IBMMumbai device. This is the one machine
supporting dynamic circuits. Not all IBM machine support that. For
regular circuits, we use TVD to evaluate the output distribution. The
results are shown in Table 3. A takeaway is that our SR-CaQR has
improved for all the benchmarks listed here. Since the current real
machine is still in an early stage and the mid-measurement pulse is

68

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 1: QS-CaQR Version: The unit of circuit duration is dt – system cycles. 1 dt is 0.22 nano-seconds.

Baseline (No Reuse) Ours with Maximal Reuse Ours with Minimal Depth
Benchmarks Qubit Depth Duration SWAP Qubit Depth Duration SWAP Qubit Depth Duration SWAP

RD-32 4 28 88.6k 9 3 24 71.6K 6 3 24 71.6K 6
4mod5 5 20 81.1K 5 4 18 61.5K 3 4 18 61.5K 3

Multiply_13 13 63 129K 35 8 58 145K 17 11 54 91.5K 26
System_9 12 279 431K 95 7 249 401K 45 6 230 314K 39
BV_10 10 30 92.3K 18 2 28 144K 0 7 23 72.4K 5
CC_10 10 15 88.7K 9 2 13 122K 0 5 10 72.6K 1
XOR_5 6 6 45.5K 5 2 7 42.7K 0 4 4 42.7K 0

QAOA5-0.3 5 8 44.2K 3 3 5 34.5K 1 3 5 21.9K 1
QAOA10-0.3 10 15 77K 13 7 11 65.5K 4 7 11 51.5K 4
QAOA15-0.3 15 41 164K 38 4 48 207K 0 10 32 102K 11
QAOA20-0.3 20 64 282K 107 4 72 509K 0 16 37 201K 59
QAOA25-0.3 25 123 561K 172 5 133 820K 0 22 65 391K 154

Table 2: SR-CaQR (MIN-SWAP) v.s. QS-CaQR

QS-CaQR (MIN-SWAP) SR-CaQR
Benchmarks Qbt. Dpth. Drt. SWP Qbt. Dpth. Drt. SWP

RD-32 3 24 71.6K 6 3 24 71.6K 6
4mod5 4 15 59.5K 0 4 15 59.5K 0

Multiply_13 11 54 91.5K 26 11 54 84.2K 23
System_9 6 230 314K 39 10 234 269K 31
BV_10 7 24 69.2K 3 7 24 69.2K 3
CC_10 6 9 70.2K 2 6 9 70.2K 2
XOR_5 4 0 42.7K 0 4 0 42.7K 0

QAOA5-0.3 3 5 21.9K 1 3 5 21.9K 1
QAOA10-0.3 7 11 51.5K 4 6 10 48.2K 2
QAOA15-0.3 8 32 102K 8 8 27 98.2K 5
QAOA20-0.3 15 37 201K 52 15 35 195K 51
QAOA25-0.3 20 65 391K 124 20 63 360K 114

Table 3: TVD results for BV, Multiply, CC circuit

Benchmarks TVD (Baseline) TVD (SR-CaQR)
Multiply_13 0.76 0.61

BV_10 0.64 0.48
CC_10 0.61 0.44

not stable, so we hope to see results for all these benchmarks once
the machine supporting dynamic circuit becomes more mature.

For QAOA circuits, the results are shown in Fig. 15 and Fig. 16.
For both figures, the x-axis stands for the round number of the
parameter optimization by a classical machine learning optimizer
called COBYLA. The y-axis is the negation of the expected value
of the max-cut value. The smaller is better. The red curve is the
result of SR-CaQR with 6 qubits and the blue curve is the result
of the circuit without qubit reuse. For both experiments, SR-CaQR
circuits achieve better max-cut values and converge faster.

5 RELATEDWORK
Generic compilers, such as [15, 17, 22, 24–26, 29–33] compile the
given quantum circuit with the consideration of circuit depth, gate
count, and qubits variability. After the applications with gate com-
mutativity such as QAOA [6–8] andVQE [20] gainedmore attention,
domain-specific compilers exploit the commutativity feature. Some
new compilers exploiting the such feature are proposed [1, 13, 16].
But none of those are aware of the opportunities in qubit reuse.

Figure 15: The end-to-end result of the QAOA reuse experi-
ments for QAOA-10 with density 30%

Figure 16: The end-to-end result of the QAOA reuse experi-
ments for QAOA-10 with density 50%.

Paler et al. [19] proposed a method, named wire recycling, for
quantum circuit synthesis with the same number of qubit but less
wire. They construct a causal graph from the original circuit and
utilize the graph search algorithm to find such qubit wire recy-
cling opportunities. Even the wire recycling only applies to the
ancilla qubit in the quantum reversible circuit, their method could
be adapted to find the qubit reuse opportunity in QAOA. In addition,
they also provide a table of reversible circuits that proves the qubit

69

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang

reuse is pragmatic. But in their scenarios, the ancilla qubits are
pre-determined prior to use

SQAURE[5] is a qubit reuse compilation framework built upon
the un-computation strategy. It has a locality-aware allocation strat-
egy to decide which ancilla qubit to be reused to reduce the cir-
cuit communication overhead. It also has a cost-effective recla-
mation strategy to decide where the un-computation should be
applied. However, this compilation framework leveraging the un-
computation can only be applied to reversible arithmetic circuits
and reclaim ancilla qubits. In addition, the un-computation strat-
egy inevitably introduces more gates to reset ancilla qubit back to
state |0>. As a result, it makes compiled circuit have a longer circuit
depth and larger accumulated gate errors. Note that the reclamation
through un-computation is limited to ancilla qubit only. In our case,
we still need the outcome result of the qubits we measure, before
reusing them. Ancilla qubits do not need to be measured.

Govia et al. [9] proposed a randomized benchmark suite for mid-
circuit measurements. It can be used to test the impact of mid-circuit
measurement. This work is meaningful in device characterization
and is complementary to our work.

6 CONCLUSION
With supported mid-circuit hardware measurement, we can im-
prove circuit efficacy and fidelity from three aspects: (a) reduced
qubit usage, (b) reduced swap insertion, and (c) improved estimated
success probability. We demonstrate this using real-world applica-
tions Bernstein Verizani on real hardware and show that circuit
resource usage can be improved by 60%, and circuit fidelity can be
improved by 15%. We design a compiler-assisted tool that can find
and exploit the tradeoff between qubit reuse, fidelity, gate count,
and circuit duration.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their constructive and help-
ful feedback.We thank Zhiding Liang and Jinglei Chen for providing
valuable comments during discussion. This work is supported by
grants from Rutgers Research Council and NSF-FET-2129872. It is
also partially supported by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research Centers,
Co-design Center for Quantum Advantage (C2QA) under contract
number DE-SC0012704. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of our sponsors.

REFERENCES
[1] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit Compi-

lation Methodologies for Quantum Approximate Optimization Algorithm. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
215–228. https://doi.org/10.1109/MICRO50266.2020.00029

[2] Christopher Chamberland, Guanyu Zhu, Theodore J Yoder, Jared B Hertzberg,
and Andrew W Cross. 2020. Topological and Subsystem Codes on Low-Degree
Graphs with Flag Qubits. Phys. Rev. X 10, 1 (jan 2020), 11022. https://doi.org/10.
1103/PhysRevX.10.011022

[3] A. D. Córcoles, Maika Takita, Ken Inoue, Scott Lekuch, Zlatko K. Minev, Jerry M.
Chow, and Jay M. Gambetta. 2021. Exploiting Dynamic Quantum Circuits in
a Quantum Algorithm with Superconducting Qubits. Phys. Rev. Lett. 127 (Aug
2021), 100501. Issue 10. https://doi.org/10.1103/PhysRevLett.127.100501

[4] Andrew Cross, Ali Javadi-Abhari, Thomas Alexander, Niel De Beaudrap, Lev S
Bishop, Steven Heidel, Colm A Ryan, Prasahnt Sivarajah, John Smolin, Jay M
Gambetta, et al. 2022. OpenQASM 3: A broader and deeper quantum assembly
language. ACM Transactions on Quantum Computing 3, 3 (2022), 1–50.

[5] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin,
Margaret Martonosi, and Frederic T. Chong. 2020. SQUARE: Strategic Quantum
Ancilla Reuse for Modular Quantum Programs via Cost-Effective Uncomputation.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE. https://doi.org/10.1109/isca45697.2020.00054

[6] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approxi-
mate Optimization Algorithm. arXiv:1411.4028 [quant-ph]

[7] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven. 2017. Quantum Algorithms for
Fixed Qubit Architectures. arXiv:1703.06199 [quant-ph]

[8] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Leo Zhou. 2021. The
Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick
Model at Infinite Size. arXiv:1910.08187 [quant-ph]

[9] L. C. G. Govia, P. Jurcevic, S. T. Merkel, and D. C. McKay. 2022. A randomized
benchmarking suite for mid-circuit measurements. https://doi.org/10.48550/
ARXIV.2207.04836

[10] Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing.
212–219.

[11] IBM. 2022. Introduction to Dynamic Circuits. https://quantum-
computing.ibm.com/lab/docs/iql/manage/systems/dynamic-circuits/02-
Introduction-To-Dynamic-Circuits.

[12] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M Chow, and Jay M Gambetta. 2017. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature 549,
7671 (2017), 242–246.

[13] Lingling Lao and Dan E. Browne. 2022. 2QAN: A Quantum Compiler for 2-Local
Qubit Hamiltonian Simulation Algorithms. In Proceedings of the 49th Annual
International Symposium on Computer Architecture (New York, New York) (ISCA
’22). Association for Computing Machinery, New York, NY, USA, 351–365. https:
//doi.org/10.1145/3470496.3527394

[14] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2021. QASMBench:
A Low-level QASM Benchmark Suite for NISQ Evaluation and Simulation. arXiv
preprint arXiv:2005.13018 (2021).

[15] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001–1014.

[16] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie.
2022. Paulihedral: A Generalized Block-Wise Compiler Optimization Framework
for Quantum Simulation Kernels. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (Lausanne, Switzerland) (ASPLOS 2022). Association for Computing Ma-
chinery, New York, NY, USA, 554–569. https://doi.org/10.1145/3503222.3507715

[17] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY,
USA, 1015–1029. https://doi.org/10.1145/3297858.3304075

[18] Adam Paetznick and Krysta M. Svore. 2013. Repeat-Until-Success: Non-
deterministic decomposition of single-qubit unitaries. (2013). https://doi.org/10.
48550/ARXIV.1311.1074

[19] Alexandru Paler, Robert Wille, and Simon J. Devitt. 2016. Wire recycling for
quantum circuit optimization. Physical Review A 94, 4 (oct 2016). https://doi.org/
10.1103/physreva.94.042337

[20] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications 5, 1
(jul 2014). https://doi.org/10.1038/ncomms5213

[21] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. Nature communications 5
(2014), 4213.

[22] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit placement to
minimize communication overhead in 2D quantum architectures. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 495–500.

[23] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[24] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and
Fernando Magno Quintão Pereira. 2019. Qubit Allocation as a Combination
of Subgraph Isomorphism and Token Swapping. Proc. ACM Program. Lang. 3,
OOPSLA, Article 120 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360546

[25] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintão Pereira. 2018. Qubit allocation. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,
113–125.

[26] Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum
Computing. In Proceedings of the 39th International Conference on Computer-Aided

70

https://doi.org/10.1109/MICRO50266.2020.00029
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevX.10.011022
https://doi.org/10.1103/PhysRevLett.127.100501
https://doi.org/10.1109/isca45697.2020.00054
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1703.06199
https://arxiv.org/abs/1910.08187
https://doi.org/10.48550/ARXIV.2207.04836
https://doi.org/10.48550/ARXIV.2207.04836
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/dynamic-circuits/02-Introduction-To-Dynamic-Circuits
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/dynamic-circuits/02-Introduction-To-Dynamic-Circuits
https://quantum-computing.ibm.com/lab/docs/iql/manage/systems/dynamic-circuits/02-Introduction-To-Dynamic-Circuits
https://doi.org/10.1145/3470496.3527394
https://doi.org/10.1145/3470496.3527394
https://doi.org/10.1145/3503222.3507715
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.48550/ARXIV.1311.1074
https://doi.org/10.48550/ARXIV.1311.1074
https://doi.org/10.1103/physreva.94.042337
https://doi.org/10.1103/physreva.94.042337
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1145/3360546

CaQR: A Compiler-Assisted Approach for Qubit Reuse through Dynamic Circuit ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery,
NewYork, NY, USA, Article 137, 9 pages. https://doi.org/10.1145/3400302.3415620

[27] Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, and Margaret
Martonosi. 2021. CutQC: Using Small Quantum Computers for Large Quan-
tum Circuit Evaluations. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems (Vir-
tual, USA) (ASPLOS ’21). Association for Computing Machinery, New York, NY,
USA, 473–486. https://doi.org/10.1145/3445814.3446758

[28] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating Measurement
Errors in QuantumComputers by Exploiting State-Dependent Bias. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’52). Association for Computing Machinery, New York, NY, USA, 279–
290. https://doi.org/10.1145/3352460.3358265

[29] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). ACM, New York, NY, USA, 987–999. https://doi.org/10.1145/

3297858.3304007
[30] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum

circuits to IBM QX architectures using the minimal number of SWAP and H
operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[31] Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z.
Zhang. 2021. Time-Optimal Qubit Mapping (ASPLOS 2021). Association for
Computing Machinery, New York, NY, USA, 360–374. https://doi.org/10.1145/
3445814.3446706

[32] Alwin Zulehner, Stefan Gasser, and Robert Wille. 2017. Exact Global Reordering
for Nearest Neighbor Quantum Circuits Using A∗. In International Conference on
Reversible Computation. Springer, 185–201.

[33] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of
quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135–1138.

Received 2022-10-20; accepted 2023-01-19

71

https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3445814.3446758
https://doi.org/10.1145/3352460.3358265
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3445814.3446706
https://doi.org/10.1145/3445814.3446706

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Hardware Support for Dynamic Circuit
	2.2 Potential of Qubit Saving
	2.3 Tradeoffs for Exploiting Dynamic Circuit

	3 Design and Implementation
	3.1 Qubit Reuse Conditions
	3.2 QS-CaQR: Targeting Qubit Saving
	3.3 SR-CaQR: Targeting Reduction of SWAPs and Improved Fidelity
	3.4 Overhead Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 QS-CaQR Evaluation
	4.3 SR-CaQR Evaluation
	4.4 Real Machine Experiments

	5 Related Work
	6 Conclusion
	References

