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Abstract
The power-efficient massively parallel Graphics Processing Units
(GPUs) have become increasingly influential for general-purpose
computing over the past few years. However, their efficiency is
sensitive to dynamic irregular memory references and control flows
in an application. Experiments have shown great performance gains
when these irregularities are removed. But it remains an open
question how to achieve those gains through software approaches
on modern GPUs.

This paper presents a systematic exploration to tackle dynamic
irregularities in both control flows and memory references. It re-
veals some properties of dynamic irregularities in both control
flows and memory references, their interactions, and their rela-
tions with program data and threads. It describes several heuristics-
based algorithms and runtime adaptation techniques for effectively
removing dynamic irregularities through data reordering and job
swapping. It presents a framework, G-Streamline, as a unified soft-
ware solution to dynamic irregularities in GPU computing. G-
Streamline has several distinctive properties. It is a pure software
solution and works on the fly, requiring no hardware extensions or
offline profiling. It treats both types of irregularities at the same
time in a holistic fashion, maximizing the whole-program perfor-
mance by resolving conflicts among optimizations. Its optimization
overhead is largely transparent to GPU kernel executions, jeopar-
dizing no basic efficiency of the GPU application. Finally, it is ro-
bust to the presence of various complexities in GPU applications.
Experiments show that G-Streamline is effective in reducing dy-
namic irregularities in GPU computing, producing speedups be-
tween 1.07 and 2.5 for a variety of applications.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—optimization, compilers

General Terms Performance,Experimentation

Keywords GPGPU, Thread divergence, Memory coalescing, Thread-
data remapping, CPU-GPU pipelining, Data transformation
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A[ ]:

P[ ] = { 0, 5, 1, 7, 4, 3, 6, 2}

... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

2 4 10 0 6 0 0B[ ]:

tid:    0   1  2   3  4   5   6   7   

if (B[tid]) {...}

 

(a) Irregular memory reference (b) Irregular control flow

Figure 1. Examples of dynamic irregularities (warp size=4; seg-
ment size=4). Graph (a) shows that inferior mappings between
threads and data locations cause more memory transactions than
necessary; graph (b) shows that inferior mappings between threads
and data values cause threads in the same warp diverge on the con-
dition.

1. Introduction
Recent several years have seen a quick adoption of Graphic Pro-
cessing Units (GPU) in general-purpose computing, thanks to their
tremendous computing power, and favorable cost effectiveness and
energy efficiency. These appealing properties come from the mas-
sively parallel architecture of GPU, which, unfortunately, entails a
major weakness of GPU: the high sensitivity of their throughput to
the presence of irregularities in an application.

The massive parallelism of GPU is embodied by the equipment
of a number of streaming multiprocessors (SM), with each contain-
ing dozens of cores. Correspondingly, a typical application writ-
ten in GPU programming models (e.g., CUDA [14] from NVIDIA)
creates thousands of parallel threads running on GPU. Each thread
has a unique ID, tid. These threads are organized into warps1.
Threads in one warp are assigned to a single SM, and proceed in
an SIMD (Single Instruction Multiple Data) fashion. As a result,
hundreds of threads may be actively running on a GPU at the same
time. Parallel execution of such a large number of threads may well
exploit the tremendous computing power of GPU, but not for irreg-
ular computations.

Dynamic Irregularities in GPU Computing Irregularities in an
application may throttle GPU throughput by as much as an order
of magnitude. There are two types of irregularities, one on data
references, the other on control flows.

Before explaining irregular data references, we introduce the
properties of GPU memory access. (Without noting, “memory”
refers to GPU off-chip global memory.) In a modern GPU device
(e.g., NVIDIA Tesla C1060, S1070,C2050, S2070), memory is
composed of a large number of continuous segments. The size of

1 This paper uses NVIDIA CUDA terminology.
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each segment is a constant2, denoted asZ. One memory transaction
can load or store all data in one memory segment. The accesses
by a set of threads at one load or store instruction are coalesced
into a single memory transaction, if these threads are within a
warp and meanwhile the words accessed by them lie in a single
memory segment. An irregular reference refers to a load or store
instruction, at which, the data requested by a warp happens to
lie on multiple memory segments, causing more (up to a factor
of W ; W for warp size) memory transactions than necessary.
Because a memory transaction incurs latency of hundreds of cycles,
irregular references often degrade the effective throughput of GPU
significantly.

A special class of irregular data references is dynamic irregu-
lar references, referring to irregular references whose memory ac-
cess patterns are unknown (or hard to know) until execution time.
Figure 1 (a) shows an example. The memory access pattern of
“A[P[tid]]” is determined by the runtime values of the elements
in array P , whose content causes an irregular mapping between
threads and the locations of the requested data, resulting in four
memory transactions in total, twice of the minimum. Being dy-
namic, these references are especially hard to tackle, making ef-
fective exploitation of GPU difficult for many applications in vari-
ous domains, including fluid simulation, image reconstruction, dy-
namic programming, data mining, and so on [13, 18].

Dynamic irregularities also exist in program control flows, caus-
ing thread divergences. Thread divergences typically happen on
a condition statement. When threads in a warp diverge on which
branch to take, their parallel execution turns into a serial execution
of the threads that take different branches. Figure 1 (b) illustrates
such an example. Consider the first warp in the graph. Due to the
values of the data mapped to the threads, only thread 2 takes the “if”
branch. During the execution of that thread, all the other threads in
that warp have to stay idle and wait. Note that because the warp is
not completely idle, no other warps are allowed to run on that SM
during that time, causing waste of computing resource. Consider
a typical case where each warp contains 32 threads. The waste of
the SM throughput is up to 96% (31/32). The problem is especially
serious for loops. Consider a loop “for (i=0; i¡A[tid]; i++)” in a
kernel and A[0] to A[31] are all zero except that A[13]=100. All
threads in the warp have to stay idle until thread 13 finishes the
100th iteration.

Dynamic irregularities severely limit the efficiency of GPU
computing for many applications. As shown in Figure 2, remov-
ing the dynamic irregularities may improve the performance of a
set of GPU applications and kernels (detailed in Section 7) by a
factor of 1.4 to 5.3.

There have been some recent explorations on the irregularity
issues. Some propose new hardware features [8, 13, 18], others
offer software solutions through compiler techniques [3, 4, 11,
20, 21]. Software solutions, being immediately deployable on real
GPUs, are the focus of this paper. Previous software solutions
mainly concentrate on cases that are amenable to static program
analysis. They are not applicable to dynamic irregularities, whose
patterns remain unknown until execution time. A recent work [22]
tackles dynamic irregular control flows, but in a limited setting (as
elaborated in Section 8).

Overall, a systematic software solution to address dynamic ir-
regularities in GPU computing is yet to be developed. In fact, what
remains missing are not just solutions, but more fundamentally,
a comprehensive understanding to the problem of irregularity re-
moval itself. For instance, as Figure 1 shows, the two types of ir-

2 In real GPU devices, the value of Z varies across data types. The dif-
ference is considered in our implementation but elided in discussions for
simplicity.
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Figure 2. Potential performance improvement when dynamic ir-
regularities are eliminated for applications running on an GPU
(Tesla 1060).

regularities stem from the relations between GPU threads and run-
time data values or layouts, but the relations are preliminarily un-
derstood. No answers exist to the questions such as what data lay-
outs and thread-data mappings minimize the irregularities, what the
computational complexities are for finding desired layouts or map-
pings, and how they can be effectively approximated.

Moreover, previous explorations (in software) have treated the
two kinds of irregularities separately. But in many real applications,
both may exist at the same time and connect with each other—
optimizing one may influence the other (e.g., 3dlbm shown in
Section 7). It is important to treat them in a holistic fashion to
maximize overall performance.

Overview of This Work In this work, we aim to answer these
open questions and contribute a comprehensive, practical software
solution to both types of dynamic irregularities. First, we unveil
some analytical findings on the inherent properties of irregularities
in GPU computing. This includes the interactions between irreg-
ular control flows and memory references, the NP-completeness
of finding the optimal data layouts and thread-job mappings and a
set of heuristics-based algorithms, as well as the relations among
dynamic irregularities, program data, and GPU threads. These
findings substantially enhance the current understanding of the
irregularities. Second, we provide a unified framework, named G-
Streamline, as a comprehensive solution to both types of dynamic
irregularities. G-Streamline has several distinctive properties. It is a
pure software solution and works on the fly, requiring no hardware
extensions or offline profiling. It treats both types of irregularities at
the same time in a holistic fashion, maximizing the whole-program
performance by resolving conflicts among optimizations of mul-
tiple irregularities of the same or different types. Its optimization
overhead is transparent to GPU executions, jeopardizing no ba-
sic efficiency of the GPU application. Finally, it is robust to the
presence of various complexities in the GPU application, includ-
ing the concealing of the data involved in condition statements, the
overlapping of the data involved in irregular data references.

We build G-Streamline based on a perspective illustrated in
Figure 1 (a) and (b): Both irregular memory references and control
flows essentially stem from an inferior mapping between threads
and data (data locations for the former; data values for the latter).
This perspective leads to the basic strategy of G-Streamline for
irregularity elimination: enhancing the thread-data mappings on the
fly. To make this basic strategy work efficiently, we develop a set
of techniques organized in three components as shown in Figure 3.

The component, “transformation” (Section 3), includes tech-
niques for the realization of new thread-data mappings. Its core
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Figure 3. Major components of G-Streamline.

consists of two primary mechanisms, data relocation and refer-
ence redirection. The former moves data elements on memory
to create new data layouts; the latter redirects the references of
a thread to new memory locations. Together they lead to three
transformation techniques—data reordering, job swapping, hybrid
transformation—with respective strengths and weaknesses, suit-
able for different scenarios. There are two key conditions for the
transformations to work effectively: the determination of desirable
data layouts or mappings, and the minimization and concealment
of transformation overhead.

The second component, “optimality & approximation” (Sec-
tion 4), helps meet the first condition by answering a series of open
questions on the determination of desirable data layouts and map-
pings for GPU irregularity removal. It proves that finding the op-
timal data layouts or thread-data mappings in order to minimize
the number of memory transactions is NP-complete. For the mini-
mization of thread divergences, it shows that the problem is NP-
complete as well but with respect to the number of conditional
branches rather than the number of threads. Based on the theoreti-
cal insights, this component provides a heuristics-based algorithm
for each type of transformations, enabling the computation of near-
optimal data layouts or thread-data mappings. Meanwhile, it offers
some guidelines for resolving conflicts among the optimizations of
different irregularities.

The third component, “efficiency control” (Section 5), ad-
dresses overhead issues. On one hand, because the irregularities
are dynamic, optimizations must happen during run time. On the
other hand, transformations for irregularity removal are usually ex-
pensive due to the data movements and relevant computations in-
volved. To address that tension, the “efficient control” component
employs two techniques. First, based on a previous proposal [22],
it adopts an adaptive CPU-GPU pipelining scheme to offload most
transformations to CPU so that the transformations can happen
asynchronously with the GPU kernel execution. The scheme ef-
fectively hides transformation overhead from kernel execution, and
meanwhile, protects the basic efficiency of the program by auto-
matically shutting down transformations when necessary. Second,
it uses a multilevel adaptation scheme to reduce transformation
overhead. The first level is on the tuning of individual transforma-
tions; the second level is on the selection of different transformation
methods, according to their distinctive properties and the runtime
scenarios.

Contributions In summary, this work makes four-fold contribu-
tions:

• It provides the first software solution for handling dynamic
irregularities in both control flows and memory references for
GPU computing.

• It proves the computational complexities of irregularity re-
moval, and reveals the essential properties of the irregularities

along with their relations with threads and data, advancing cur-
rent understanding to GPU irregularity removal substantially.

• It develops a set of transformations, analyzes their properties
and applicabilities, and proposes several heuristics-based algo-
rithms to circumvent the NP-completeness of irregularity re-
moval.

• It develops a multilevel efficiency-driven adaptation scheme
and integrates it into a CPU-GPU pipelining mechanism,
demonstrating the feasibility of on-the-fly software irregular-
ity removal solutions.

2. Terms and Abstract Forms
Before describing the three components of G-Streamline, we first
present some terms and abstract forms to be used in the following
discussions.

A kernel is a function executed on GPU. On an invocation of
a kernel, thousands of threads are created and execute the same
kernel function. They may access different data and behave differ-
ently due to the appearances of tid in the kernel. Arrays are the
major data structure in most GPU kernels, hence the focused data
structure in this study. Typically, a GPU kernel takes some arrays
as input, conducts certain computations based on their content, and
stores results into some other arrays (or scalars) as its final output.
We call these arrays input arrays and output arrays respectively
(one array may play both roles).

In the following discussions, we use the abstract form “A[P[tid]]”
to represent an irregular reference, and “if (B[tid])” to repre-
sent an irregular control flow. The arrays “P” and “B” are both
conceptual. In real applications, “P” may appear as an actual
input array, or results computed from some input arrays (e.g.,
“A[X[tid]%2+Y[tid]]”), while, “B” may appear as a logical ex-
pression on some input arrays. Using these abstract forms gives
conveniences to our discussion, but does not affect the generality
of the conclusions (elaborated in Section 6).

3. Transformations for Irregularity Removal
G-Streamline contains three main transformation methods for re-
alizing new thread-data mappings. They are all built upon two ba-
sic program transformation mechanisms: data relocation and refer-
ence redirection. Although the basic mechanisms are classic com-
pilation techniques, it remains preliminarily understood how to use
them to remove irregularities in GPU computing—more fundamen-
tally, what are the relations between GPU irregularities and threads
and data, how those transformation mechanisms and methods af-
fect the relations, and what the strengths and weaknesses of each
transformation method are. This section discusses the mechanisms
and transformation methods.

3.1 Two Basic Transformation Mechanisms
Data relocation is a transformation that moves data on memory
through data copying. It can be either out-of-place (e.g., creating
a new array), or in-place (e.g., elements swapping inside an array).

Reference redirection directs a data reference to certain mem-
ory location. In G-Streamline, the redirection is through the use
of redirection arrays. For instance, we can replace “A[tid]” with
“A[D[tid]]”; the redirection array “D” indicates which element in
“A” is actually referenced.

3.2 Three Transformation Methods
We develop three transformation methods for removing irregular
control flows and memory references. Each of them consists of a
series of applications of the two basic mechanisms. In the follow-
ing explanation on how the transformations remove dynamic irreg-
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A[ ]:

P[ ] = {0,5,2,3,2,3,7,6}

... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

A’[ ]:

tid:    0   1  2   3  4   5   6   7   

... = A’[Q[tid]];

Q[ ] = {0,1,2,3,2,3,6,7}

<redirection> <relocation>

original

transformed

(a) Data reordering for irregular references (b) Job swapping for irregular references

2 4 10 0 6 0 0B[ ]:

tid:    0   1  2   3  4   5   6   7   
if (B[tid]) {...}

tid:    0   1  2   3  4   5   6   7   

<relocation>

original

transformed 2 4 10 0 600B’[ ]:

if (B’[tid]) {...}

(c) Job swapping for irregular control flows 
(through reference redirection)

(d) Job swapping for irregular control flows
(through data relocation)

A[ ]:
... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

tid:    0   1  2   3  4   5   6   7   
newtid = Q[tid];
  . . .
... = A[P[newtid]];

Q[ ] = {0,4,2,3,1,5,6,7}

<redirection>

original

transformed*

P[ ] = {0,5,2,3,2,3,7,6}

A[ ]:

*: P[Q[ ]] may collapse into one array access.

tid: thread ID;                 : a thread;                 : data access;               : data or job swapping

2 4 10 0 6 0 0B[ ]:

if (B[tid]) {...}

D[ ] = {0,1,4,3,2,5,6,7}

newtid = D[tid];
if (B[newtid]) {...}

<redirection>

original

transformed

tid:    0   1  2   3  4   5   6   7   

tid:    0   1  2   3  4   5   6   7   

2 4 10 0 6 0 0B[ ]:

A[ ]:

P[ ] = {0,5,2,3,2,3,7,6}

... = A[P[tid]];

tid:    0   1  2   3  4   5   6   7   

A’[ ]:

tid:    0   1  2   3  4   5   6   7   

... = A’[Q[tid]];

Q[ ] = {4,5,2,3,2,3,7,6}

<redirection> <relocation>

original

transformed*
ntid = R[tid];

... = A’[Q[ntid]];
A’[ ]:

tid:    0   1  2   3  4   5   6   7   

R[ ] = {4,5,2,3,0,1,6,7}

data
reordering

job
swapping

<redirection>

*: Q[R[ ]] may coalesce into one array access.

(e) Hybrid transformation

Figure 4. Examples for illustrating the uses of data reordering and job swapping for irregularity removal.

ularities, we assume that the desirable mappings between threads
and data (locations or values) are known. Section 4 discusses how
to determine those mappings.

3.2.1 Data Reordering
The first strategy is to adjust data locations on memory to create a
new order for the elements of an array. Its application involves two
steps, as illustrated in Figure 4 (a). In the first step, data relocation
creates a new array A′ that contains the same set of elements as
the original array A does but in a different order. The new order is
created based on a desirable mapping (obtained from P as shown
in Section 4) between threads and data locations. In our example,
originally, the values of the elements in P cause every warp to
reference elements ofA on two segments (the top half of the graph).
The relocation step switches the locations of A[5] and A[1]. The
second step of the transformation changes accesses to A in the
kernel such that each thread accesses the same data element (likely
in a different location) as it does in the original program. The boxes
in the left part of Figure 4 (a) illustrates the change: A[P [tid]] is
replaced with A[Q[tid]], where Q is a newly produced redirection
array. After this transformation, all data accessed by the threads
in the first warp lie in the first segment; the total needed memory
transactions is reduced from four to three. (Section 3.2.3 will show
how to reduce it further to the minimum.)

Data reordering is applicable to various irregular memory refer-
ences. But as it maintains the original mapping between threads and
data values, it is not applicable to the removal of irregular control
flows by itself.

3.2.2 Job Swapping
The second method for irregularity removal is exchanging jobs
among threads. A job in this context refers to the whole set of op-
erations a GPU thread conducts and the entire set of data elements
it loads and stores in a kernel execution.

As shown in Figure 4 (b), by exchanging the jobs of threads 1
and 4, we make thread 1 access A[2] and thread 4 access A[5]. The

if (B[tid]) {...}
C[tid] = A[tid] + tid;

B[ ] = {0,0,6,0,0,2,4,1}

<swap B[2] & B[4]>

original transformed

ntid = P[tid];
if (B[tid]) {...}
C[tid] = A[tid] + ntid;
P[ ] = {0,1,4,3,2,5,6,7}

<swap A[2] & A[4]>

Figure 5. Using data relocation for job swapping faces some com-
plexities.

transformation achieves the same reduction of memory transactions
as data reordering does (not reaching the optimal either). When
applying job swapping, it is important to keep the integrity of
each job—that is, the entire jobs of thread 2 and thread 4 in our
example must be swapped. To do so, one just need to replace
all occurrences of tid in the kernel with a new variable (e.g.,
newtid), and inserting a statement like “newtid=Q[tid]” at the
beginning of the kernel, where, Q is an array capturing the desired
mapping between threads and jobs. The bottom box in Figure 4
(b) exemplifies this process. Apparently, the arrays Q and P can
collapse into one R such that R[tid] = P [Q[tid]]. The collapse
may avoid the additional reference “newtid=Q[tid]”, introduced by
the transformation.

Job swapping is applicable for removals of irregular control
flows as well. Figure 4 (c) shows an example. In the original
program, the values of elements in B cause both warps to diverge
on the condition statement. By exchanging the jobs of thread 2 and
thread 4, the transformation eliminates divergences of both warps
on the condition statement. This example exposes a side effect
of job swapping: It may change memory access patterns in the
kernel. The swapping in Figure 4 (c) impairs the regularity of the
accesses to B, causing extra memory transactions. This side effect
can be avoided by applying the data reordering transformation
described in the prior sub-section as a follow-up transformation to
job swapping.
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Job swapping can be materialized in two ways. Besides through
reference redirection as Figures 4 (b) and (c) show, the second way
is through data relocation. As shown in Figure 4 (d), when the lo-
cations of B[2] and B[4] switch while tid remains unchanged in
the kernel, threads 2 and 4 automatically swap their jobs. There are
some complexities in applying this job swapping method, exempli-
fied by Figure 5. First, it requires all input arrays in the kernel (e.g.,
A and B in Figure 5) go through the same data exchanges to main-
tain the integrity of a job. The incurred data copying may cause
large overhead. Second, for this approach to work, it must treat
occurrences of tid that are outside array subscripts carefully. For
instance, in Figure 5, simply switching A[2] and A[4] on memory
would cause the expression “A[tid]+tid” to produce wrong results.
A careful treatment to appearances of “tid” that are outside array
subscripts can fix the problem, as shown in the transformed code in
Figure 5 (where, P is an assistant array created to record the map-
ping between threads and jobs). Finally, at the end of the kernel, the
order of the elements in output arrays (e.g.,C in Figure 5) has to be
restored (e.g., switch C[2] and C[4]) so that the order of elements
match with the output of the original program.

Apparently, relocation-based job swapping applies only to the
removal of irregular control flows, but not irregular memory refer-
ences as the mapping between threads and data locations remains
the same as the original.

3.2.3 Hybrid Transformations
The third strategy for removing irregularities is to combine data re-
ordering and job swapping. The combination has two benefits. The
first has been mentioned in the prior sub-section: A follow-up data
reordering helps eliminate the side effects that thread divergence
elimination imposes on memory references.

The second benefit is that combined transformations often lead
to greater reduction of memory transactions than each individual
transformation does. As shown in Figure 4 (a) and (b), data reorder-
ing and job swapping both reduce the needed memory transactions
to three for the shown example. Figure 4 (e) shows that a combina-
tion of the two transformations may reduce the number of memory
transactions to two, the minimum. The rationale for the further re-
duction is that the reordering step creates a data layout that is more
amenable for job swapping to function than the original layout is.
On the new layout, two threads in warp one reference two data el-
ements in segment two, and meanwhile, two threads in warp two
reference two data elements in segment one. Swapping the jobs of
the two pairs of threads ensures that the references by each warp fall
into one single segment, hence minimizing the number of needed
memory transactions.

3.2.4 Comparisons
Both types of irregularities may benefit from multiple kinds of
transformations. We briefly summarize the properties of the various
transformations. Section 5 describes the selection scheme adopted
in G-Streamline.

Irregular reference removal may benefit from all three strategies
(except relocation-based job swapping). Data reordering and job
swapping each has some unique applicable scenarios. Suppose the
segment size and warp size are both 4. For a reference “A[Q[tid]]”
with “Q[ ]={0,4,8,12,16,20,24,28}”, data reordering works but job
swapping does not; a contrary example is “A[Q[tid]]” with Q[] =
{0, 1, 2, 5, 2, 5, 6, 7}—no data reordering alone helps as A[2] and
A[5] are each accessed by two warps. The hybrid strategy combines
the power of the two, having the largest potential. On the aspect of
overhead, job swapping incurs the least overhead because unlike
the other two strategies, it needs no data movements on memory.
In complexity, the hybrid strategy is the most complicated for
implementation.

Thread divergence removal relies mainly on job swapping with
data reordering as a follow-up remedy for side effects. Between the
two ways to realize job swapping, the redirection-based method has
lower overhead than the relocation-based method, as by itself, no
data movements are needed. However, that benefit is often offset
by its side effect on memory references. On the other hand, the
relocation-based method, although having no such side effects, are
limited in applicability. Generally, if the data to be moved are
accessed by threads in more than one warp, relocation-based job
swapping is likely to encounter difficulties. (Consider a modified
version of the example in Figure 4 (d), where thread 4 originally
accesses B[3] rather than B[4].)

Overall, the techniques discussed in this section form a set of
options for creating new mappings between threads and data. Next,
we discuss what mappings are desirable and how to determine them
for the minimization of different types of irregularities.

4. Determination of Desirable Data Layouts and
Mappings

In this section, we first present some findings and algorithms related
to the removal of each individual type of irregularities, and then
describe how to treat them when they both exist in a single kernel.

4.1 Irregular Memory References
Recall that all three strategies can apply to irregular reference
removal. For data reordering, the key is to determine the desirable
orders for elements in input arrays; for job swapping, the key is
to determine the desirable mappings between threads and jobs;
for the hybrid strategy, both data layouts and thread-job mappings
are important. We are not aware of any existing solutions to the
determination of optimal data layouts or thread-job mappings for
irregular reference removal on GPU. In fact, even whether the
optimal are feasible to be determined has been an open question.

In this work, by reducing known NP-complete problems, the
3DM and the partition problem [10], we prove that finding optimal
data layouts or thread-data mappings is NP-complete for minimiz-
ing the number of memory transactions. For lack of space, we elide
the proofs, but describe two heuristics-based solutions, respectively
for data reordering and job swapping.

Data Reordering For data reordering, we employ data duplica-
tion to circumvent the difficulties in finding optimal data layouts.
The idea is simple. At a reference, say A[P [tid]], we create a new
copy of A, denoted as A′, such that A′[i] = A[P [i]]. Then, we use
A′[tid] to replace every appearance ofA[P [tid]] in the kernel. With
this approach, the number of memory transactions at the reference
equals the number of thread warps—the optimal is achieved. The
main drawback of this approach is space overhead: When n threads
reference the same item inA, there would be n copies of the item in
A′. When there are irregular references to multiple arrays (or mul-
tiple references to one array with different reference patterns, e.g.,
A[P [tid]] versus A[Q[tid]]) in the kernel, the approach creates du-
plications for each of those arrays (or references), hence possibly
causing too much space overhead. Section 5 will show how adap-
tive controls address this problem.

Job Swapping For job swapping, we design a two-step approach.
First, consider a case with only one irregular memory reference
A[P [tid]]. The first step of the approach classifies jobs into M
(number of memory segments containing requested items in A)
categories; category Ci contains only the jobs that reference the
ith requested memory segment of array A. Then for each category
(Ci), we put |W ∗b|Ci|/W c of its members evenly into b|Ci|/W c
buckets (W is warp size). This step ensures that each of those job
buckets, when assigned to one warp, needs only one memory trans-
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action at A[P [tid]]. The remaining jobs of Ci form a residual set,
Ri. The second step uses a greedy algorithm to pack the residuals
into buckets of size W . Let Ω = {Ri|i = 1, 2, · · · ,M}. The algo-
rithm works iteratively. In each iteration, it puts the largest residual
set in Ω into an empty bucket, and then fills the bucket with some
jobs in the smallest residual sets in Ω. It then removes those used
jobs from Ω and applies the same algorithm again. This process
continues until Ω is empty. This size-based packing helps avoid
splitting some residual sets—splits cause jobs accessing the same
memory segment to be distributed to different warps, hence incur-
ring extra memory transactions. This job swapping algorithm uses
less space than data reordering, but is mainly applicable for ker-
nels having one or multiple references with a single access pattern
(e.g., A[P [tid]] and B[P [tid]]). For other cases, G-Streamline fa-
vors data reordering.

As the previous section shows, the combined use of data re-
ordering and job swapping may create additional opportunities for
optimizations. However, the catch is extra complexities for deter-
mining the suitable data layouts and job mappings. A systematic
exploration is out of the scope of this paper.

4.2 Irregular Control Flows
As Section 3 describes, only job swapping is applicable for re-
moving irregular control flows. This section focuses on reference
redirection-based job swapping for its broad applicability. The key
to its effectiveness is to find a desirable mapping between threads
and jobs.

Through reducing the partition problem [10], we prove that
finding optimal thread-job mappings (in terms of the total number
of thread divergences) for the removal of irregular control flows
is NP-complete with respect to K (K is the number of condition
statements in a kernel; assuming each has two branches). The proof
is elided for lack of space.

Designing heuristics-based algorithms for removing irregular
control flows is not a main focus of this work. We extend the al-
gorithms proposed in our previous work [22]. In the prior study,
we used path-vector–based job regrouping to handle divergences
caused by non-loop condition statements. For a kernel withK con-
dition statements, each job has a corresponding K-dimensional
vector (called path vector), with each member equaling the boolean
value on a condition statement. The prior work uses loop trip-count
(i.e., number of iterations) based sorting to treat thread divergences
caused by a loop termination condition. It describes no solutions to
the scenarios where both kinds of conditions co-exist. We handle
such cases by adding one dimension to the path vector for each
loop. The values in those dimensions are categorized loop trip-
counts. The categorization is through distance-based clustering [9].
For instance, for a kernel with two condition statements and one
loop whose iterations among all threads fall into L clusters (i.e.,
0, 100-200, 1000-1300, >10000), the path vectors of all threads
would be in three dimensions; the final dimension is for the loop,
and can have only L possible values, corresponding to the L clus-
ters. After integrating loops into path vectors, we can simply as-
sign jobs having the same path vector values to threads in the same
warps.

4.3 Co-Existence of Irregularities
Irregular control flows and irregular memory references co-exist
in some kernels. The co-existence may be inherent in the kernel
code, or caused by optimizations as already exemplified in Figure 4
(c). As the optimal data layouts or thread-job mappings may differ
for the two types of irregularities, the co-existence imposes further
challenges to irregularity removal.

G-Streamline circumvents the problem based on the follow-
ing observation: Even though job swapping affects both control

flows and memory references for a thread, data reordering affects
only memory references. The corresponding strategy taken by G-
Streamline is to first treat irregular control flows using the ap-
proach described in the previous sub-section, and then apply data
reordering to handle all irregular memory references, including
those newly introduced by the treatments to irregular control flows.
The handling of irregular memory references does not jeopardize
the optimized control flows.

5. Adaptive Efficiency Control
Sophisticated techniques for overhead minimization is important
for the optimizations described in this paper to work profitably. As
dynamic irregularities depend on program inputs and runtime val-
ues, transformations for removing them have to happen at run time.
These transformations, however, often involve significant over-
head. Job swapping, for instance, the most lightweight transfor-
mation of the three, requires no data movements, but still involve
considerable cost for computing suitable thread-job mappings and
the creation of redirection arrays. Without a careful design, the
overhead may easily outweigh the optimization benefits.

G-Streamline overcomes the difficulty through a CPU-GPU
pipelining scheme, a set of overhead reduction methods, and a
suite of runtime adaptive control. These techniques together ensure
that the optimizations do not slow down the program in the worst
case, and meanwhile, maximize optimization benefits in various
scenarios by overlapping transformations with kernel executions,
circumventing dependences, and adaptively adjusting transforma-
tion parameters. Our description starts with the basic CPU-GPU
pipelining—the underlying vehicle supporting the various transfor-
mations.

5.1 Basic CPU-GPU Pipelining for Overhead Hiding
The basic idea of the CPU-GPU pipelining is to make transforma-
tions happen asynchronously on CPU when GPU kernels are run-
ning. We first explain how the pipelining works in a setting where
the main body of the original program is a loop. Each iteration of
the loop invokes a GPU kernel to process one chunk of data; no
dependences exist across loop iterations. This is a typical setting in
real GPU applications that deal with a large amount of data. The
next subsection will explain how the pipelining works in other set-
tings.

Figure 6 shows an example use of the CPU-GPU pipelining.
The CPU part of the original program is in normal font in Figure 6
(a). Each iteration of its central loop invokes gpuKernel to make
the GPU process one chunk of the data. The italic-font lines are
inserted code to enable the pipelined thread-data remapping. All
functions with the prefix “gs ” are part of the G-Streamline library.
Consider that the execution of the ith iteration of the loop. At the
invocation of “gs asynRemap ( )”, the main CPU thread wakes up
an assistant CPU thread. While the assistant thread does thread-data
remapping for the chunk of data that is going to be used in iteration
(i+∆), the main thread moves on to process the ith chunk of data.
It first checks whether the G-Streamline transformation (started in
the (i−∆)th iteration) for the current iteration is already done. If so
(i.e., cpucpyDone[i] is true), it invokes the optimized GPU kernel;
otherwise, it uses the original kernel. While the GPU executes the
kernel, the main CPU thread moves on to “gs checkRemap (i+1)”
(pseudo code in the box) to copy the transformed (i + 1)th chunk
of data from host to GPU. This copying is conditional: The first
while loop in “gs checkRemap ()” ensures that the copying starts
only if the transformation completes before the ith GPU kernel
invocation finishes. The second “while” loop ensures that the main
thread moves on normally without waiting for the data copying
to finish if the ith GPU kernel invocation has completed. These
two “while” loops together guarantee that the transformation and
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Kernel Exec.
(gpuKernel on GPU)

Remapping
( gs_asynRemap & 
gs_checkRemap

 on CPU)

start iterations

... 
...    ...

{

(b) Pipeline when the depth  is 3

 remap data chunk 

 remap data chunk +1

 remap data chunk +2

 remap data chunk +3

0 1 2 3 4 5 6

(a) CPU part of an example program with
     G-Streamline code (italic) inserted.

pData = & data;
for (i=0; i<N/S; i++) {...
    gs_asynRemap (pData+ *S); // remap by assist. CPU thread 
    if (cpucpyDone[i])
        gpuKernel_gs_opt <<<... ...>>> (pData, ...);
    else
        gpuKernel_org <<<... ...>>> (pData, ...);
    gs_checkRemap (i+1); ...}

procedure  gs_checkRemap (j) {
    if (j< ) return; // no remapping for this iteration
    while ( (!gpuDone[j-1]) AND (!cpuoptDone[j- ]) );
    if (cpuoptDone[j- ]) {
        gs_dataCpy (j- ); // asynchronous copy to GPU
        while ( (!gpuDone[j-1]) AND (!cpucpyDone[j- ]) );
    }
}

Figure 6. An example illustrating the (simplified) use of CPU-GPU pipelining to hide the overhead in thread-data remapping transforma-
tions. The code in the bottom box is part of the G-Streamline library.

associated data copying cause no delay to the program execution
even in the worst case.

The status arrays, gpuDone, cpuoptDone, and cpucpyDone in
Figure 6, are conceptual. The “cudastreamquery” in CUDA API is
actually used for checking the GPU kernel status.

The pipelining scheme trades certain amount of CPU resource
for the enhancement of GPU computing efficiency. The usage of
the extra CPU resource is not a concern for many GPU applications
because during the execution of their GPU kernels, CPUs often
remain idle.

5.2 Dependence and Kernel Splitting
In some programs, the main loop works on a single set of data it-
eratively; the arrays to be transformed are both read and modified
in each iteration of the central loop. These dependences make the
CPU-GPU pipelining difficult to apply because the transformation
has to happen on the critical path synchronously after each itera-
tion. Transformation overhead becomes part of the execution time,
impairing the applicability of the G-Streamline optimizations.

We introduce a technique called kernel splitting to solve the
problem. The idea is to split the execution of a GPU kernel into
two by duplicating the kernel call and distributing the tasks. Fig-
ure 7 shows such an example. In the new program, the invocation
of the original kernel “gpuKernel org” is replaced with gpuKer-
nel org sub and gpuKernel opt sub. The invocation of the func-
tion gpuKernel org sub behaves the same as the original, but com-
pletes only the first (1 − r) portion of the data processed by the
original kernel (i.e., the tasks conducted by the first (1 − r) por-
tion of the original GPU threads), while the invocation of func-
tion gpuKernel opt sub completes the remaining tasks. When GPU
is executing gpuKernel org sub, a CPU assistant thread does G-
Streamline transformations for the data to be used in gpuKer-
nel opt sub. Therefore, with the kernel execution split into two, the
CPU-GPU pipelining becomes feasible even in the presence of de-
pendences. The rate r is called optimization ratio, the determina-
tion of which is discussed in Section 5.4.

In some of these programs, the suitable data layout and map-
pings do not vary across iterations. In that case, the analysis for
finding the appropriate mappings or data layouts is a one-time op-
eration, and can be put outside of the main loop. But the creation
of new arrays have to happen after each iteration of the main loop.
For programs having no central loops but multiple phases of com-

gpuKernel_org<<<...>>>(pData,...);

gpuKernel_org_sub<<<...>>>(pData,0, (1-r)*len, ...);
gpuKernel_org_sub<<<...>>>(pData,(1-r)*len+1, len, ...);

split

Figure 7. Kernel splitting makes CPU-GPU pipelining remain fea-
sible despite loop-carried dependences.

putation, the pipelining can still be applied through kernel splitting
in the similar way as the previous paragraph describes.

5.3 Approximation and Overlapping
In some cases, the overhead of a full transformation is so large that
even the pipelining cannot completely hide the overhead. Approx-
imations are necessary to trade optimization quality for efficiency.
The partial transformation mentioned in the previous subsection is
one example of such approximations. By only transforming part of
the data set that is going to be used in an iteration, the technique re-
duces transformation time. Even though that technique is described
for addressing loop-carried dependences, partial transformation is
apparently applicable to all settings regardless of the presence of
dependences.

For the elimination of control flow irregularities, we adopt
the label-assign-move (LAM) algorithm described in our previ-
ous work [22]. The algorithm avoids unnecessary data movements
by marking data with a number of class labels and making only
necessary switching of data elements such that same classes of
data locate adjacently.

An additional technique we use to reduce transformation over-
head is to overlap the different parts of a transformation. A trans-
formation usually consists of two steps: producing appropriate data
layout or thread-data mappings, copying the produced data to GPU.
(For some programs, some data may have to be copied from GPU
to host before the transformation.) These steps may all consume
considerable time. Our technique treats the to-be-transformed data
set as s segments so that the copying of one segment can proceed in
parallel with the transformation of another. We call the parameter
s the number of data segments, determined through the following
adaptive control.
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5.4 Adaptive Control
G-Streamline comes with a multi-level adaptive control that selects
the transformation methods and adjusts transformation parameters
on the fly.

Coarse-Grained Adaptation The first level of adaptation exists in
the CPU-GPU pipelining. As Section 5.1 already shows, a transfor-
mation shuts down automatically if it runs too slow, and the main
CPU thread moves on to the next iteration regardless of whether
the transformation finishes. This level of adaptation guarantees the
basic efficiency of the program execution.

The second level of adaptation selects appropriate transforma-
tion method to use. Recall that irregular reference removal can ben-
efit from different types of transformations. The implementations
of these transformations in G-Streamline show the following prop-
erties. Data reordering has the largest space overhead and medium
time overhead, but is able to remove all irregular memory refer-
ences (with data duplication). Job swapping has the smallest over-
head in both space and time, but has limited effectiveness and appli-
cability. The strategy in G-Streamline is to use data reordering as
the first choice. If its space overhead is intolerable, G-Streamline
switches to job swapping. To enable this level of adaptation, mul-
tiple copies of the kernel code would need to be created, with each
containing the code changes needed for the corresponding trans-
formation. This level of adaptation is optional in the use of G-
Streamline.

Fine-Grained Adaptation The third level of adaptation is fine-
grained control, which dynamically adjusts the transformation pa-
rameters. There are mainly four parameters: the pipeline depth ∆,
the optimization ratio r, the number of classes in LAM c, and the
number of data segments s.

The pipeline depth ∆ (Section 5.1) determines the time budget
for a transformation to finish. In our implementation, we fix it as 1
but allow multiple threads (depending on the number of available
CPU cores) to transform for one chunk of data in parallel. This
implementation simplifies thread management.

The number of data segments s (Section 5.3) influences the
overlapping between transformation and data copying. Its value is
1 by default. In the initial several iterations, if G-Streamline finds
that the transformation overhead always exceeds the kernel running
time despite what values r takes, it increases this parameter to
5, a value working reasonably well for most benchmarks in our
experiments.

The parameters r and c control the amount of work a trans-
formation needs to do. Their determinations are similar. We use r
for explanation. We start with the case where no kernel splitting is
needed for the target program. A simple way to determine an ap-
propriate value for r is to let its value start with 100%, and decrease
by 10% on every failed iteration (i.e., the transformation time ex-
ceeds the kernel time). We employ a more sophisticated scheme to
accelerate the searching process and meanwhile exert the potential
of the transformation to the largest extent. The scheme consists of
three stages as follows:

• Online Profiling. This stage happens in the first two iterations of
the central loop; r is set to a small initial value (10% in our im-
plementation), represented as r0. In the first iteration, the trans-
formation time and the kernel execution time—note, this is the
original kernel execution time as no optimizations have been
applied yet—are recorded, represented by Ttr and Torg . If the
first iteration fails (i.e., Ttr > Torg), no G-Streamline transfor-
mations will be applied to all future iterations. Otherwise, in the
second iteration (r0 of the data to be used have been optimized),
the kernel execution time is recorded, represented by Topt. The

difference (Torg − Topt) is the time saved by the optimization,
represented by Tsav .

• Estimating Transformation Ratio. The second stage happens
at the beginning of the third iteration. Notice that the desir-
able value of r, represented as r′, should make the transfor-
mation time equal the optimized kernel time—that is, T ′

tr =
(Torg − T ′

sav). Assuming that both transformation time and
kernel saving time increase proportionally with r, we have
T ′
tr = Ttr ∗ r′/r0 and T ′

sav = Tsav ∗ r′/r0. Hence, we get
r′ = r0 ∗ Torg/(Ttr + Tsav).

• Dynamic Adjustment. The third stage adjusts r′ through the
next few iterations in case that the estimated r′ is too large
or small. A naive policy for the adjustment is (1) to decrease
its value by a step, rs, on each failed iteration until reaching
a success, and (2) to increase its value on each success until
a failure, then decrease it by a step size, and stop adjustment.
This simple policy is insufficient, illustrated by the following
example. Suppose r0 = 10%, r′ equals 30% at the beginning
of this stage, and the third iteration is a success. Note that
the kernel execution in this iteration actually is on the data
optimized in the second iteration, when the optimization ratio
is 10% rather than 30%. Therefore, the success of the third
iteration does not mean that the transformation of 30% data
takes less time than the optimized kernel with 30% as the
optimization ratio. In another word, 30% could be too large
so that the fourth iteration (with r = 30%) may fail. The
increase of r upon each success in the naive policy is hence
inappropriate.
Figure 8 shows the adjustment policy in G-Streamline. As the
right part of the flow chart indicates, r increases its value on
two (rather than one) consecutive successes to avoid the prob-
lem mentioned in the previous paragraph. An additional con-
dition for the increase is that the value of r has never been
decreased. If r has been decreased, two consecutive successes
means that the appropriate value of r has been found (further
increase can only cause failures, and further decrease produces
less optimization benefits), and the adjustment ends. All future
iterations use that r value.

In the case that kernel splitting is needed for dependences car-
ried by the central loop, the dynamic adjustment of r is the same
as shown in Figure 8 except that the top two boxes on the right are
removed. It is due to the fact that the transformed data are used in
the current iteration.

In the case that there is no central loop (e.g., cuda-ec in Sec-
tion 7), The kernel tasks are split into three parts, executed by three
kernel calls. The first part contains 10% of all. During its execution,
the CPU transforms 10% of data. After that, the CPU thread uses
the measured kernel time Torg and the transformation time Ttr to
estimate what portion (α) of the remaining 90% tasks should run in
the second kernel call so that the transformation for the remaining
(1−α)∗90% tasks can finish before the finish of the second kernel
call. The calculation is α = Ttr/(Ttr + Torg). The G-Streamline
then optimizes for the remaining (1 − α) ∗ 90% tasks while the
second kernel call is working on the α ∗ 90% tasks. If the second
kernel call still finishes early, the transformation is terminated im-
mediately. Otherwise, the third kernel call uses the optimized data
to gain speedups.

The size of a data chunk per central-loop iteration may also be
adjusted for runtime adaptation. That size influences the length of a
GPU kernel invocation, as well as transformation overhead. How-
ever, we find it unnecessary to adjust the chunk size given that the
transformation parameters in the adaptive control (e.g., the opti-
mization ratio) can already alter the rate between transformation
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Figure 8. Dynamic adjustment for optimization ratio.

overhead and kernel length. In our implementation, the chunk size
is the default size in the original program.

6. Usage and Other Issues
G-Streamline is in form of a library, written in C++ and Pthreads,
consisting of functions for various transformations (including the
heuristics-based algorithms) described in this paper, along with the
functions for enabling the CPU-GPU pipelining and the adaptation
schemes. To activate the pipelined transformations, users need to
insert several function calls into the CPU code that encloses GPU
kernel invocations. Some minor code changes are necessary to GPU
kernels, such as the changes to array reference subscripts as shown
in Figure 4. Currently, the changes are done manually.

Discussions in this paper have been based on the abstract forms
of irregular references (“A[P[tid]]”) and condition statements (“if
(B[tid])”) defined in Section 2. In our experiments, we find that
for most applications, “P” and “B” are either some input arrays
or results derived by a simple calculation on input arrays. In these
cases, their values are easy for G-Streamline to obtain through a
simple pre-computation on input arrays before applying the trans-
formations. But in few kernels, the calculations of “P” and “B” are
complex. To handle such cases, G-Streamline provides an interface
for programmers to provide functions for the attainment of “P” and
“B”. For efficiency, the function can produce approximated values.
The calculation of “P” and “B” is part of the transformation pro-
cess in G-Streamline, and hence can be hidden by the CPU-GPU
pipelining scheme and jeopardizes no basic efficiency of the appli-
cation.

7. Evaluation
We evaluate the effectiveness of G-Streamline on a set of bench-
marks shown in Table 1. We select them because they contain some
non-trivial dynamic irregularities. The benchmarks come from
some real applications [17, 23] and some recently released GPU
benchmark collections, including Rodinia [5] and NVIDIA Tesla
Bio [19]. One exception is cg, a kernel derived from an OpenMP
program in the NAS suite [2]. Including it is for a direct comparison
with a prior study [11] that has optimized the program intensively.

The seven benchmarks cover a variety of domains, and have
different numbers and types of irregularities. The program 3dlbm
contain both diverging branches and irregular memory references.
Four of the others have irregular memory references, and the other
two contains only thread divergences. Together they make a mixed
set for the evaluation of not only the various transformations in
G-Streamline but also its adaptation schemes. The original imple-
mentation of these programs are in CUDA. Previous documents
have shown that they have gone through carefully tuning and out-
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Figure 9. Speedup from thread-data remapping.

performed their CPU counterparts substantially (e.g., 10–467x for
3dlbm [23], 20x for cuda-ec [19],9–30x for cfd [5]). The inputs to
these programs are shown in Table 1, some of which (e.g., the input
to cfd) are directly obtained from the authors of the benchmarks as
the ones coming with the benchmark suite are too small for exper-
iments and typical practical uses.

Our experiments run on an NVIDIA Tesla 1060 hosted in a
quad-core Intel Xeon E5540 machine. The Tesla 1060 includes a
single chip with 240 cores, organized in 30 streaming multiproces-
sors (SM). The machine has CUDA 3.0 installed. We analyze per-
formance through CUDA profiler (v3.0.21), a tool from NVIDIA
reporting execution information by reading hardware performance
counters in one SM of a GPU.

7.1 Results Overview
Figure 9 reports the speedups of the optimized kernels in the seven
benchmarks. The baseline is the execution times of the original ker-
nels; bars higher than 1 means speedup, and slowdown otherwise.

Each program has three bars, respectively corresponding to the
performance when the transformations are applied with no adapta-
tion control, with first-level control (i.e., automatic shutdown when
transformations last too long), and with all adaptions. The first
group of bars indicate that the brute-force application of the trans-
formations, although leading to significant speedup to three pro-
grams, cause drastic slowdown to two programs. The first-level
adaptive control (automatic shutdown) successfully prevents the
slowdown, while the other levels of adaptations yield further sub-
stantial performance improvement to most programs. (The reason
for the first-level adaptation to throttle speedup of cuda-ec is shown
in Section 7.4.) The benefits of the optimizations are confirmed by
the significant reduction of divergences and memory transactions
reported by the CUDA profiler, shown in Table 2. Overall, the opti-
mizations yield speedups between 1.07 and 2.5, demonstrating the
effectiveness of G-Streamline for exerting GPU power for irregular
computations. We acknowledge that compared to the data shown in
Figure 2, some of the results are substantially below the full poten-
tial. It is mainly due to the dependences across central loops, trans-
formation overhead, and approximation errors. It indicates possible
opportunities for further refinement of G-Streamline.

The software rewriting overhead mainly consists of insertion of
G-Streamline library calls for data reordering and threads swap-
ping, customized condition computation functions, and the trans-
formed GPU kernels that optimizes data access patterns and con-
trol divergence. Table 1 reports the software overhead in terms of
the number of lines of inserted code. For most programs, the ma-
jority of the inserted code is the duplication of the original code
because the new GPU kernels are typically the same as the original
except that the thread IDs or array reference IDs are replaced with
new IDs. The numbers of lines of newly created code are shown
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Table 1. Benchmarks and some dynamically determined optimization parameters
sloc: source lines of code; r: optimization ratio; s: num of data segments in one transformation

Benchmark Source Description Irreg. Input sloc added sloc r s
all new

3dlbm real app. [23] partial diff. equation solver div & mem 32X32X32 lattice 1.7k 200 50 1 1
cfd Rodinia [5] grid finite volume solver mem 800k mesh 0.6k 550 200 0.37 5
cg NAS (rewritten [11]) conjugate gradient method mem 75k array 1.2k 250 200 0.3 5
cuda-ec Tesla Bio [19] sequence error correction div 1.1M DNA seq. 2.5k 900 150 0.65 1
gpu-hmmer Tesla Bio [19] protein sequence alignment div 0.2M protein seq. 28k 350 100 1 1
nn Rodinia [5] nearest neighbor cluster mem 150M data 0.3k 210 150 0.7 1
unwrap real app. [17] 3-D image reconstruction mem 512x512 images 1.4k 100 70 1 1

Table 2. Numbers of thread divergences and memory transactions on one GPU SM reported by hardware performance counters
opt (div): divergence eliminated; opt (div & mem): memory references and divergences optimized.

3dlbm cfd cg cuda-ec gpu-hmmer nn unwrap
div mem div mem div mem div mem div mem div mem div mem

original 67k 103M 2.2M 5.2G 0 3.7G 970k 580M 13k 5.6G 0 7.5M 8k 63M
opt (div) 0.5k 90M - - - - 860k 580M 0.3k 1.8G - - - -
opt (div & mem) 0.5k 73M 2.2M 4.5G 0 3.0G - - - - 3 2.5M 8k 13M

by the “new” column in the table. We acknowledge that the current
design of the G-Streamline interface can be further improved to en-
able more concise expression. Moreover, compiler transformation
may further simplify the code changes.

The different degrees of speedups on the seven benchmarks
are due to their distinctive features. These programs fall into three
categories based on the presence of central loops and dependences.
We next discuss each of the benchmarks in further detail.

7.2 Programs with Independent Loops
Each of the four programs, unwrap, nn, 3dlbm, gpu-hmmer, has a
central loop with different iterations processing different data sets.

UNWRAP The program, unwrap, is for reconstructing 3-D mod-
els of biological particles from 2-D microscope photos [17]. Each
iteration of the central loop invokes a GPU kernel to transform an
image from the Cartesian coordinate system to the Polar coordinate
system. In doing so, it accesses the data points in a series of con-
centric circles, from the image center to the outskirt. The reference
patterns lead to inefficient memory accesses.

G-Streamline uses data reordering to optimize the memory ac-
cesses. Because the appropriate data layout is determined by the
image dimension and typically does not change in the loop, its com-
putation is put outside the central loop. The overhead is completely
hidden by the 50 initial iterations of the loop. The creation of new
data arrays has to happen in every iteration. The corresponding G-
Streamline function call is put inside the loop, working in the CPU-
GPU pipelining fashion. The array creation overhead is completed
hidden by the execution of the GPU kernels.

As Table 2 shows, the transformation reduces the numbers of
memory transactions by over 77%. The following table explains
the reduction by showing the breakdown of different sizes of mem-
ory transactions. (In the GPU, data can be accessed in 32B-, 64B-
, or 128B- segments with the same time overhead.) After putting
data accessed by the same warp close on memory, the optimization
aggregates many small transactions into some large ones, hence
reducing the total number of transactions significantly, cutting exe-
cution time by half.

32b-ld 64b-ld 128b-ld 32b-st 64b-st 128b-st total
org 57M 2M 1M 0 2.5M 0 62.5M
opt 0 10M 0 0 2.5M 0 12.5M

NN The nearest neighbor application, nn, finds the k-nearest
neighbors from an unstructured data set. Each iteration of the cen-
tral loop reads in a set of records, computes the Euclidean distances
from the target latitude and longitude. The master thread evaluates
and updates the k nearest neighbors. We optimized the read ac-
cesses to the unstructured data set through data reordering. We
used both the distance computation kernel and the data transfer
from host to device to hide the transformation overhead. As Figure
9 shows, the overhead for optimizing the whole kernel run can’t
be completely hidden. Using the adaptive scheme, we were able
to achieve a speedup of about 1.8 with the automatically selected
optimization ratio equaling 0.7.

3DLBM The program, 3dlbm, is a partial differential equation
solver based on the lattice Boltzmann model (LBM) [23]. It con-
tains both divergences and irregular memory references. Thread di-
vergences mainly come from conditional node updates. The mem-
ory reference patterns in the kernel depend on the dimensions of
the GPU thread blocks. A previous study [22] has showed up to
47% speedup. But it concentrates on the removal of thread diver-
gences and uses ad-hoc transformations to resolve memory issues.
In this work, we apply G-Streamline to the program and achieves a
similar degree of speedup. The follow-up data reordering transfor-
mation successfully cuts both the newly introduced irregular ref-
erences and the originally existing ones. The number of memory
transactions reduces by over 74%. Both analysis and transforma-
tions happen asynchronously outside the main loop because the or-
der does not need to change across iterations.

GPU-HMMER The application gpu-hmmer is a GPU-based im-
plementation of the HMMER protein sequence analysis suite,
which is a suite of programs that uses Hidden Markov Models
(HMMs) to describe the profile of a multiple sequence align-
ment. Thread divergences due to the different lengths of protein
sequences impairs the program performance. We remove the di-
vergence by job swapping. We replace the original thread-id with
reordered thread-id except that the thread-ids used in read/write
accesses of intermediate result arrays remain unchanged because
it hurts no correctness of the program and keeps memory accesses
regular. As Table 2 shows, the elimination of thread divergences
happen to reduce the number of memory transactions as well, in-
dicating that as threads work in a more coordinate way, they fetch
data more efficiently than before. We obtain a speedup of 2.5. The
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thread-data remapping overhead is completely hidden by the kernel
executions in the central loop.

7.3 Programs with Loop-Carried Dependences
Two programs, cfd, and cg, belong to this category. The iterations
of their central loops work on the same set of data iteratively; the
computing results of an earlier iteration influence the data to be
read by the later iterations. Kernel splitting and multi-segment data
transformation (s = 5) are applied to both of them.

CFD The program, cfd is an unstructured grid finite volume
solver for three-dimensional Euler equations for compressible
flow [5]. The inefficient memory references come from the reading
of the features of neighboring elements of a node in the unstruc-
tured grid of the solver.

The appropriate data layout is loop-invariant and is computed
outside the central loop by G-Streamline, while the new array cre-
ation has to happen in each iteration. With kernel split, the runtime
adaptation of G-Streamline finds that optimization of 37% array
elements is appropriate. The optimization yields 7% performance
improvement.

CG The program, cg, is a Conjugate Gradient benchmark [2]. Lee
and others [11] have shown that careful optimizations are neces-
sary when translating cg from an OpenMP version to GPU code
because of its irregular memory references. They demonstrate that
static compiler-based techniques may coalesce some static irreg-
ular references in its kernel and achieve substantial performance
improvement. But they give no solution to the dynamic irregular
references to a vector in its sparse matrix vector multiplication ker-
nel. The vector is read and modified in each iteration, causing loop-
carried dependence.

G-Streamline tackles those remaining irregular references by
applying data reordering transformation to the vector. The analysis
step resides outside of the main loop as the suitable data order
does not vary. But the transformation step is in each iteration.
G-Streamline decides on 30% data transformation, and produces
12% further performance improvement over the version optimized
through the previous technique [11].

7.4 Program with No Central Loop
The program, cuda-ec, is a parallel error correction tool for short
DNA sequence reads. It contains no central loop, but several kernel
function calls. We optimize the main kernel fix errors1 by remov-
ing divergence through job swapping. As Figure 9 shows, the sim-
ple application of optimizations without adaptations yields speedup
of 1.12. The simple adaptive scheme with automatic shutdown
turns off optimizations by default because it cannot tell whether the
transformation is beneficial for lack of central loops. G-Streamline,
equipped with the complete adaptive control, is able to use the split
kernels to estimate optimization ratio (following the scheme de-
scribed at the end of Section 5.4) such that the transformations can
overlap with partial kernel executions. The estimated optimization
ratio is 0.65, yielding a speedup of 1.22.

8. Related Work
Several previous studies have proposed hardware extensions for
reducing the influence of irregular memory references or control
flows on GPU program performance. Meng and others [13] intro-
duce dynamic warp subdivision to divide a warp so that diverg-
ing threads can execute in an interleaving manner. Tarjan and oth-
ers [18] propose adaptive slip to allow a subset of threads to con-
tinue while other threads in the same warp are waiting for mem-
ory. Fung and others [8] try to reduce thread divergences through
dynamic warp formation. These hardware approaches have shown

promising simulation results. As a pure software solution, our ap-
proaches are immediately deployable on current real GPU systems.

In software optimizations, the work closest to this study is our
previous study on thread divergence removal [22]. We show that
some thread divergences can be removed through runtime opti-
mizations with the support of a CPU-GPU pipeline scheme. This
work is enlightened by that study, but differs from it in several
major aspects. First, the previous study tackles only thread diver-
gences, while this study shows that it is important to treat thread
divergences with irregular memory references at the same time be-
cause of their strong connections. We provide a systematic way
to tackle both types of irregularities in a holistic manner, includ-
ing novel techniques stimulated by the distinctive properties of dy-
namic irregular memory references on GPU. Second, we contribute
some in-depth understanding of the inherent properties of irregu-
larity removal, including the NP-completeness of the problems and
the approximation algorithms. They substantially enhance current
understanding of GPU irregularity removal. Third, even though the
previous study has used reference redirection and data relocation
for removing thread divergences, our work reveals the full spec-
trum of transformations that can be constructed from the two basic
mechanisms, and uncovers the properties of each type of transfor-
mations. Finally, our work develops some novel efficiency-driven
adaptations. Together, these innovations advance state of the art of
GPU irregularity removal in both theoretical and empirical aspects.

Another work on thread divergences is from Carrillo and oth-
ers [4]. They use loop splitting and branch splitting in order to alle-
viate register pressure caused by diverging branches, rather than to
reduce thread divergences.

There have been a number of studies on optimizing GPU mem-
ory references. The compiler by Yang and others [21] optimizes
memory references that are amenable for static transformations.
Lee and others [11] show the capability of an openMP-to-CUDA
compiler for optimizing memory references during the translation
process. Baskaran and others [3] use a polyhedral compiler model
to optimize affine memory references in regular loops. Ueng and
others [20] show the use of annotations for optimize memory ref-
erences through shared memory. Ryoo and others [16] demonstrate
the potential of certain manual transformations.

All those studies have shown effectiveness, but mostly for refer-
ences whose access patterns are known at compile time. To the best
of our knowledge, this current study is the first that tackles dynamic
irregular memory references. Its distinctive on-the-fly transforma-
tions are complementary to prior static code optimizations.

An orthogonal direction for enhancing GPU program perfor-
mance is through auto-tuning tools [12, 15]. The combination of
dynamic irregularity removal and auto-tuning may offer some spe-
cial optimization opportunities.

In CPU program optimizations, data relocation and reference
redirection have been exploited for improving data locality and
hence cache and TLB usage (e.g., [1, 6, 7]). As a massively parallel
architecture, GPU display different memory access properties from
CPU, triggering the new set of innovations in this paper on both
complexity analysis and transformation techniques.

9. Conclusion
In this paper, we have described a set of new findings and tech-
niques for the removal of dynamic irregularities in GPU comput-
ing. The findings include the interactions between irregular con-
trol flows and memory references, the complexity in determining
optimal thread-data mappings, a set of approximation algorithms,
and the relations among dynamic irregularities, program data, and
GPU threads. These findings substantially enhance the current un-
derstanding to GPU dynamic irregularities. Meanwhile, we develop
a practical framework, G-Streamline. It consists of a set of transfor-

379



mations and adaptive controls for effectively removing dynamic ir-
regularities from GPU applications. G-Streamline works on the fly,
requiring no hardware extensions or offline profiling. It treats both
irregular memory references and control flows at the same time in
a holistic fashion, maximizing the whole-program performance by
resolving conflicts among optimizations. Together, the findings and
techniques open up many new opportunities for scientific applica-
tions involving complex data references or control flows to effec-
tively benefit from massively parallel architectures.
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