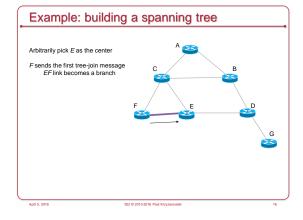
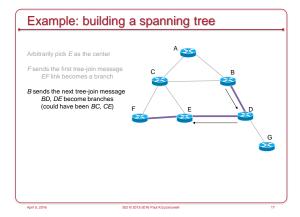
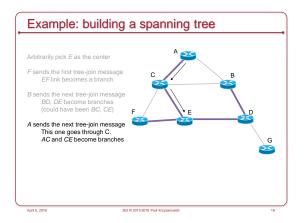


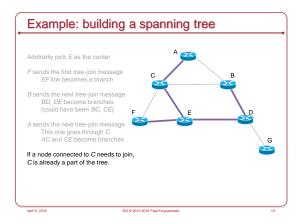
Sequence number controlled flooding
 Sender places its source address and a broadcast sequence number into the packet
 Each node keeps a list of {source address, sequence number} of each packet that was forwarded
 Before copying & forwarding a packet, check the list
 If we saw it, drop it

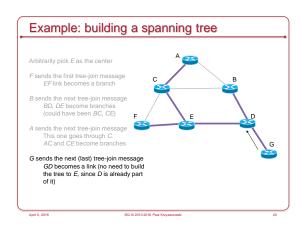
 Reverse path forwarding (RPF)
 Packet is duplicated & forwarded ONLY IF it was received via the link that is the shortest path to the sender
 Shortest path is found by checking the forwarding table to the source address




Building a spanning tree


Center-based approach


- Define a center node (rendezvous point)
- Nodes send tree-join messages to this center node
- The message is forwarded toward the center node until it
- arrives at a node that already belongs to the spanning tree
- · or arrives at the center
- The path that the tree-join message traverses defines a branch of the spanning tree


2016 352 © 2013-2016 Paul Krzyzanowski

IP multicast routing

11 5, 2016 352

Multicast routing

- Deliver messages to a subset of nodes
- How do we identify the recipients?
 - Enumerate them in the header?
 - · What if we don't know?
 - · What if we have thousands of recipients?

IP multicasting

- Can span multiple physical networks
- Dynamic membership
- Machine can join or leave at any time
- · No restriction on number of hosts in a group
- Machine does not need to be a member to send messages
- · Efficient: Packets are replicated only when necessary

April 5, 2016 23

IP multicast addressing

- Use a special address to identify a group of receivers
- A copy of the packet is delivered to all receivers associated with that group
- Class D multicast IP address
- 32-bit address that starts with 1110 (224.0.0.0/4 = 224.0.0.0 239.255.255.255)
- Host group = set of machines listening to a particular multicast address

April 5, 2016 2

IP multicast addresses

- Addresses chosen arbitrarily for an application
- · Well-known addresses assigned by IANA
- Internet Assigned Numbers Authority
- See

http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml

- Similar to ports service-based allocation
- · For ports, we have:
- FTP: port 21, SMTP: port 25, HTTP: port 80
- · For multicast, we have:

224.0.0.1: all systems on this subnet all 224.0.0.2: all multicast routers on subnet 224.0.23.173: Philips Health 224.0.23.52: Amex Market Data 224.0.12.0-63: Microsoft & MSNBC

April 5 2016

352 © 2013-2016 Paul Krzyzanowski

IGMP

- Internet Group Management Protocol (IGMP)
- Operates between a host and its attached router
- Goal: allow a router to determine to which of its networks to forward IP multicast traffic
- IP protocol (protocol number 2)
- · Three message types
 - Membership_query
 - Sent by a router to all hosts on an interface to determine the set of all multicast groups that have been joined by the hosts on that interface
 - Membership report
 - Host response to a query or an initial join or a group
 - Leave group
 - · Host indicates that it is no longer interested
 - Optional: router infers this if the host does not respond to a query

April 5, 2016

352 © 2013-2016 Paul Krzyzanowski

Multicast Forwarding

- · IGMP allows a host to subscribe to a multicast stream
- · What about the source?
- There is no protocol for the source!
- It just sends to a class D address
- Routers have to do the work

April 5, 201

352 © 2013-2016 Paul Krzyzanowski

Multicast Forwarding

- IGMP: Internet Group Management Protocol
 - Designed for routers to talk with hosts on directly connected networks
- PIM: Protocol Independent Multicast
- Multicast Routing Protocol for delivering packets across routers
- Topology discovery is handled by other protocols

April 5, 2016

352 © 2013-2016 Paul Krzyzanowski

IGMP & Wide-Area Multicast Routing recv host recv host

Flooding: Dense Mode Multicast

Source-based tree

- · Relay multicast packet to all connected routers
 - Use reverse path forwarding (RPF) to avoid loops
 - Cutoff if there are no multicast receivers on a link
 - A router sends a prune message
 - Periodically, routers send messages to refresh the prune state
 - Flooding is initiated by the sender's router
- · Advantage:
- Simple
- Good if the packet is desired in most locations
- · Disadvantage:
 - wasteful on the network, wasteful extra state & packet duplication on routers

April 5, 2016

352 © 2013-2016 Paul Krzyzanowski

Sparse Mode Multicast

- · Initiated by the routers at each receiver
 - Only network segments with receivers that joined a group will be forwarded multicast traffic
- Each router needs to ask for a multicast feed with a PIM Join message
 - Initiated by a router at the destination that gets an IGMP join
- Spanning tree constructed
- Join messages propagate to a pre-defined rendezvous point
- Sender transmits only to the rendezvous point
- A Prune message stops a feed
- Advantage
- Packets go only where needed
- Creates extra state in routers only where needed

352 © 2013-2016 Paul Krzyzanowski

IP Multicast in use

- · Initially exciting:
- Internet radio, NASA shuttle missions, collaborative gaming
- But
- Few ISPs enabled it
- For the user, required tapping into existing streams (not good for on-demand content)
- Industry embraced unicast instead

Andl 5 2016

352 © 2013-2016 Paul Krzyzami

IP Multicast in use: IPTV

- IPTV is emerging as the biggest user of IP multicast
- Cable TV systems: aggregate bandwidth ~ 4.5 Gbps
 - Video streams: MPEG-2 or MPEG-4 (H.264)
- MPEG-2 HD: ~30 Mbps
- MPEG-4 HD: ~6-9 Mbps; DVD quality: ~2 Mbps

April 5, 2016

352 © 2013-2016 Paul Krzyzanowski

IP Multicast in use: IPTV

- · Traffic is within the provider's network
- QoS: typically mix of ATM and/or IP
- 2.5 Mbps VBR video
- · 256 kbps CBR voice
- Remainder: ABR for IP traffic
- Unicast for video on demand
- Multicast for live content
- When you select a channel, you join a multicast group via $\ensuremath{\mathsf{IGMPv2}}$
 - Local office checks if you are authorized.
 If yes, routers add the user to the group
- Burst of unicast data to get the I-frame to ensure 150 msec channel
- switching times.
- Multicast for
 STB system integration, music on hold, conferencing

April 5, 2016

262 @ 2012-2016 Paul Kravanoueki

The end

April 5, 2016

352 © 2013-2016 Paul Krzyzanowski