
Termination-Checking for LLVM Peephole Optimizations

David Menendez
Department of Computer Science

Rutgers University
davemm@cs.rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
santosh.nagarakatte@cs.rutgers.edu

ABSTRACT
Mainstream compilers contain a large number of peephole opti-
mizations, which perform algebraic simplification of the input pro-
gram with local rewriting of the code. These optimizations are a
persistent source of bugs. Our recent research on Alive, a domain-
specific language for expressing peephole optimizations in LLVM,
addresses a part of the problem by automatically verifying the cor-
rectness of these optimizations and generating C++ code for use
with LLVM.

This paper identifies a class of non-termination bugs that arise
when a suite of peephole optimizations is executed until a fixed
point. An optimization can undo the effect of another optimization
in the suite, which results in non-terminating compilation. This
paper (1) proposes a methodology to detect non-termination bugs
with a suite of peephole optimizations, (2) identifies the necessary
condition to ensure termination while composing peephole opti-
mizations, and (3) provides debugging support by generating con-
crete input programs that cause non-terminating compilation. We
have discovered 184 optimization sequences, involving 38 opti-
mizations, that cause non-terminating compilation in LLVM with
Alive-generated C++ code.

Categories and Subject Descriptors
D.2.4 [Programming Languages]: Software/Program Verification;
D.3.4 [Programming Languages]: Processors—Compilers; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

Keywords
Compiler Verification, Peephole Optimization, Alive, Termination

1. INTRODUCTION
Compilers translate source programs to multiple target archi-

tectures while preserving semantics. Modern compilers are com-
plex because they perform numerous optimizations to obtain the
best possible performance on modern architectures. Among them,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884809

peephole optimizations perform algebraic simplification with local
rewriting of the input code.

Peephole optimizations clean up code resulting from other op-
timizations and also canonicalize code, which enables other op-
timizations. The LLVM compiler’s main peephole optimization
pass, InstCombine, contains over a thousand optimizations. Typ-
ically, the compiler developer observes a pattern that the compiler
fails to optimize, and adds a peephole optimization to handle it.
Once the new optimization is added to the compiler, the developer
runs the regression test suites to ensure correctness.

Unsurprisingly, peephole optimizations are a common source of
compiler bugs [19, 26, 38]. These bugs typically occur in corner
cases, especially in the presence of undefined behavior. To ad-
dress this problem of creating correct peephole optimizations, we
have developed Alive, a domain-specific language for specifying
peephole optimizations in LLVM [26]. An Alive optimization has
the form source ⇒ target, with an optional precondition.
The optimization checks the input code for a pattern of the form
source and replaces it with the target. Optimizations expressed
in Alive are automatically checked for correctness using a Satis-
fiability Modulo Theory (SMT) solver. Alive provides concrete
counterexamples when verification fails, which enables the com-
piler developer to fix the error. Further, the Alive framework gener-
ates C++ code for use within the LLVM compiler to provide com-
petitive compilation time while ensuring consistency of the specifi-
cation and the implementation. Alive has already detected bugs in
existing InstCombine optimizations [26]. There is active interest to
replace the InstCombine pass with Alive-generated C++ code.

This paper describes a new class of non-termination bugs with
peephole optimizations, discovered while translating InstCombine
optimizations in LLVM to Alive. The LLVM compiler runs a suite
of InstCombine optimizations multiple times until a fixed point.
Figure 1 provides a high level overview of the execution of Inst-
Combine optimizations. We observed that certain InstCombine op-
timizations can undo the effect of other InstCombine optimizations,
which can result in non-terminating compilation (i.e., the compiler
hangs). When iteratively applying hundreds of optimizations, it is
important to consider how they may interact. A developer adding a
new optimization cannot be certain of its interaction with existing
optimizations without a global view of LLVM’s InstCombine op-
timizations. Hence, a non-termination bug may be undetected for
years until some unfortunate programmer discovers it. Further, they
manifest only when appropriate input code is provided for compi-
lation.

This paper proposes a methodology to identify compiler non-
termination bugs by extending Alive to provide a global view of
InstCombine optimizations in LLVM. Our approach explores se-
quences of optimizations from the Alive suite to see whether they

function INSTCOMBINEFUNCTION(F)
repeat

Add reachable instructions in F to worklist
Remove unreachable blocks from F
for all I ∈ worklist do

if Try opt1: I matches source(opt1) then
Add all i ∈ target(opt1)) to worklist
Replace I with root(target(opt1))

else if Try opt2: I matches source(opt2) then
Add all i ∈ target(opt2)) to worklist
Replace I with root(target(opt2))

else if Try opt3: I matches source(opt3) then
Add all i ∈ target(opt3)) to worklist
Replace I with root(target(opt3))
. . .

end if
end for

until no changes made
end function

Figure 1: High-level view of InstCombine where opt1, opt2, opt3, and
other optimizations are tried in order. The root of the directed acyclic graph
is represented as root.

can have bad interactions that cause non-termination bugs when run
until a fixed point. Figure 2 illustrates the methodology for detect-
ing compiler non-termination bugs in InstCombine, which is based
on composition of sequences of Alive optimizations. The compo-
sition of two optimizations is a new optimization that has the effect
of applying the two optimizations to an input program, one after
the other. Our methodology enumerates all possible sequences of
a given length. For each sequence, we determine if it is feasible to
compose the sequence of optimizations into a single optimization
that summarizes the sequence. As we are specifically interested in
the case where subsequent optimizations are enabled by previous
ones, we only consider cases where the source of a subsequent op-
timization matches at least one instruction created by the target of
a previous optimization.

Next, we determine if the composed optimization can result in
non-termination. The composition itself may be infeasible with
some sequences. Even when the composition is feasible, the pre-
condition of the composed optimization of a sequence may not be
satisfiable. Such sequences cannot cause compiler non-termination
for any input program. When the optimization composes with it-
self with a satisfiable precondition, the optimization can be applied
infinitely many times when the self-composition of the optimiza-
tion consumes a source program no larger than original optimiza-
tion (see Figure 4 for an illustrative example). Hence, the necessary
conditions for non-termination are: (1) the precondition of the self-
composition is satisfiable, and (2) the length of the source of the
self-composition is smaller than or equal to the source of the origi-
nal optimization.

For example, let O1O2O3 be an optimization sequence, where
O1, O2, and O3 are individual peephole optimizations in the Alive
suite. The composition phase generates a single optimization Oz

that summarizes O1O2O3. The non-termination checker checks if
the precondition of OzOz is satisfiable and the number of instruc-
tions in the source of OzOz is smaller or equal to the number of
instructions in the source of Oz . If both the conditions are satis-
fied, the checker reports that the optimization sequence O1O2O3

causes compiler non-termination.
When an optimization sequence can cause non-termination, the

tool also generates a concrete input to aid debugging. We have
discovered 184 optimization sequences involving 38 optimizations
that cause compiler non-termination errors in Alive’s suite of Inst-

Combine optimizations. We have demonstrated that these opti-
mization sequences cause the generated C++ code for InstCombine
to loop indefinitely.

Contributions. This paper:

• Identifies a new class of compiler non-termination bugs, re-
sulting from the lack of a global view of peephole optimiza-
tions in LLVM.

• Proposes a methodology to detect compiler non-termination
bugs building on top of Alive, which checks the correctness
of each individual InstCombine transformation.

• Identifies non-increasing source in the self-composition of
a sequence of optimizations as the necessary condition for
non-termination.

• Proposes a technique to generate concrete inputs to demon-
strate non-termination errors to aid debugging.

Next, we provide a brief background on Alive because we build
our termination checker on top of Alive.

2. BACKGROUND ON ALIVE
Alive is a language for specifying peephole optimizations for

LLVM. The Alive interpreter automatically checks the correctness
of the optimization using a SMT solver and generates C++ code
that implements the optimization, for use in LLVM. Alive syn-
tax is similar to the LLVM IR because the intended users of Alive
(LLVM developers) are already familiar with it. In contrast to the
LLVM IR, Alive optimizations are parametric over types and bit
widths. Hence, the Alive interpreter checks the correctness of the
optimization for all feasible types and bit widths (up to a certain
bound). Alive abstracts the various kinds of undefined behavior
while the interpreter reasons about them during verification. Fig-
ure 3 illustrates the process of verifying and generating C++ code
with the Alive.

2.1 InstCombine Optimizations in Alive
Alive optimizations have the form source ⇒ target, with

an optional precondition. An Alive optimization replaces the root
of a directed acyclic graph (DAG) of instructions in the source with
the root of a new directed acyclic graph in the target. Hence, the
source DAG and the target DAG must have the same root vari-
able (%r). An example Alive optimization is given below.

Pre: C2 == ~C1
%w = or %p, C2
%x = xor %w, C1
%y = add %x, 1
%r = add %y, %q

=>
%a = and %p, C1
%r = sub %q, %a

In the optimization above, the DAG rooted at %r in the source is
replaced with the DAG in the target when the precondition is satis-
fied (i.e., C2 == ~C1, where C1 and C2 are symbolic constants).
In general, Alive preconditions consist of built-in predicates, equal-
ities, and signed/unsigned inequalities. The predicates in Alive are
used to represent the results of LLVM’s dataflow analyses.

The instructions in Alive are similar to instructions in the LLVM
IR. The variables in Alive other than the root are either input vari-
ables or temporary variables generated in the source and target. An

Precondition
satisfiable,

loop
sustainable

A sequence
of K

optimizations

Candidate
Optimization
Sequence
Generator

Optimization
Sequence

Compositor

Feasibility
and

Self-Loop
Checker

Concrete
Example

Generator

Cycle
length K

A suite of
peephole

optimizations

Composable
Test case &
optimization

sequence
causing

compiler non-
termination

self-loop
infeasible

Not
composable

Figure 2: Workflow of our termination checking algorithm.

Alive Z3

LLVM

SMT Queries

Analysis

C++ InstCombine Pass

Alive DSL

Figure 3: The figure illustrates how the optimization in Alive domain spe-
cific language (DSL) is checked for correctness by the Alive interpreter
with queries to the Z3 (SMT) solver. On successful verification, the Alive
interpreter generates the C++ code for use in LLVM. If the verification is
unsuccessful, it generates counter examples with concrete values to illus-
trate the error.

Alive optimization can also have symbolic and literal constants in
the source, target, and precondition. Constant expressions may oc-
cur in the target and precondition and can contain constants, arith-
metic and bitwise operators, and common math-based built-in func-
tions. In the example above, %r is the root of the DAG, %p and %q
are input variables, C1 and C2 are symbolic constants, and %w, %x,
%y, and %a are temporary variables.

The target may refer to instructions defined in the source, rede-
fine them, or create new instructions. When the target redefines an
instruction used in the source, it indicates that the target instruction
will replace the corresponding instruction in the source. The root
instruction in the source of an Alive optimization will always be
replaced in the target.

Alive provides abstraction over types. Hence, a single optimiza-
tion can apply to a wide range of types constrained by the instruc-
tions present in the source and target. For example, binary oper-
ators require their arguments and their result to be integers of the
same bit width. The compiler writer can optionally provide types
in Alive to reduce verification time. Types in Alive are a subset
of LLVM’s type system, including integers of various bit widths,
pointer types, array types, and void. Alive automatically deter-
mines the type constraints implicit in an optimization, and then
checks the validity of the optimization for various assignments of
types which meet those constraints.

Undefined behavior. Most compiler bugs are a result of misun-
derstanding semantics, especially regarding various kinds of unde-
fined behavior [26]. Alive’s verification engine reasons about the
correctness of optimizations in the presence of undefined behavior,
which eases the job of the compiler writer. Alive’s semantics for
instructions is based on the semantics of the LLVM IR. The seman-
tics of an instruction specify when the instruction is well-defined.
LLVM optimizes the program with the assumption that the pro-

grammer never intends to have undefined behavior in the program.
LLVM instructions have attributes that modify the behavior of

the instruction [26]. Examples of such attributes are nsw (no signed
wrap), nuw (no unsigned wrap), and exact. An arithmetic in-
struction with the no signed wrap attribute produces a poison value
on signed overflows [26]. Poison values produce undefined behav-
ior when such values are used in instructions with side effects. The
poison value propagates along dependencies. Hence, any instruc-
tion that receives a poison value as input will produce a poison
value as output.

2.2 Alive Semantics for Pattern Matching
Statements in Alive have slightly different semantics, depending

on whether they occur in the source or in the target. Instructions
occurring in the source act as patterns, indicating the minimum
requirements for a given input to match the source. In particular,
the presence of an instruction attribute (e.g., nsw) in the source
means that the attribute must be present in the input for the pattern
to match, but a pattern not containing an attribute will match an
instruction with the attribute. In contrast, instructions occurring in
the target act as code. The attributes present in the target are exactly
those which will be present in the output of an optimization.

2.3 Correctness and Generating C++ code
Given an optimization, the Alive interpreter uses an SMT solver

to help instantiate candidate types for the optimization. The Alive
interpreter encodes the Alive optimization with concrete types into
first order logic formulae. The validity of the formulae imply the
correctness of the optimization. The interpreter generates the fol-
lowing validity checks under the conditions that the source is well-
defined and poison-free, and the precondition is satisfied: (1) the
target is well-defined, (2) the target is poison-free, and (3) the roots
of the source and target compute the same value. These checks are
performed for each feasible type instantiation.

When verification succeeds, the Alive interpreter generates C++
code for the optimization using LLVM’s PatternMatch support [1].
Automatic generation of C++ code for the optimization provides
competitive compilation time and ensures consistency of the spec-
ification and the implementation. Next, we will discuss how to
detect non-termination bugs in a suite of Alive InstCombine opti-
mizations.

3. NON-TERMINATION DETECTION
Alive verifies the correctness of each individual optimization.

Even when all optimizations are individually correct, a suite of
them can cause a compiler to experience a non-termination bug. An
optimization in the suite can undo the work of other optimizations.
When such optimizations are run until a fixed point, the compiler
will not terminate. Consider the two optimizations (O1 and O2)
shown in Figure 4(a) and Figure 4(b), which we will use to illus-

Pre: true
 %p1 = xor %W, C1
 %r1 = and %p1, C2
=>
 %q1 = and %W, C2
 %r1 = xor %q1, (C1 & C2)

(c) Optimization O3 : the
composition of O1 and O2

(a) Optimization O1

(b) Optimization O2

Pre: true
 %p2 = and %X, %Y
 %r2 = xor %p2, %Y
=>
 %q2 = xor %X, -1
 %r2 = and %q2, %Y

Pre: (C2 == (C1 & C2))
 %p1 = xor %X, C1
 %r1 = and %p1, C2
=>
 %q2 = xor %X, -1
 %r1 = and %q2, C2

(d) Self composition of O3 with
itself: Compose (O3, O3)

Pre:((C2 == (C1&C2))&&(C2 == (-1 & C2))
 %p1 = xor %X, C1
 %r1 = and %p1, C2
=>
 %q2 = xor %X, -1
 %r1 = and %q2, C2

(e) Precondition of Compose (O3, O3) is satisfiable. The source
of the optimization compose(O3, O3) does not increase

compared to optimization O3, hence this optimization results in
non-terminating compilation

define i8 @foo(i8 %X){
entry:
 %p1 = xor i8 %X, 255
 %r1 = and i8 %p1, 0
 ret i8 %r1
}

(f) Concrete input (in LLVM
intermediate representation) to
demonstrate non-termination

Figure 4: An example illustrating the process of non-termination detection. The optimization sequence generated is O1O2 where O1 and O2

are optimizations shown in (a) and (b) respectively. Optimization O3 shown in (c) is the composition of O1 and O2. The self-composition
(i.e., the composition of O3 with itself) is presented in (d). The source of the self-composition of O3 has the same length as the source of
O3, and its precondition is satisfiable. Hence, optimization sequence O1O2 can result in compiler non-termination with an appropriate input.
The test case generated for debugging is shown in (f).

trate our technique for detecting compiler non-termination. Both
optimizations are individually correct, as indicated by the Alive
verification engine. However, the compiler will not terminate when
the two optimizations are executed until a fixed point.

When an LLVM developer proposes a new optimization for the
InstCombine suite, it is necessary to determine whether the newly
proposed optimization can interfere with existing optimizations.
LLVM InstCombine, which is a collection of C++ code, does not
have a global view that could be used to identify non-termination
bugs. With Alive being adopted by LLVM developers for InstCom-
bine verification, our strategy is to use the Alive suite to provide a
global view of existing peephole optimizations and check if exist-
ing optimizations or the newly proposed optimization can cause
compiler non-termination.

The optimizations in InstCombine are attempted sequentially one
after the other, as shown in Figure 1. Suppose the optimizations
in InstCombine are O1, O2, O3. First, the optimization O1 is at-
tempted. If it is successful, then the newly created instruction is
added to the work list and the entire suite of optimizations is tried
again, as shown in Figure 1. If it is not possible to apply optimiza-
tion O1, then optimization O2 is attempted as described earlier. If
optimization O3 is applicable in a subset of the cases where opti-
mization O1 is applicable, then O3 will never be invoked due to
this structure of InstCombine optimizations. We say that optimiza-
tion O1 shadows optimization O3. In the absence of shadowing,
detecting non-termination in InstCombine reduces to the following
problem:

Given a suite of InstCombine optimizations where no optimiza-
tion shadows another, do optimization sequences that cause com-
piler non-termination exist?

Our general strategy to detect compiler non-termination bugs in
the Alive suite consists of three steps. First, we generate sequences
of optimizations up to a certain bound (O1O2 is the optimization
sequence in Figure 4). Second, we compose the optimizations in
the sequence to generate a resultant optimization that summarizes
the effect of running all the constituent optimizations on the input
code, one after the other (see Figure 4(c)). Third, we compose
the resultant optimization from the previous step with itself and
check if it consumes a larger source pattern and if its precondition
is satisfiable (see Figure 4(d) and Figure 4(e)). We describe each of
these steps in the following subsections.

3.1 Generating Candidate Sequences
Our goal is to determine whether there exists a sequence of op-

timizations that can be performed indefinitely. Given a suite of
n optimizations, the number of possible optimization sequences
with each optimization used exactly once has an upper bound of
O(n!). The space of optimization sequences with repetition is even
larger. The candidate optimization sequence generation phase ex-
plores this large state space in a systematic fashion by iteratively
enumerating all sequences up to a certain length (i.e., we explore
sequences of length 1, length 2, and so on). We restrict ourselves to
sequences where each optimization appears at most once. Each
sequence may give rise to zero or more compositions (see Sec-
tion 3.2). Our approach checks whether the composition of the
candidate sequence is feasible. In practice, we have to explore a
large number of optimization sequences to find a feasible composi-
tion for cycle lengths greater than 6.

3.2 Composition
Optimization composition is a key step in our procedure for de-

tecting non-termination. When composing two optimizations O1

and O2, we attempt to see if O2 will match the result of applying
O1 to some input. Therefore, we treat the target of O1 as code and
the source of O2 as a pattern, as described in Section 2.2. Because
the code and the pattern may have multiple instructions, the com-
position can potentially take place in more than one way. We are
interested specifically in cases where O1 enables O2, so we require
that O2 match at least one instruction created by O1.

Figure 6 presents the algorithm for the simple case of root-to-
root compositions. Extending the algorithm to handle non-root to
root and root to non-root compositions is straightforward; we omit
the details due to space considerations. The composition algorithm
first determines which values in the source of O2 (the pattern) must
unify with the target of O1 (the code), which is accomplished by
aligning their respective DAGs. DAG alignment results in sets of
values that must be identical for the composition to be feasible. The
sets generated from DAG alignment are checked to ensure that the
sets are valid (e.g., an instruction and a constant cannot be in the
same set). Finally, a new optimization is created by expanding the
source of O1 and the target of O2 with appropriate representatives
from the DAG alignment step. Figure 5 illustrates composition of
optimizations with DAG alignment.

Pre: true
 %p1 = xor %W, C1
 %r1 = and %p1, C2
=>
 %q1 = and %W, C2
 %r1 = xor %q1, (C1 & C2)

Pre: true
 %p2 = and %X, %Y
 %r2 = xor %p2, %Y
=>
 %q2 = xor %X, -1
 %r2 = and %q2, %Y

Pre: C2 == (C1 & C2)
 %p1 = xor %X, C1
 %r1 = and %p1, C2
=>
 %q2 = xor %X, -1
 %r1 = and %q2, C2

Optimization O

code

pattern

r1: xor

r2: xor

q1: and

p2: and

X Y

W C2

C1&C2

{r1, r2}, {q1, p2}, {W, X}, {C2, Y, C1&C2}
Sets from DAG alignment with

selected representatives

Optimization O

Optimization OSource from O
with selected

representatives

Target from O with selected
representatives

1

3

2

1

2

Figure 5: Composing two optimizations O1 and O2 to generate O3. The dashed lines connect the nodes that align with each other in the respective DAG’s
in the code and the pattern.

function COMPOSE(O1, O2)
Sets← AlignDAGs(O1, O2)
CheckV alidity(Sets)
Φ← ∅
for all S ∈ Sets do

φ← SelectReplacement(S)
Φ← Φ ∪ φ

end for
src(O3)← Graft(root(src(O1)), Sets)
tgt(O3)← Graft(root(tgt(O2)), Sets)
pre(O3)←

Graft(pre(O1), Sets) ∧Graft(pre(O2), Sets) ∧ Φ
return O3

end function

Figure 6: Compose optimizations O1, O2, if possible.

3.2.1 DAG Alignment
The DAG alignment process finds all values in the pattern and

the code that must unify for the composition to occur. We perform
DAG alignment using a worklist-based algorithm. The worklist
contains the list of values from the respective DAGs that should be
processed for unification. The result of the DAG alignment stage
is a collection of sets, where each set contains values that must
be unified for the composition to occur. The algorithm for DAG
alignment maintains the invariant that any unified set contains at
most one code instruction, because a pattern variable cannot match
more than one distinct code instruction.

Figure 7 provides the algorithm for DAG alignment. Initially,
a pair consisting of roots of the respective DAGs in the code and
the pattern is added to the worklist. Each value in the respective
DAGs will be placed in exactly one set, which will combine with
other sets as the DAG alignment proceeds. When an item (a, b) is
processed from the worklist, the algorithm retrieves the sets Sa and
Sb corresponding to values a and b.

Matching a code and a pattern instruction. If Sa and Sb have
one code instruction and one pattern instruction, they are matched
with each other. The match algorithm in Figure 8 checks whether
the opcodes of the code instruction and the pattern instruction in Sa

and Sb are exactly the same. The match algorithm rejects the com-
position otherwise. The match algorithm rejects the composition

if the instruction attributes of the code instruction are not a subset
of the instruction attributes of the pattern instruction, according to
the Alive pattern matching semantics (see Section 2.2). The match
algorithm also adds a tuple for each operand of the matching in-
structions to the worklist.

Merging pattern instructions. If Sa and Sb both have pattern
instructions, they are merged according to the algorithm in Fig-
ure 9. The need for merging two pattern instructions arises because
two distinct instructions in the pattern may map to the same value
in the code (e.g. when a code instruction add %w, %w is matched
with pattern add %x, %y where %x and %y are distinct pattern
instructions). The pattern instructions are merged when they per-
form the same operation and the composition is rejected otherwise.
The union of the instruction attributes in the two pattern instruc-
tions is computed and used for the merged instruction based on the
Alive semantics. The algorithm also adds a tuple for each operand
of the merged instructions to the worklist.

Finally, the union of two sets Sa and Sb is added to the list of
unified sets and the sets Sa and Sb are removed from the collection
of sets, as shown in Figure 7. We use the union-find data structure
for the operations on disjoint sets.

Figure 5 illustrates the process of DAG alignment. Initially, a
tuple containing the roots (%r1, %r2) is added to the worklist.
When (%r1, %r2) is processed, the instructions %r1 and %r2 are
matched, which results in tuples (%q1, %p2) and ((C1 & C2),
%Y) being added to the worklist, and a set {%r1, %r2} is cre-
ated. When (%q1, %p2) is processed, instructions %q1 and %p2
are matched, which results in (%W, %X) and (%C2, %Y) being added
to the worklist, and a set {%q1, %p2} is created. The collection of
unified sets generated when all the elements are processed is shown
in Figure 5.

3.2.2 Validity of Sets from DAG Alignment
We check the collection of sets obtained from the DAG align-

ment for well-formedness (CheckV alidity call in Figure 6). We
check that no instruction in a set has another value in the same set as
the operand, either directly or transitively. We perform this check
by detecting cycles in the dependency graph constructed between
the sets. The nodes of the dependency graph are sets from the DAG
alignment stage. Two nodes A and B have an edge if an instruc-

function ALIGNDAGS(O1, O2)
Sets← ∅
worklist← [〈root(tgt(O1)), root(src(O2))〉]
while worklist not empty do
〈t1, t2〉 ← pop(worklist)
for i ∈ {1, 2} do

if ∃S ∈ Sets such that ti ∈ S then
Si ← S

else . Create a new set for this value
Si ← {ti}
Sets← Sets ∪ {Si}

end if
end for
if S1 6= S2 then

S3 ← S1 ∪ S2

if S1 and S2 have code instructions then
reject

end if
if S1 and S2 have pattern instructions then
〈v, pairs〉 ←Merge(patInstr(S1), patInstr(S2))
worklist← append(worklist, pairs)
patInstr(S3)← v

end if
if S3 has a new pattern-code pair then

pairs←Match(patInstr(S3), codeInstr(S3))
worklist← append(worklist, pairs)

end if
Sets← (Sets \ {S1, S2}) ∪ {S3}

end if
end while
return Sets

end function

Figure 7: Align two DAGs and return the sets of unified nodes.
codeInstr(S) and patInstr(S) denote the code instruction and merged
pattern instruction for S.

function MATCH(vp, vc)
if opcode(vp) 6= opcode(vc) then

reject
else if flags(vp) 6⊆ flags(vc) then

reject
else

return [〈op1(vp), op1(vc)〉, 〈op2(vp), op2(vc)〉, · · ·]
end if

end function

Figure 8: Match a code instruction against a pattern instruction.

tion in set A depends on a value from set B. The composition is
not feasible when such circular dependencies arise. We reject such
compositions.

We also ensure that no set from DAG alignment has both instruc-
tions and constants. Furthermore, no set may contain two distinct
specific constant literals (e.g., 1 and 2). When we are composing
O1 with O2 with DAG alignment, we also check that no value in
the source of O1 is unified with an intermediate value generated in
the target of O1. These checks ensure that the collection of sets
generated from DAG alignment correspond to a possible sequence
of Alive optimization applications.

3.2.3 Selection of Replacement for the Sets
Once the collection of sets from the DAG alignment is checked

for well-formedness, we select a replacement value for each set.
The replacement value will be used in the final stage when creat-
ing the composed optimization. The goal of this selection step is
to pick the most specific value, according to Alive semantics, for

function MERGE(v1, v2)
if opcode(v1) 6= opcode(v2) then

reject
else

v3 ← copy(v1)
flags(v3)← flags(v1) ∪ flags(v2)
return 〈v3, [〈op1(v1), op1(v2)〉, 〈op2(v1), op2(v2)〉, · · ·]〉

end if
end function

Figure 9: Combine two patterns, if possible.

function GRAFT(t, Sets)
if (∃S ∈ Sets such that t ∈ S) ∧ replacement(S) 6= t then

return Graft(replacement(S), Sets)
else

t′ ← copy(t)
for all operands i do

opi(t
′)← Graft(opi(t), Sets)

end for
return t′

end if
end function

Figure 10: Create a new DAG by recursively examining an existing DAG.
Values in a unified set are replaced by their representative.

each set. If the set contains roots, then the root of O1’s source
is selected. Otherwise, the replacement values are selected in the
following priority order: code instruction, merged pattern instruc-
tions, specific constants, constant expressions, symbolic constants,
and input variables.

Constant expressions (which don’t include specific and symbolic
constants) cannot occur in the source of an optimization in Alive.
When a set contains a constant expression and one of the values
in the set occurs in the source of O1, we choose that value. If the
set contains constant expressions not selected as the replacement
value, we create equations for the new optimization’s precondition.

In Figure 5, the selected replacement value for each set is in bold.
The set {C2, %Y, (C1 & C2)} contains a symbolic constant, an
input variable, and a constant expression. The symbolic constant
C2 is present in the source of O1. Hence, the symbolic constant C2
is chosen as the replacement and we introduce new clauses to the
precondition of the composed optimization to enforce the equality
of the symbolic constant and the constant expression. In Figure 5,
the new equation added is C2 == (C1 & C2).

3.2.4 Creating the New Composed Optimization
Finally, the fourth stage creates the new optimization. The graft

procedure shown in Figure 10 recursively walks through the depen-
dency graph of its argument, replacing any values from the match-
ing set with the value selected for its set. The graft procedure en-
sures that newly-created instructions and symbolic constants have
unique names. If one or both optimizations includes a precondi-
tion, then the graft procedure performs the same substitution on the
input precondition(s) to form the new precondition, along with any
additional equations produced during selection. Figure 5 presents
the final optimization O3 generated with the graft procedure.

3.3 Necessary Condition for Non-Termination
Our general strategy for identifying non-termination bugs is to

compose a given optimization (or a new composed optimization
generated from a sequence) with itself. However, the fact that an
optimization (or a sequence of optimizations) can self-compose

%p = add %a, %b
%r = add %p, %c
=>
%q = add %b, %d
%r = add %a, %q

(a)

%p1 = add %a1, %b1
%p = add %p1, %b
%r = add %p, %c
=>
%q = add %b, %c
%q1 = add %b1, %q
%r = add %a1, %q1

(b)

Figure 11: (a) Alive optimization that re-associates addition. (b) The self
composition of the reassociate add optimization, which does not cause non-
terminating compilation because the source pattern of self-composition is
larger than the source pattern of the original optimization.

does not necessarily result in non-terminating compilation. Al-
though the self-composition is feasible, such a self-composition
may never be invoked if the precondition is not satisfiable.

Moreover, self-composability is necessary, but not sufficient to
cause non-termination. Consider the optimization from the Alive
suite shown in Figure 11(a), which re-associates addition. The op-
timization can be self-composed, yielding the optimization shown
in Figure 11(b). The precondition of the self-composition is triv-
ially satisfiable. However, the optimization does not result in non-
terminating compilation, even though it can be run repeatedly, be-
cause the optimization consumes a different fragment of input code
each time it runs. Performing the re-associate optimization twice
will transform three instructions, instead of two. Performing it
three times will transform four instructions, and so on. Thus it
can only run a finite number of times on a finite input.

Based on this observation, we consider the size of the source
pattern when the optimization is composed with itself to deter-
mine if the optimization can result in non-terminating compilation,
rather than attempting to determine directly whether an optimiza-
tion decreases code size. Hence, the necessary conditions for non-
terminating compilation are:

• The precondition of the self-composition is satisfiable.

• The source pattern of the self-composition is either of the
same size or smaller than source pattern of the optimization
before the self-composition.

Optimizations O1 and O2 in Figure 4 can cause non-terminating
compilation because the source pattern of the self-composition in
Figure 4(d) is of the same size as the source pattern in Figure 4(c)
and the precondition of the self-composition is satisfiable.

4. DEBUGGING NON-TERMINATION
The approach described above generates a sequence of optimiza-

tions that can cause compiler non-termination. To enable the com-
piler writer to debug and diagnose the cause of non-terminating
compilation, we also generate test cases that demonstrate these
non-termination errors. The resultant composition generated from
a sequence of optimizations already has sufficient information that
can be leveraged to generate a test case, which would enable the
compiler developer to debug the error.

As the source and target of an Alive optimization are written in
a generalized superset of LLVM IR, specializing the source of the
optimization will generate an example test case. Alive provides ab-
stractions over bitwidths and constants in comparison to the LLVM
IR. Hence, generating a test case requires identifying a bitwidth for
each individual type and generating concrete values for the sym-

bolic constants and constant expressions. Further, the test case must
be a self-contained LLVM IR unit (e.g., a function).

The test case for the composed optimization representing the ef-
fect of optimizations in a sequence is generated in three steps. First,
we specialize the types by choosing an arbitrary type assignment
which meets the optimization’s typing constraints. The constraints
are expressed in first order logic and the resulting formula is pro-
vided to an SMT solver. The model obtained from the solver pro-
vides the type instantiations for the values in the test case. Second,
we specialize the symbolic constants into concrete values respect-
ing the constraints in the optimization’s precondition. Similar to
types, we express the precondition in first-order logic and query the
SMT solver with the resulting formula. The model from the SMT
solver provides the concrete constants. Third, we generate a self
contained test case in the LLVM intermediate representation. The
test case is structured as an LLVM function, with parameters cor-
responding to the optimization’s input variables and return value
corresponding to its root. For each instruction in the source, we
generate a corresponding LLVM instruction, applying the types and
constants obtained in the previous steps.

Figure 4(f) shows the test case generated for the composed opti-
mization in Figure 4(c). The generated test case has i8 as the type
chosen for the source variables. The symbolic constants C1 and
C2 have been instantiated with 255 and 0 respectively because they
satisfy the precondition.

Optimizations using results from dataflow analyses. Alive op-
timizations can use the result of LLVM data flow analyses. Gen-
erating test cases that satisfy the results of dataflow analyses is
challenging. For example, if the precondition contains a predicate
WillNotOverflowSignedAdd(%a,%b), we cannot simply
make %a and %b parameters to a function. LLVM will not be able
show that their addition will not result in signed overflow and the
optimization will not be applied. To address this challenge, we
generate symbolic constants that satisfy the axiomatic specification
of the dataflow analyses in Alive. One minor niggle with this ap-
proach is that we will have to disable constant folding before run-
ning InstCombine in LLVM. For the example above, our test case
will contain concrete constants (e.g., 42 and 7, assuming the type of
%a and %b is i8) whose addition does not result in signed overflow.

Shadowing of optimizations. An implicit precondition with our
generated test case is that all optimizations other than the optimiza-
tions listed in the cycle do not run when executed with the Alive
InstCombine suite. In some cases, the test case generated for a se-
quence of optimizations in a cycle will not result in compiler non-
termination when run with a suite of InstCombine optimizations.
In those cases, an optimization not in the cycle has matched an in-
put program intended for an optimization in the cycle, effectively
breaking the cycle. This occurs if an optimization in the cycle is
shadowed by another optimization. We have extended our analyses
to check whether an optimization shadows another. Figure 14 pro-
vides an example of shadowing. We evaluate the number of cycles
that are shadowed in our experimental evaluation.

5. EXPERIMENTS
In this section, we describe and experimentally evaluate the pro-

totype termination checker for Alive InstCombine optimizations.
The goal of this evaluation is to show that (1) optimization se-
quences that cause non-termination are common in the Alive Inst-
Combine suite and the termination checker detects them, (2) the
non-termination bugs can be demonstrated in LLVM with the test
cases generated, and (3) parallelization speeds up the exploration
of optimization sequences for non-termination bugs.

n Optimization Complete Self-com- Non-in- Cycles
Sequences Compo- positions creasing Found

sitions
1 416 416 296 25 23
2 86 320 7 001 4 292 31 27
3 23 824 320 182 678 96 989 49 35
4 7 379 583 120 5 524 634 2 694 291 152 99
5* 13 119 902 905 1 000 000 463 017 2 0
6* 97 613 680 549 1 000 000 394 794 0 0
7* 474 163 216 578 1 000 000 395 638 0 0

Total Number of Cycles 184

Table 1: The first and second columns report the length of the cycle in
the exploration and the number of optimization sequences that were ex-
plored when looking for the n cycle. The third column reports the number
of optimizations that result from a complete composition of the sequence.
The fourth column reports how many self-compositions of the composed
optimizations were possible. The fifth column reports the number of self-
compositions that had a non-increasing source. The last column reports the
cycles found. A * indicates a randomized search of optimization sequences
until a million complete compositions were found.

Optimization n-cycles
1 2 3 4

AddSub 1 1 1 1 6
AddSub 2 1 1 1 6
AddSub 3 1 5 14
AddSub 4 1 4
AddSub 5 1 3 6 13
AddSub 6 1 3 5 10
AndOrXor 1 1 3 8
AndOrXor 2 1 1 6 24
AndOrXor 3 2
AndOrXor 4 1 9
AndOrXor 5 1 1 2 11
AndOrXor 6 1 2 15
AndOrXor 7 1 8 36
AndOrXor 8 1 2 6 10
AndOrXor 9 1 1 12
AndOrXor 10 1 8 38
AndOrXor 11 1
AndOrXor 12 1 3 24
AndOrXor 13 1 1 3 22

Optimization n-cycles
1 2 3 4

AndOrXor 14 1 3 24
AndOrXor 15 1 1 12
AndOrXor 16 2 5 24
MulDivRem 1 1 1
MulDivRem 2 1 2 2
MulDivRem 3 1 1
MulDivRem 4 1 2 2
MulDivRem 5 1 1
MulDivRem 6 1 2 2
MulDivRem 7 1 1
MulDivRem 8 1 2 2
MulDivRem 9 1 2 3 7
MulDivRem 10 1 6 18
Select 1 1
Select 2 1
Shift 1 1 5 8 3
Shift 2 1 5 8 3
Shift 3 1 5 8
Shift 4 1

Table 2: The optimizations from the InstCombine suite and the number of
distinct n-cycles they participate in. The optimizations are named based on
the InstCombine sources files where they occur in LLVM.

5.1 Alive Termination Checker Prototype
The termination checker uses the publicly available version of

Alive [25] as its foundation. The code generator and optimizations
are compatible with the InstCombine pass of LLVM-3.6. We ex-
tended Alive to relax some of the typing restrictions to increase the
expressivity of optimizations. Alive has rudimentary or no support
for memory-related optimizations, getelementptr, and float-
ing point optimizations. We excluded such optimizations for check-
ing non-termination bugs. In total, we used 416 optimizations in
the Alive InstCombine suite to generate optimization sequences for
checking non-termination.

The test cases to demonstrate cycles were generated for LLVM-
3.6 with Alive-generated code inserted into the InstCombine pass.
We disabled constant folding in LLVM because our test cases use
concrete constants for the optimizations that use dataflow anal-
yses as described in Section 4. We use the unstable branch of
Z3 [9], which has better support for quantifiers, for checking the
constraints generated during cycle detection, type checking, and
test-case generation. The Alive non-termination checker is about
two thousand lines of python code and is available as open source1.

1https://github.com/rutgers-apl/alive-loops

Name: AndOrXor 2
%op = or %X, C1
%r = and %op, C2
=>
%o = or %X, (C1 & C2)
%r = and %o, C2

(a)

Name: AndOrXor 5
Pre: C2&(-1 u>> C1)!=-1 u>> C1
%op = lshr %X, C1
%r = and %op, C2
=>
%op = lshr %X, C1
%r = and %op, C2 & (-1 u>> C1)

(b)

Name: AndOrXor 13
%op0 = or %A, C1
%r = or %op0, %op1
=>
%i = or %A, %op1
%r = or %i, C1

(c)

Name: AndOrXor 8
Pre: MVIZ(%A, -1 u>> CLZ(C))
%lhs = sub %A, %B
%r = and %lhs, C
=>
%neg = sub 0, %B
%r = and %neg, C

(d)

Name: Select 1
%c = icmp eq %X, C
%r = select i1 %c,%X,%Y
=>
%c = icmp eq %X, C
%r = select i1 %c, C, %Y

(e)

Name: Select 2
%c = icmp ne %X, C
%r = select i1 %c, %Y, %X
=>
%c = icmp ne %X, C
%r = select i1 %c, %Y, C

(f)

Figure 12: A sampling of the optimizations that cause 1-cycles. The pre-
conditions in the optimizations are weak, which causes non-termination er-
rors. The optimization (d) uses results of two dataflow analyses: MVIZ
(MaskedValueIsZero) and CLZ (CountLeadingZeros).

Methodology. We will use the term n-cycle for an optimization
sequence of length n that causes compiler non-termination. As dis-
cussed in Section 3.1, we restrict ourselves to examining simple
n-cycles where each optimization appears at most once. There are

m!
(m−n)!n

possible simple n-cycles for a suite of m optimizations.
We cover all possible optimization sequences for small values of n.
However, the state space increases quickly for larger values of n.
We perform memoization to prevent exploring the same optimiza-
tion multiple times with large state spaces. For example, when
generating the composed optimization for the sequence O1O2O3,
we compose O1 and O2 into O1O2, memoize this composition and
later reuse this composition for all sequences starting with the pre-
fix O1O2. For larger values of n, we randomly sample selected
sequences to find a million distinct compositions. We generate
test cases for the detected cycles, and process them with a ver-
sion of LLVM using Alive-generated C++ code for the InstCom-
bine optimizations. All experiments were performed on a 64-bit
Intel Haswell machine with four cores and 16 GB of RAM.

Parallelization of optimization sequence exploration. The ter-
mination checker creates millions of Alive optimizations in the
course of its search. To speed up this process, we built a paral-
lel version of the non-termination detector that splits the checker
into multiple processes with a master-slave architecture. A man-
ager process divides the list of sequences to be explored into chunks
that share a common prefix. Workers process chunks until they per-
form a predefined amount of activity and terminate. The manager
creates new workers based on the amount of work that still needs
to be performed.

5.2 Effectiveness in Detecting Cycles
Our prototype was effective in detecting optimization sequences

that cause compiler non-termination. It detected 184 distinct opti-
mization sequences that can cause non-termination. Table 1 also
reports the number of optimization sequences explored, number

Name: AndOrXor 9
%op0 = xor %nOp0, -1
%op1 = xor %nOp1, -1
%r = and %op0, %op1
=>
%or = or %nOp0, %nOp1
%r = xor %or, -1

Name: AndOrXor 15
%op0 = or %x, %y
%r = xor %op0, -1
=>
%nx = xor %x, -1
%ny = xor %y, -1
%r = and %nx, %ny

(a)

Name: AndOrXor 12
%na = xor %A, -1
%nb = xor %B, -1
%r = or %na, %nb
=>
%a = and %A, %B
%r = xor %a, -1

Name: AndOrXor 14
%op0 = and %x, %y
%r = xor %op0, -1
=>
%nx = xor %x, -1
%ny = xor %y, -1
%r = or %nx, %ny

(b)

Figure 13: A sampling of the optimizations that cause 2-cycles. Optimiza-
tions A and B in Figure 4 also cause a 2-cycle
.

of complete compositions, and the number of self-compositions
possible. The number of feasible optimization sequences increase
rapidly with the cycle length. We performed complete exploration
of the state space for small cycle lengths (≤ 4). For larger cy-
cle lengths, we performed exploration of random optimization se-
quences of length n until we were able to create one million com-
plete compositions. Although there are a larger number of opti-
mization sequences, a small number of them can be composed with
each other. Even fewer of them produce a non-increasing source.

Analysis of cycles found. Table 2 reports the optimizations in
InstCombine that participate in cycles and the number of distinct
n-cycles that they appear in. A sampling of the 1-cycles and the
2-cycles that we discovered with our prototype is presented in Fig-
ure 12 and Figure 13 respectively. Detailed information about each
optimization is available online.2 There are 38 distinct optimiza-
tions that participate in 184 cycles.

A weak precondition in the optimization is the main reason for
non-termination errors in the majority of the 184 cycles. The opti-
mization in Figure 12(a) will not cause non-termination if the pre-
condition is strengthened to C1!=(C1&C2). Similarly, the opti-
mization in Figure 12(e) will not cause non-termination if the pre-
condition ensures that the input variable %X is not a constant. An-
other significant fraction of the cycles involved optimizations that
introduced instruction attributes when the instruction already had
those attributes. Compiler writers typically write weak precondi-
tions, which likely enables their optimization to run often. Our
prototype checker detects non-termination errors in such scenarios
and prevents them from getting into the tool chain.

Many of these optimizations participate in multiple cycles as
shown in Table 2. Further investigation revealed that many of the
longer cycles consisted of multiple smaller cycles. We found that
majority of the 3 and 4-cycles were various different combinations
of 1 and 2-cycles. After isolating the smaller cycles from the longer
cycles, we were able to identify 32 distinct cycles, which do not
contain any smaller cycles in them. Based on these observations
and the difficulty in generating feasible complete compositions of
an optimization sequence (see Table 1), we hypothesize that ma-
jority of the non-termination bugs can be discovered by exploring
smaller cycles.

5.3 Demonstration of Errors with Test Cases
To enable the compiler writer to debug the 184 cycles, our pro-

totype generated concrete inputs in the LLVM IR format for each
2https://github.com/rutgers-apl/alive-loops/blob/master/problems.opt

of these cycles. When the generated test cases were compiled with
LLVM using an Alive-generated InstCombine, the compiler would
not terminate for 179 out of the 184 cycles. The remaining 5 cases
were not able to induce compiler non-termination because the op-
timizations in the cycle were shadowed. In these cases, there was
an optimization in the InstCombine suite that ran before the op-
timizations in the cycle, which disabled the cycle. The optimiza-
tion in Figure 14(a) is a 1-cycle when C is INT_MIN (i.e., mini-
mum signed integer for a given bitwidth) and its self composition is
shown in Figure 14(b). However, the optimization in Figure 14(a)
is shadowed by the optimization in Figure 14(d) for the input pro-
gram shown in Figure 14(c).

5.4 Execution time with Parallelization
Figure 15 presents the speedup with the parallelized versions of

the termination checker when compared to the sequential version.
The total execution time for sequential complete exploration of cy-
cles ranges from 16 seconds (for n = 1) to 24 hours (n = 4). We
were not able to run sequential versions for cycle lengths greater
than 4. The parallel speedups are 1.15× for exploring 1-cycles and
3.77× for exploring 4-cycles on a 4-core machine. The speedups
with the 1-cycle are lower because the exploration has relatively lit-
tle work. The speedups are less than 4× for execution on four cores
while exploring larger cycles due to multiprocess communication
overhead between the master and the workers and the additional
parsing work performed by each worker thread. The parallelized
version attains almost linear speedups with the increase in the num-
ber of cores. The parallelized version also enables exploration of
cycles for higher cycle lengths.

6. THREATS TO VALIDITY
The termination checker is built on top of Alive, which models

the semantics of the LLVM IR. The semantics of the LLVM IR can
change. Hence, the composition stage in our termination checker
will likely be impacted by the discrepancies between the LLVM IR
and the Alive semantics.

The termination checker tries to accurately capture the structure
and the fixed point computation of InstCombine optimizations in
LLVM. The infrastructure may need small modifications if Inst-
Combine uses a different structure for its peephole optimizations,
which can change the results.

The Alive suite is a snapshot of the InstCombine suite that has
been aggregated over a period of time. We noticed that develop-
ers have strengthened preconditions in many optimizations in the
current production release of LLVM in contrast to the Alive suite.
Hence, the cycles reported probably may not occur in the produc-
tion releases of LLVM. Although we focused on cycle detection
for existing optimizations, the ideal use case for our termination
checker is during the development of new optimizations especially
with the interest in using Alive generated C++ code.

7. RELATED WORK
We classify related prior research into following categories: (1)

random testing for compiler bugs, (2) correct compilation, (3) ter-
mination checking for general purpose programs, and (4) perfor-
mance bug identification.

Random testing. Testing with randomly generated code is one
way to discover compiler non-termination errors [2, 19, 24, 28, 38].
Random testing has been effective in finding compiler errors. How-
ever, it is unlikely to discover corner cases that occur with rare in-
puts (e.g., the optimization in Figure 14(a) will only cause a loop
when the constant C has a specific value).

Pre: C < 0 &&
isPowerOf2(abs(C))

%p = sub %Y, %X
%r = mul %p, C

=>
%q = sub %X, %Y
%r = mul %q, abs(C)

(a) Optimization is a 1-cycle

Pre: C < 0 &&
isPowerOf2(abs(C)) &&
abs(C) < 0 &&
isPowerOf2(abs(abs(C)))

%p = sub %Y, %X
%r = mul %p, C

=>
%q = sub %X, %Y
%r = mul %q, abs(abs(C))

(b) Self-composition of (a)

definite i4 foo(i4 %Y,
i4 %X) {

entry:
%p = sub i4 %Y, %X
%r = mul i4 %p, 8
ret i4 %r

}

(c) Generated test case

Pre: isPowerOf2(C1)
%r = mul %x, C1

=>
%r = shl %x, log2(C1)

(d) Optimization shadowing (a)

Figure 14: The 1-cycle in (a) is shadowed by the optimization in (d) for the input shown in (c). The optimization (d) appears earlier than optimization (a) in
the Alive InstCombine suite. Note that the condition abs(C) < 0 is satisfied when C is INT_MIN.

Number of Cores

0

1

2

3

4

S
p
ee

d
u
p 1-cycles

2-cycles

3-cycles

4-cycles

2 3 4

Figure 15: Execution time speedups with parallel exploration of n-cycles
compared to the sequential exploration with increasing core count.

Correct compilation. Several domain-specific languages have
been proposed for developing compiler optimizations [4, 14, 18,
20, 21, 36]. Prior approaches have typically focused on verify-
ing individual optimizations. They do not address non-termination
when a collection of optimizations are run until a fixed point. Su-
peroptimizers [3, 16, 27, 33] that generate the shortest possible pro-
gram for a particular code input typically avoid non-termination
with cost metrics. However, these metrics are not directly appli-
cable to InstCombine as it is both an optimization pass and a code
normalization pass.

Translation validators [29, 31, 32, 40] check whether the com-
pilation of a given input program is correct. Translation validators
need the output of the compiler to check correctness, which is not
available when the compiler does not terminate. Alternatively, if
a verified compiler (e.g., CompCert [22], Vellvm [39]) is written
completely in a proof assistant such as Coq [8], then compiler ter-
mination is ensured by the proof assistant.

Termination checking. Detecting termination has been widely
explored for a wide range of use cases such as imperative pro-
grams, term-rewriting systems, specifications of systems, and sys-
tems code [5, 6, 7, 13, 17, 23, 34, 34]. These techniques attempt
to identify invariants either statically or dynamically that can be
used to prove termination (e.g., ranking function for a loop). Alive-
generated C++ code can probably be analyzed with these systems.
Identifying ranking functions for such code is likely not feasible
because it also involves the LLVM infrastructure code.

More specifically, LLVM optimizations can be seen as a form of
term rewriting systems. There is extensive research for showing ter-
mination and non-termination for term-rewriting systems [11, 12,
35, 37]. In contrast, our proposed approach leverages the struc-
ture and domain-specific knowledge of Alive optimizations to de-
tect non-termination.

Performance bugs. Alive-generated code could be configured
to stop operating on a basic block once the number of optimiza-
tions performed on it exceeds some threshold. In such a scenario,
the compiler will terminate but with poor compilation times. Fur-

ther, the generated code will likely have poor performance. There
is active research on detecting the causes of poor performance [10,
15, 30]. These techniques are dynamic analyses that require a con-
crete input, which demonstrates a cycle. In contrast, the proposed
termination checker detects these non-termination errors statically
and also generates inputs that demonstrate cycles.

8. CONCLUSION
We have shown that non-termination bugs occur with peephole

optimizations executed to a fixed point, especially when compiler
developers are not careful with preconditions. Our methodology
for detecting non-termination is based on composition of optimiza-
tions. We identified non-increasing source in self-compositions as
a necessary condition for non-termination, and generated inputs to
demonstrate non-termination with LLVM. Our goal was to cre-
ate a tool that LLVM developers can use to check non-termination
before they commit a new peephole optimization. Although we de-
scribe the methodology in the context of LLVM, it can be extended
to peephole optimization frameworks of other compilers.

Acknowledgments
We thank Jay Lim, Adarsh Yoga, Vinod Ganapathy, and the ICSE
reviewers for their feedback. This paper is based on work supported
in part by NSF CAREER Award CCF–1453086, a sub-contract of
NSF Award CNS–1116682, a NSF Award CNS–1441724, a Google
Faculty Award, and gifts from Intel Corporation.

References
[1] LLVM PatternMatch. http://llvm.org/docs/doxygen/html/

PatternMatch_8h.html. Retrieved 2016-02-12.

[2] A. Balestrat. CCG: A random C code generator. https:
//github.com/Merkil/ccg/. Retrieved 2016-02-12.

[3] S. Bansal and A. Aiken. Automatic generation of peephole
superoptimizers. In Proceedings of the 12th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 394–403,
2006.

[4] S. Buchwald. Optgen: A generator for local optimizations.
In Proceedings of the 24th International Conference on Com-
piler Construction (CC), pages 171–189, 2015.

[5] J. Burnim, N. Jalbert, C. Stergiou, and K. Sen. Looper:
Lightweight detection of infinite loops at runtime. In Proceed-
ings of the 2009 IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 161–169, 2009.

[6] M. Carbin, S. Misailovic, M. Kling, and M. C. Rinard. De-
tecting and escaping infinite loops with Jolt. In Proceedings
of the 25th European conference on Object-oriented program-
ming (ECOOP), pages 609–633, 2011.

[7] B. Cook, A. Podelski, and A. Rybalchenko. Termination
proofs for systems code. In Proceedings of the 27th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 415–426, 2006.

[8] The Coq Development Team. The Coq Proof Assistant Refer-
ence Manual, 2013.

[9] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), pages 337–340,
2008.

[10] D. C. D’Elia, C. Demetrescu, and I. Finocchi. Mining hot
calling contexts in small space. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 516–527, 2011.

[11] N. Dershowitz. Termination of rewriting. Journal of symbolic
computation, 3(1):69–115, 1987.

[12] J. Giesl, P. Schneider-kamp, and R. Thiemann. AProVE 1.2:
Automatic termination proofs in the dependency pair frame-
work. In Proceedings of the 3rd International Joint Con-
ference on Automated Reasoning (IJCAR), pages 281–286,
2006.

[13] A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, and
R.-G. Xu. Proving non-termination. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL), pages 147–158,
2008.

[14] S. Z. Guyer and C. Lin. Broadway: A compiler for exploiting
the domain-specific semantics of software libraries. Proceed-
ings of the IEEE, 93(2):342–357, Feb. 2005.

[15] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie. Performance
debugging in the large via mining millions of stack traces. In
Proceedings of the 34th International Conference on Software
Engineering (ICSE), pages 145–155, 2012.

[16] R. Joshi, G. Nelson, and Y. Zhou. Denali: A practical al-
gorithm for generating optimal code. ACM Transactions on
Programming Languages and Systems (TOPLAS), 28(6):967–
989, Nov. 2006.

[17] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
death, and the critical transition: Detecting liveness bugs in
systems code. In Proceedings of the 4th USENIX Symposium
on Networked Systems Design & Implementation (NDSI),
pages 243–256, 2007.

[18] S. Kundu, Z. Tatlock, and S. Lerner. Proving optimizations
correct using parameterized program equivalence. In Pro-
ceedings of the 30th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages
327–337, 2009.

[19] V. Le, M. Afshari, and Z. Su. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 216–226, 2014.

[20] S. Lerner, T. Millstein, and C. Chambers. Automatically prov-
ing the correctness of compiler optimizations. In Proceed-
ings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI), pages 220–
231, 2003.

[21] S. Lerner, T. Millstein, E. Rice, and C. Chambers. Auto-
mated soundness proofs for dataflow analyses and transfor-
mations via local rules. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL), pages 364–377, 2005.

[22] X. Leroy. Formal verification of a realistic compiler. Commu-
nications of the ACM, 52(7):107–115, July 2009.

[23] P. Li and J. Regehr. T-check: Bug finding for sensor networks.
In Proceedings of the 9th ACM/IEEE International Confer-
ence on Information Processing in Sensor Networks (IPSN),
pages 174–185, 2010.

[24] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson. Many-
core compiler fuzzing. In Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI), pages 65–76, 2015.

[25] N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Alive:
Automatic LLVM InstCombine Verifier. http://github.com/
nunoplopes/alive. Retrieved 2016-02-12.

[26] N. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Prov-
ably correct peephole optimizations with Alive. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 22–32,
2015.

[27] H. Massalin. Superoptimizer: A look at the smallest program.
In Proceedings of the 2nd International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 122–126, 1987.

[28] R. Morisset, P. Pawan, and F. Z. Nardelli. Compiler testing via
a theory of sound optimisations in the C11/C++11 memory
model. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 187–196, 2013.

[29] G. C. Necula. Translation validation for an optimizing com-
piler. In Proceedings of the ACM SIGPLAN 2000 Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 83–94, 2000.

[30] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. CARAMEL:
Detecting and fixing performance problems that have non-
intrusive fixes. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), pages 902–912,
2015.

[31] M. Rinard. Credible compilation. Technical Report MIT-
LCS-TR-776, Massachusetts Institute of Technology, Mar.
1999.

[32] H. Samet. Proving the correctness of heuristically optimized
code. Communications of the ACM, 21(7):570–582, July
1978.

[33] E. Schkufza, R. Sharma, and A. Aiken. Stochastic superop-
timization. In Proceedings of the 18th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 305–316, 2013.

[34] F. Spoto, F. Mesnard, and É. Payet. A termination analyzer
for Java bytecode based on path-length. ACM Transactions on
Programming Languages and Systems (TOPLAS), 32(3):8:1–
8:70, Mar. 2010.

[35] J. Steinbach. Simplification orderings: History of results.
Fundamenta Informaticae, 24(1–2):47–87, Apr. 1995.

[36] D. L. Whitfield and M. L. Soffa. An approach for exploring
code improving transformations. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 19(6):1053–
1084, Nov. 1997.

[37] H. Xi. Towards automated termination proofs through “freez-

ing”. In Rewriting Techniques and Applications, pages 271–
285. Springer, 1998.

[38] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and un-
derstanding bugs in C compilers. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 283–294, 2011.

[39] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic.
Formalizing the LLVM intermediate representation for ver-
ified program transformations. In Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 427–440, 2012.

[40] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A
methodology for the translation validation of optimizing com-
pilers. Journal of Universal Computer Science, 9(3):223–247,
2003.

