
Fast Polynomial Evaluation for Correctly Rounded
Elementary Functions using the RLIBM Approach

Mridul Aanjaneya
Department of Computer Science

Rutgers University
United States

mridul.aanjaneya@rutgers.edu

Santosh Nagarakatte
Department of Computer Science

Rutgers University
United States

santosh.nagarakatte@cs.rutgers.edu

Abstract
This paper proposes fast polynomial evaluation methods
for correctly rounded elementary functions generated us-
ing our RLibm approach. The resulting functions produce
correct results for all inputs with multiple representations
and rounding modes. Given an oracle, the RLibm approach
approximates the correctly rounded result rather than the
real value of an elementary function. A key observation is
that there is an interval of real values around the correctly
rounded result such that any real value in it rounds to the cor-
rect result. This interval is the maximum freedom available
to RLibm’s polynomial generation procedure. Subsequently,
the problem of generating correctly rounded elementary
functions using these intervals can be structured as a lin-
ear programming problem. Our prior work on the RLibm
approach uses Horner’s method for polynomial evaluation.

This paper explores polynomial evaluation techniques
such as Knuth’s coefficient adaptation procedure, parallel
execution of operations using Estrin’s procedure, and the use
of fused multiply-add operations in the context of the RLibm
approach. If we take the polynomial generated by the RLibm
approach and subsequently perform polynomial evaluation
optimizations, it results in incorrect results due to rounding
errors during polynomial evaluation. Hence, we propose to
integrate the fast polynomial evaluation procedure in the
RLibm’s polynomial generation process. Our new polynomial
evaluation procedure that combines parallel execution with
fused multiply-add operations outperforms the Horner’s
method used by RLibm’s correctly rounded functions. We
show the resulting polynomials for 32-bit float are not only
correct but also faster than prior functions in RLibm by 24%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0101-6/23/02. . . $15.00
https://doi.org/10.1145/3579990.3580022

CCS Concepts: • Mathematics of computing→Mathe-
matical software.

Keywords: RLIBM, correctly rounded, fused-multiply-add,
Horner’s method, coefficient adaptation, Estrin’s procedure
ACM Reference Format:
Mridul Aanjaneya and Santosh Nagarakatte. 2023. Fast Polynomial
Evaluation for Correctly Rounded Elementary Functions using the
RLIBM Approach. In Proceedings of the 21st ACM/IEEE International
Symposium on Code Generation and Optimization (CGO ’23), Febru-
ary 25 – March 1, 2023, Montréal, QC, Canada. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3579990.3580022

1 Introduction
The IEEE standard for the floating point (FP) representa-
tion mandates correct rounding for primitive operations. It
recommends, but does not mandate, correct rounding for
elementary functions [27]. Correctly rounded elementary
functions improve the portability and reproducibility of ap-
plications that use them. Unsurprisingly, there is seminal
prior work on generating correctly rounded elementary func-
tions [12, 19, 34]. The classic approaches to generate such
correctly rounded functions use (near) minimax approxima-
tions, where the goal is to minimize the maximum error
across all inputs with respect to the real value [10]. Subse-
quently, the coefficients of the polynomial are adjusted such
that they can be evaluated with a finite precision represen-
tation supported in hardware [7, 8]. Typically, the resulting
correctly rounded functions produce correct results for a
single FP representation and a single rounding mode.

The RLibm project. In contrast to the minimax meth-
ods, our RLibm project makes a case for approximating the
correctly rounded result [1, 2, 20–24, 26]. The RLibm project
splits the problem of generating correctly rounded elemen-
tary functions into two tasks: (1) task of generating the oracle
result and (2) the task of generating efficient implementations
given the oracle result. The RLibm project focuses on the
latter task, which allows them to sidestep the table maker’s
dilemma [17]. Given the correctly rounded result for an input
in the target representation, there is an interval of real values
around the correctly rounded result such that producing any
real value in this interval rounds to the correctly rounded re-
sult (see Figure 2). The RLibm project shows that this interval
is the freedom available to the polynomial generation step,

95

https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5048-8548
https://doi.org/10.1145/3579990.3580022
https://doi.org/10.1145/3579990.3580022
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

which is larger than the freedom available with minimax
methods, and structures the task of generating a polynomial
of degree 𝑑 that produces correctly rounded results for all in-
puts as a linear program (i.e., a system of linear inequalities).
It uses an LP solver to identify the coefficients. Numerical
errors experienced during range reduction and output com-
pensation are addressed by constraining the intervals.

Supporting multiple rounding modes and represen-
tations. The above method produces correctly rounded re-
sults for a single FP representation and a single rounding
mode [22, 23]. The IEEE-754 standard has multiple rounding
modes: round-to-nearest-ties-to-even (𝑟𝑛), round-to-nearest-
ties-to-away (𝑟𝑎), round-towards-zero (𝑟𝑧), round-towards-
positive-infinity (𝑟𝑢), and round-towards-negative-infinity
(𝑟𝑑). Furthermore, there are new representations such as
bfloat16 and tensorfloat32 that make trade-offs between
the dynamic range and the precision.

We have recently proposed a method in the RLibm project
to generate a single polynomial approximation that produces
correctly rounded results for multiple floating point represen-
tations and all standard rounding modes [25, 26]. To generate
correctly rounded results for FP representations with up to
𝑛-bits that have 𝐸-bits for the exponent, the key insight is
to generate a polynomial approximation that produces cor-
rectly rounded results for a representation with (𝑛 + 2)-bits
with the round-to-odd rounding mode [26]. When such a
result is double rounded to the target representation, it pro-
duces correct results for representations with 𝑘 bits, where
𝐸 + 2 ≤ 𝑘 ≤ 𝑛, and for all standard rounding modes.

Fast polynomial evaluation. We use Horner’s method
by default for polynomial evaluation in the RLibm project.
We observe that we can further improve the performance of
the single polynomial generated using the RLibm approach
that produces correct results for multiple representations
and rounding modes by performing parallel evaluation with
SIMD and fused multiply-add (FMA) operations.

For the sake of exposition, consider the following polyno-
mial with 5 terms, where 𝑥 ∈ R is a variable:

𝑢 (𝑥) = −6 + 6𝑥 + 42𝑥2 + 18𝑥3 + 2𝑥4

It can be efficiently evaluated with Horner’s method using 4
addition and 4 multiplication operations, as follows:

𝑢 (𝑥) = −6 + 𝑥 × (6 + 𝑥 × (42 + 𝑥 × (18 + 𝑥 × 2)))

Although Horner’s method is optimal in terms of the num-
ber of operations, it serializes the computation by creating
a longer chain of dependent instructions. Our goal in this
paper is to explore methods to reduce the number of opera-
tions, enable the execution of the operations in parallel, and
improve performance using fused multiply-add operations
for polynomial evaluation.

Adapting coefficients. Knuth [18] had proposed a sys-
tematic method for adapting the polynomial coefficients to
reduce the number of operations. This approach favors ad-
ditions in place of multiplication operations. Adapting the
coefficients using Knuth’s procedure for the above polyno-
mial will yield:

𝑦 = (𝑥 + 4)𝑥 − 1, 𝑢 (𝑥) = ((𝑦 + 𝑥 + 3)𝑦 − 1)2
This alternate expression requires only 3 multiplications,

but 5 additions. We describe the procedure for obtaining
adapted coefficients in Section 3. Generating such adapted co-
efficients for a polynomial of degree 𝑛, where 𝑛 ≥ 5, requires
the solution of a non-linear equation of degree ⌈𝑛/2⌉ [18].

Parallel execution of subexpressions. We can leverage
the instruction-level parallelism (ILP) in modern processors
by dividing the problem of polynomial evaluation into sub-
expressions that are independent of each other.

𝑢 (𝑥) = (−6 + 6𝑥) + 𝑥2 (42 + 18𝑥 + 2𝑥2) (1)

In the above example, two subexpressions (i.e., (−6 + 6𝑥)
and (42 + 18𝑥 + 2𝑥2)) can execute in parallel using the ILP
in the machine. The above process is also known as Estrin’s
procedure [27]. We describe Estrin’s method in Section 4.

Reducing rounding errors with fused multiply-add
operations. Another consideration with polynomial eval-
uation is the number of rounding operations performed.
Each rounding operation adds more error to the polynomial
approximation generated for an elementary function. This
rounding error can be reduced by using fused multiply-add
(FMA) operations. A fused multiply-add operation, denoted
as fma(𝑥,𝑦, 𝑧), computes 𝑥 × 𝑦 + 𝑧 with only one rounding.
In contrast, a multiply followed by an add operation would
have performed two rounding operations.

The above example in equation (1) can be implemented
with fused multiply-add operations as follows:

𝑡1 = 𝑓𝑚𝑎(𝑥, 6,−6)
𝑡2 = 𝑥2

𝑡3 = 𝑓𝑚𝑎(18, 𝑥, 42)
𝑡4 = 𝑓𝑚𝑎(2, 𝑡2, 𝑡3)

𝑢 (𝑥) = 𝑓𝑚𝑎(𝑡2, 𝑡4, 𝑡1)
This paper. In this paper, we explore the problem of fast

polynomial evaluation for polynomial approximations gen-
erated with the RLibm method for a 32-bit floating point
input that produces correctly rounded results for multiple FP
representations and rounding modes. Although Knuth’s co-
efficient adaptation method and Estrin’s parallel procedure
have been known to the community, they were not previ-
ously used in the context of producing correctly rounded

96

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

Inputs x and
the rounding

intervals
[l, h] in H883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:19

1 Function CalculateL0(f , L, T, H, RR, OC , OC�1, d):
2 L0 ; foreach (xi , [li ,hi]) 2 L do
3 t1 OC�1

H
(li ,xi)

4 t2 OC�1
H
(hi ,xi)

5 if OCH is an increasing function then
6 � t1; � t2
7 else // OCH is a decreasing function
8 � t2; � t1
9 end

10 while OCH(� ,xi) < [li ,hi] do
11 � AdjHigher(� , H)
12 if � > � then return ;
13 end
14 while OCH(� ,xi) < [li ,hi] do
15 � AdjLower(� , H)
16 if � > � then return ;
17 end
18 L0 L0 [{(RRH(xi), [� , �])}
19 end
20 return L0

1 Function Calculate�(L0):
2 X 0 {� 0xi

| (� 0xi
, I 0xi

) 2 L0}
3 � ;
4 foreach unique �i 2 X 0 do
5 �i ;
6 foreach (� 0x j

, I 0x j
) 2 L0 do

7 if �i = � 0x j
then

8 �i �i [{I 0x j
}

9 end
10 end
11 �i

—
I 0xj 2�i I

0
x j

12 if �i = ; then return ;
13 � � [{(�i ,�i)}
14 end
15 return �

Fig. 9. The function CalculateL’ transforms each constraint (xi , Ixi) 2 L that constrainsAf ,H(xi) into a new
constraint, (� 0xi

, I 0xi
), that constraints PH(� 0xi

) such that Af ,H satisfies Af ,H(xi) 2 Ixi even in the presence of
range reduction as long as PH(� 0xi

) 2 I 0xi
. The function Calculate� combines multiple constraints with the

same reduced input, i.e. (� 0xi
, I 0xi

), (� 0x j
, I 0x j

) 2 L0 where � 0xi
= � 0x j

, into a single constraint and creates a final
list of constraints � for PH.

of I 0xi
, i.e. [� , �] � I 0xi

, ;. In particular, values near the boundary of the interval, i.e. � or � may
be a value such that OCH(� ,xi) < Ixi or OCH(�,xi) < Ixi . Therefore, we repeatedly check whether
the boundary values, � and � , is correctly output compensated to a value in Ixi while reducing the
boundary of [� , �] if they do not (lines 10-17). Finally, we store the �nal interval I 0xi

= [� , �] where
OCH(� ,xi) 2 Ixi and OCH(� ,xi) 2 Ixi and the corresponding reduced input, �xi = RRH(xi) in L0

(line 18).

4.3 Calculating �

Once the list of constraints L0 is identi�ed, we merge the constraints (� 0x1 , I
0
xi
), . . . (� 0xi

, I 0xi
) 2 L0

where � 0x1 = · · · = � 0xi
. Each of these constraints bound the output of PH(x) such that Af ,H(x)

produces the correct value for each input xi , that reduces to the same value � 0xi
. The function

Calculate� in Figure 15 shows how we merge the constraints. First, for all constraints (� 0xi
, I 0xi

) 2
L0, we identify a list of unique reduced inputs, X 0 (line 1). For each unique reduced input � 2 X 0,
we identify all constraints (� 0xi

, I 0xi
) 2 L0 where � = �xi and group the intervals I 0xi

into � (line
4-10). � can be considered as the list of constraint that bounds the output of PH(�). Therefore, we
create a uni�ed constraint by taking intersection of all intervals in � (line 11). If the intersected
interval, � is ;, then it means that there is no output PH(�) that satis�es all constraints in � and our
algorithm terminates by outputting it (line 12). Finally, Calculate� returns the list � containing
the merged constraints (�i ,�i) for each unique �i 2 X 0. The polynomial PH(x) should be generated
such that it satis�es the constraints �.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Sub-domain #1

Sub-domain #2

…

List of
all inputs

x in T

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

An Approach to Generate Correctly Rounded Math Libraries for New Floating Point Variants 1:17

1 Function Main(f , T, H, X , RR, OC , OC�1, d):
2 L CalcRndIntervals(f , T, H, X)

3 if L = ; then return false
4 L0 CalcRedIntervals(f , L, T, H, RR, OC , OC�1)
5 if L0 = ; then return false
6 � CombineRedIntervals(L0)
7 if � = ; then return false
8 S , PH SynthesizePoly(�, d)
9 if S = true then return P

10 else return false

Fig. 7. Overall algorithm that creates the polynomial approximation P(x) that will produce the cor-
rectly rounded result. Each function, CalcIntervals, CalcRedIntervals, CombineRedIntervals, and
SynthesizePoly is explained later in this section.

1 Function CalcRndIntervals(f , T, H, X):
2 L ;
3 foreach x 2 X do
4 � RN (f (x),T)
5 I GetRndInterval(�, T, H)
6 if I = ; then return ;
7 L L [{(x , I)}
8 end
9 return L

10 Function GetRndInterval(�, T, H):
11 tl GetPrecVal(�, T)
12 l min{� 2 H|� 2 [tl ,�] and RN (�,T) = �}
13 tu GetSuccVal(�, T)
14 h max{� 2 H|� 2 [�, tu] and RN (�,T) = �}
15 return [l ,h]

Fig. 8. For each input x 2 X , CalcRndIntervals(f , T,H,X) identifies the interval I = [l ,h] where all values in
I rounds to the correctly rounded result f (x) for a given transcendental function f (x). The GetRndInterval(�,
T, H) function returns the interval I 2 H where all values in I rounds to �. GetPrecValue(�, T) returns the
preceding value of � in the T representation and GetSuccValue(�, T) returns the succeeding value of � in T.

(2) CalcRedIntervals: For each pair (x , Ix) 2 L, we compute the reduced input x 0. We also
compute the reduced interval I 0x = [l 0,h0] that de�nes the range of inputs for the output
compensation such that any value in I 0x is output compensated to a value in Ix . The pair (x 0, I 0x)
speci�es what the output of P(x 0) needs to be such that A(x) rounds to �. CalcRedIntervals
returns a list L0 containing all such pair of constraints for all input x .

(3) CombineRedIntervals: Because all inputs are reduced to the reduced input x 0, there may be
multiple reduced intervals for each reduced input in L0. P(x 0) must produce a value within all
the reduced interval for A(x) to produce the correct value when rounded. Thus, we combine
all reduced interval for each reduced input x 0 and produce the pair (x 0,�) where � represents
the combined interval. CalcRedIntervals returns a list � containing the constraint pair
(x 0,�) for each reduced input x 0.

(4) SynthesizePoly: Each pair (x 0,�) 2 � species the constraint on the output of P(x 0). We
frame synthesizing P(x 0) that satis�es all constraints in � as an LP problem and generate a
correct P(x 0).

4.1 Calculating The Rounding Interval
The �rst step in our approach is to identify the values thatA(x) must produces such that the rounded
value of A(x) is equal to the correctly rounded result of � = f (x), i.e. RN (A(x),T) = RN (�,T), for

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Reduced
inputs R

and reduced
intervals [li’, hi’]

for fi(x)

Polynomial Generation with Fast Polynomial Evaluation

Generate
Polynomial with
a LP formulation

Constrain intervals
for the violated

inputs

No Single/
piecewise
polynomial

StartInputs x and
the correctly

rounded
result y = f(x)

Oracle result
with the
round-to-odd
mode

Is the
polynomial

correct?Range Reduction
Domain Splitting for

Piecewise Polynomials

Fast
Polynomial
evaluation

Figure 1. Our modifications to the RLibm pipeline to generate polynomial approximations with fast polynomial evaluation
(Knuth’s procedure for adapting the coefficients, Estrin’s method for parallelizing operations, and the use of fused multiply-add
operations to reduce the rounding error), which produces correctly rounded results for all inputs with multiple rounding
modes and multiple floating point representations. Our changes are highlighted in red color.

elementary functions because of rounding errors in the re-
sulting polynomial evaluation procedure. A naïve approach
for incorporating fast polynomial evaluation methods (i.e.,
adapt the coefficients, parallelize it, or use fma instructions)
at the end of the RLibm process will not work. For some in-
puts, rounding errors in the adapted coefficients can produce
incorrect results.

To address this issue, we propose to incorporate the proce-
dure for fast polynomial evaluation into the RLibm pipeline
(see Figure 1). Our method is described as follows: Given an
oracle, we generate the correctly rounded result with the
round-to-odd rounding mode for every input with a repre-
sentation that has two additional bits of precision compared
to the largest representation we wish to support. Then, we
compute the rounding interval for each correctly rounded
result in the round-to-odd mode. The rounding interval is
computed in double precision. Next, we perform range re-
duction to obtain the reduced input and infer the reduced
interval using the inverse of the output compensation. The
above steps produce a set of range reduced inputs and the
corresponding reduced intervals. To generate a polynomial
of degree 𝑑 , these reduced inputs and intervals define a sys-
tem of linear inequalities. We use RLibm’s method to solve a
system of linear inequalities of low dimensions to obtain the
candidate polynomial [2].

Next, we explore fast polynomial evaluation techniques
(i.e., coefficient adaptation, parallel execution, and the use
of fma operations) on the candidate polynomial. If the re-
sulting polynomial produces a value in the corresponding
reduced intervals for all inputs, we are done with the pro-
cess. Otherwise, we identify all inputs that when evaluated
with the candidate polynomial, produce a value outside the
rounding interval. We shrink the rounding interval for such
inputs and re-run the entire process a bounded number of
times. This iterative process of generating the polynomial,
identifying coefficients with the fast procedure for polyno-
mial evaluation, validating the resulting polynomials, and
constraining the violated inputs enables us to handle the non-
linearity associated with fast polynomial evaluation using

an LP-based approach and still generate correctly rounded
implementations.

We extend our publicly available RLibm prototype to add
fast polynomial evaluation. The resulting prototype is also
publicly available [3]. We find that coefficient adaptation
with Knuth’s method provides some performance gains over
Horner’s method. We discover Estrin’s method when used
in tandem with the fused multiply-add operations and our
iterative procedure significantly speeds up the resulting el-
ementary functions. The functions generated with this ap-
proach are faster than the previous RLibm functions by 24%
on average.

2 The RLibm Approach
We describe our RLibm method in detail because we extend
it to incorporate fast polynomial evaluation methods.

2.1 Key Insights of the RLibm Approach
The RLibm approach [2, 20, 22, 23, 26] assumes the existence
of an oracle that provides correctly rounded results and fo-
cuses on generating efficient implementations. Hence, the
RLibm project makes a case for approximating the correctly
rounded result rather than the real value of the elementary
function.

Typically, the implementation of a correctly rounded func-
tion for a representation T uses a representationHwith more
precision than T. For example, a correctly rounded library for
single precision (i.e., a 32-bit float) is implemented in double
precision (i.e., a 64-bit type). The RLibm project observes that
for a given input in T, there is an interval of values in repre-
sentation H around the correctly rounded result such that
any value in that interval rounds to the correctly rounded
value (see Figure 2), which is called the rounding interval.

The rounding interval can be specified as [𝑙, ℎ], where 𝑙 is
the lower bound and ℎ is the upper bound. When the goal is
to generate a polynomial of degree 𝑑 with 𝑑 + 1 terms, the
rounding interval specifies the following constraint on the
result of the polynomial evaluation for a given input 𝑥 :

𝑙 ≤ 𝐶0 +𝐶1𝑥 +𝐶2𝑥
2 + .. +𝐶𝑑𝑥

𝑑 ≤ ℎ

97

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

𝑣1

rounding
interval of 𝑣2

𝑙 𝑣2 𝑓 (𝑥)

rounds to

ℎ 𝑣3

Figure 2. Values 𝑣1, 𝑣2, 𝑣3 are representable in precision T.
The real value 𝑓 (𝑥) for input 𝑥 is not representable in T and
is rounded to 𝑣2. The RLibm approach identifies 𝑣2’s rounding
interval (shaded box) in representation H.

This produces a system of linear inequalities correspond-
ing to all inputs in representation T and their corresponding
rounding intervals. The goal is to identify the coefficients
(i.e.,𝐶𝑖 ’s) of the polynomial that satisfy all these inequalities.
In summary, the RLibm project frames the problem of gen-
erating correctly rounded elementary functions as a linear
program and uses an LP solver to solve them. The RLibm
project demonstrates that the polynomial generation pro-
cedure has more freedom by approximating the correctly
rounded result in comparison to minimax approximation
methods.

The above description provides the key insights about the
RLibm approach. There are other important details, such as
range reduction, to consider while generating polynomial ap-
proximations for a 32-bit float. The original input 𝑥 is range
reduced to 𝑥 ′. Subsequently, the polynomial that we wish
to generate approximates the result for 𝑥 ′, which is then
used inside output compensation to compute the final cor-
rectly rounded output for 𝑥 . Both range reduction and output
compensation happen in H and can experience numerical
errors, which should not affect the generation of correctly
rounded results. Thus, it is necessary to deduce intervals
for the reduced domain such that the polynomial evalua-
tion over the reduced input produces the correct results
for the original inputs. The RLibm project uses the inverse
of the output compensation function to infer the reduced
rounding intervals. The reduced rounding interval is further
constrained to account for numerical errors that may arise
during range reduction, polynomial evaluation, and output
compensation. Finally, a system of linear inequalities corre-
sponding to the reduced inputs and the reduced rounding
intervals are solved using an LP solver to identify coefficients
of a polynomial of degree 𝑑 . The RLibm project iteratively
increases the degree when it fails to find a polynomial after
some threshold number of iterations. The RLibm project also
generates piecewise polynomials to limit the increase in the
degrees of the generated polynomials, which improves per-
formance. The resulting polynomials are significantly faster
than mainstream and correctly rounded libraries [2, 23, 26].

Figure 3. Illustration of double rounding errors. The values
in a 32-bit float are represented with boxes. The values in
a 34-bit representation FP34, which has two additional bits
of precision compared to a 32-bit float, are represented with
circles. The top row shows the result of rounding the original
real value (black star) to FP34 (green circle) and subsequently
rounding the result to a 32-bit float (red box). It can be ob-
served that this result is different from directly rounding the
original real value to a 32-bit float (blue box).

2.2 Single Polynomial Approximation for Multiple
Representations and Rounding Modes

A naïve approach to generate a single approximation for
multiple representations is to use a correctly rounded ele-
mentary function designed for a higher precision represen-
tation. However, it produces wrong results for some inputs
because of double rounding errors. Figure 3 illustrates why
double rounding errors occur.

A recent result in the RLibm project, RLibm-All [25, 26],
generates a single polynomial approximation that can pro-
duce correctly rounded results for all FP representations up
to 𝑛-bits. The key idea is to generate a polynomial for the
(𝑛+2)-bit representation (which has 2 additional precision
bits compared to the 𝑛-bit representation) using the round-to-
odd rounding mode. The two additional precision bits as well
as the round-to-odd mode retain all necessary information
to produce the correct results for any representation with
𝑛-bits or fewer.

Round-to-odd is a non-standard rounding mode that has
been used in a few niche cases, such as correctly round-
ing decimal numbers to binary numbers [15] and comput-
ing primitive operations in extended precision and still pro-
ducing correct results for smaller representation [5, 6]. The
round-to-odd mode works as follows: if a real value is exactly
representable by the target representation, we represent it
with that value. Otherwise, the value is rounded to an adja-
cent floating point value where the bit-pattern is odd when
interpreted as an integer. Figure 4 illustrates the round-to-
odd mode.

Figure 4. The round-to-odd rounding mode. If a real value
is exactly representable, it rounds to that value. Otherwise,
it rounds to the nearest value whose bit-pattern is odd.

98

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

To understand why double rounding with the round-to-
odd mode produces correct results, we have to first under-
stand how rounding works. Typically, we need three pieces
of information when rounding a real value to an𝑛-bit floating
point representation: (1) the first 𝑛-bits of the real value in
the binary representation, (2) the (𝑛 + 1)𝑡ℎ-bit, known as the
rounding bit, and (3) the result of the bitwise OR of all the re-
maining bits, known as the sticky bit. When we round a value
to a (𝑛+2)-bit representation using the round-to-odd mode,
the round-to-odd result precisely maintains the same three
pieces of information as rounding the real value directly to
the target representation of a lower bitwidth, as shown in
Figure 5. Hence, subsequent rounding of the round-to-odd
result to a representation with 𝑛-bits or smaller produces the
correct result.

Figure 5. Intuition on why the round-to-odd result with
34-bit FP produces correct results for representations with
10 bits to 32-bits and for all standard rounding modes. The
round-to-odd result precisely maintains the three pieces of
information as directly rounding the real value to a target
representation.

Hence, the key idea in RLibm-All is to generate a poly-
nomial approximation that produces the correctly rounded
round-to-odd result in the (𝑛+2)-bit representation. It is fea-
sible because the RLibm project approximates the correctly
rounded result. For each input in the 𝑛-bit representation, it
computes the correctly rounded result of 𝑓 (𝑥) in the (𝑛+2)-
bit representation with the round-to-odd mode using an
oracle. It uses the same LP formulation described earlier to
generate polynomials.

In summary, RLibm-All produces a polynomial approx-
imation that computes the correctly rounded result in the
round-to-odd mode for the 34-bit representation. When this
round-to-odd 34-bit FP’s result is eventually rounded to any
FP representation with 10-bits to 32-bits and for any standard
rounding mode, it produces correct results for all inputs.

3 Polynomial Coefficient Adaptation
Knuth’s coefficient adaptation procedure [18] is a polyno-
mial evaluation technique that reformulates the algebraic
operations in polynomial evaluation to favor addition opera-
tions in place of multiplication operations. It is feasible to
adapt the coefficients of any polynomial of degree greater
than 3 [18]. Next, we describe the process of adapting the
coefficients for polynomials of degrees 4, 5, and 6 because
RLibm generates polynomial approximations of degree at

most 6 and generates piecewise polynomials by splitting the
domain into sub-domains when the degree exceeds 6.

3.1 Coefficient Adaptation for Polynomials of
Degree 4

Consider the following polynomial equation with 5 terms,
where 𝑢𝑖 ∈ R for all 0 ≤ 𝑖 ≤ 4, and 𝑥 ∈ R is a variable:

𝑢 (𝑥) = 𝑢0 + 𝑢1𝑥 + 𝑢2𝑥
2 + 𝑢3𝑥

3 + 𝑢4𝑥
4 (2)

Using Knuth’s method [18] for adapting the polynomial
coefficients in equation (2) will yield (assuming 𝑢4 ≠ 0):

𝑦 = (𝑥 + 𝛼0)𝑥 + 𝛼1, 𝑢 (𝑥) = ((𝑦 + 𝑥 + 𝛼2)𝑦 + 𝛼3)𝛼4 (3)
where 𝛼𝑖 , 0 ≤ 𝑖 ≤ 4, are the “adapted” coefficients. This
alternate expression requires only 3 multiplications, but 5
additions. In contrast, Horner’s method requires 4 multipli-
cations. Equating equations (2) and (3) gives the following
formulas for computing the 𝛼 𝑗 ’s in terms of the 𝑢𝑘 ’s:

𝛼0 =
1
2 (𝑢3/𝑢4 − 1), 𝛽 = 𝑢2/𝑢4 − 𝛼0 (𝛼0 + 1),

𝛼1 = 𝑢1/𝑢4 − 𝛼0𝛽, 𝛼2 = 𝛽 − 2𝛼1, (4)
𝛼3 = 𝑢0/𝑢4 − 𝛼1 (𝛼1 + 𝛼2), 𝛼4 = 𝑢4

Although in this case the adapted coefficients can be derived
in closed-form, polynomials of degree-𝑛, for 𝑛 ≥ 5, require
the solution of a non-linear equation of degree ⌈𝑛/2⌉ [18].

3.2 Coefficient Adaptation for Polynomials of
Degree 5

Any polynomial of degree-5 can be evaluated using 4 mul-
tiplications, 6 additions, and 1 temporary variable by using
the rule: 𝑢 (𝑥) = 𝑈 (𝑥)𝑥 + 𝑢0, where 𝑈 (𝑥) = 𝑢5𝑥

4 + 𝑢4𝑥
3 +

𝑢3𝑥
2 + 𝑢2𝑥 + 𝑢1 is evaluated using the adaptation scheme

shown in equation (3). However, a degree-5 polynomial can
also be evaluated with 4 multiplications, 5 additions, and 3
temporaries (in registers) by using the following alternate
rule:

𝑦 = (𝑥 + 𝛼0)2
𝑢 (𝑥) = (((𝑦 + 𝛼1)𝑦 + 𝛼2) (𝑥 + 𝛼3) + 𝛼4)𝛼5 (5)

Let 𝑝 = 𝑢3/𝑢5 and 𝑞 = 𝑢4/𝑢5. The determination of 𝛼0 re-
quires computing a real root of the following cubic equation:

𝑝𝑞 − 2(𝑝 + 2𝑞2)𝛼0 + 24𝑞𝛼2
0 − 40𝛼3

0 = 𝑢2/𝑢5 (6)
Note that equation (6) is guaranteed to have a real root be-
cause the cubic polynomial approaches −∞ for large positive
values of 𝛼0, and it approaches +∞ for large negative values
of 𝛼0. Thus, by continuity, it must assume the zero value
somewhere in between. After solving equation (6), the re-
maining adapted coefficients 𝛼𝑖 , where 1 ≤ 𝑖 ≤ 4, can be
computed as follows:

99

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

𝛼1 = 𝑝 − 4𝑞𝛼0 + 10𝛼2
0, 𝛼3 = 𝑞 − 4𝛼0

𝛼2 = 𝑢1/𝑢5 − 𝛼2
0 (𝛼1 + 𝛼2

0) − 2𝛼0𝛼3 (𝛼1 + 2𝛼2
0) (7)

𝛼4 = 𝑢0/𝑢5 − 𝛼2𝛼3 − 𝛼2
0𝛼3 (𝛼1 + 𝛼2

0)

3.3 Coefficient Adaptation for Polynomials of
Degree 6

A polynomial 𝑢 (𝑥) = 𝑢6𝑥
6 + . . . +𝑢1𝑥 +𝑢0 of degree-6 can be

evaluated using 4 multiplications, 7 additions, and 2 tempo-
raries (in registers) using the following scheme:

𝑧 = (𝑥 + 𝛼0)𝑥 + 𝛼1, 𝑤 = (𝑥 + 𝛼2)𝑧 + 𝛼3,

𝑢 (𝑥) = ((𝑤 + 𝑧 + 𝛼4)𝑤 + 𝛼5)𝛼6 (8)
Equation (8) saves two of the 6 multiplications required by
Horner’s method. Since 𝛼6 = 𝑢6, let us assume for the sake
of simplicity that 𝑢6 = 1, which amounts to dividing all the
other coefficients 𝑢𝑖 , for 0 ≤ 𝑖 ≤ 5, by 𝑢6. Now, the goal is to
compute the adapted coefficients (i.e., 𝛼𝑖 where 0 ≤ 𝑖 < 6).
We know that 𝛼6 = 𝑢6. Further, assume:

𝛽1 = (𝑢5 − 1)/2, 𝛽2 = 𝑢4 − 𝛽1 (𝛽1 + 1),
𝛽3 = 𝑢3 − 𝛽1𝛽2, 𝛽4 = 𝛽1 − 𝛽2, 𝛽5 = 𝑢2 − 𝛽1𝛽3 (9)

This case also requires the computation of a real root of the
following cubic equation for determining the value of 𝛽6:

2𝑦3 + (2𝛽4 − 𝛽2 + 1)𝑦2 + (2𝛽5 − 𝛽2𝛽4 − 𝛽3)𝑦
+(𝑢1 − 𝛽2𝛽5) = 0 (10)

Equation (10) is guaranteed to always have a real root, since
the cubic polynomial approaches +∞ for large positive val-
ues of 𝑦, and it approaches −∞ for large negative values of
𝑦. Thus, by continuity, it must assume a value of zero some-
where in between. By defining 𝛽7 and 𝛽8 as shown below:

𝛽7 = 𝛽2
6 + 𝛽4𝛽6 + 𝛽5, 𝛽8 = 𝛽3 − 𝛽6 − 𝛽7 (11)

the adapted coefficients can be computed as follows:

𝛼0 = 𝛽2 − 2𝛽6, 𝛼2 = 𝛽1 − 𝛼0, 𝛼1 = 𝛽6 − 𝛼0𝛼2,

𝛼3 = 𝛽7 − 𝛼1𝛼2, 𝛼4 = 𝛽8 − 𝛽7 − 𝛼1, 𝛼5 = 𝑢0 − 𝛽7𝛽8 (12)

4 Estrin’s Method
Modern processors can exploit instruction-level parallelism
for increased efficiency by executing those instructions in
parallel that do not depend on each other. While Horner’s
method is optimal in terms of minimizing the number of ad-
ditions and multiplications required to evaluate an arbitrary
polynomial, the series of operations depend sequentially
on each other, and so cannot execute in parallel. In con-
trast, Estrin’s method can overcome this limitation, while
still keeping the number of arithmetic operations reasonably

1 Function EvaluatePolynomial(𝑢, 𝑥):
2 if 𝑛%2 == 0 then
3 𝑢𝑛+1 ← 0; 𝑣𝑛/2 ← 𝑢𝑛

4 end
5 if 𝑛 ≤ 1 then
6 return 𝑢0
7 end
8 foreach 0 ≤ 𝑖 ≤ ⌊𝑛/2⌋ do
9 𝑣𝑖 ← 𝑢2𝑖 + 𝑢2𝑖+1𝑥

10 end
11 𝑦 ← 𝑥2

12 𝑣 (𝑦) ← 𝑣0 + 𝑣1𝑦 + 𝑣2𝑦
2 + . . . + 𝑣 ⌊𝑛/2⌋𝑦 ⌊𝑛/2⌋

13 return EvaluatePolynomial(𝑣 , 𝑦)
Algorithm 1: Polynomial evaluation using Estrin’s method
given a polynomial 𝑢 in variable 𝑥 of degree 𝑛. The method
identifies subterms that can be executed in parallel. The com-
putation of various 𝑢2𝑖 + 𝑢2𝑖+1𝑥 (lines 8-10) can be computed
in parallel. Further, fused multipy-add operations can be used
to compute each 𝑢2𝑖 + 𝑢2𝑖+1𝑥 . At the end of this process, we
are now left with a polynomial 𝑣 in variable 𝑦, where 𝑦 = 𝑥2,
with degree ⌊𝑛/2⌋. The procedure is recursively invoked on
the resultant polynomial until there is only one term left.

close to the optimal. The key idea behind Estrin’s method is
to break a polynomial 𝑢 (𝑥) = 𝑢0 + . . . + 𝑢𝑛𝑥𝑛 as follows:

𝑢 (𝑥) = 𝑢0 + . . . + 𝑢𝑚−1𝑥
𝑚−1︸ ︷︷ ︸

𝑢𝐿 (𝑥)

+𝑥𝑚 · (𝑢𝑚 + . . . + 𝑢𝑛𝑥𝑚)︸ ︷︷ ︸
𝑢𝑅 (𝑥)

(13)

where𝑚 = 2 ⌈log2 𝑛⌉−1. The polynomials 𝑢𝐿 and 𝑢𝑅 are of de-
gree at most 𝑚 and are evaluated recursively. This definition
is a top-down view of Estrin’s method. The reader can gain
more intuition by analyzing the operations in a bottom-up
fashion. Specifically, 𝑢 (𝑥) can be viewed as a polynomial in
𝑥2 by grouping all sub-expressions of the form (𝐴 + 𝐵𝑥) as:

𝑣 (𝑥2) = (𝑢0 + 𝑢1𝑥) + (𝑢2 + 𝑢3𝑥) 𝑥2 + (𝑢4 + 𝑢5𝑥) 𝑥4 + . . . (14)

Each of these sub-expressions can be computed in paral-
lel. The grouping process can be subsequently repeated
⌊log2 𝑛⌋ + 1 times to obtain polynomials in 𝑥4, 𝑥8, and so
on. For efficiency, the monomials 𝑥2, 𝑥4, . . . can be computed
in a pre-processing step. Algorithm 1 provides pseudocode
for evaluating a polynomial using Estrin’s method.

Fused multiply-add operations. Once we have grouped
terms in the form (𝐴+𝐵𝑥), then they can be computed using
fused multiply-add operations as fma(𝐵, 𝑥,𝐴). All iterations
of the loop corresponding to lines 8-10 in Algorithm 1 can
be computed in parallel using fma operations. There are
two-fold benefits by combining Estrin’s method with fma
and the RLibm approach. First, fma operations reduce the
rounding error. When combined with the RLibm procedure,

100

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

the use of fma can help generate a lower degree polynomial.
Second, the fma operations can be executed in parallel using
the SIMD extensions tailored for fma on modern machines.

5 The RLibm Approach with Fast
Polynomial Evaluation

Our goal in this paper is to explore incorporating coefficient
adaptation and Estrin’s method with fma operations into the
RLibm approach to facilitate faster polynomial evaluation
while generating correctly rounded results. The coefficient
adaptation procedure described in Section 3 solves a cubic
equation that introduces some rounding errors. Furthermore,
the resulting coefficients will have some rounding error
when they are represented in floating point. Similarly, round-
ing errors can get amplified by the parallel recursive evalua-
tion procedure in Estrin’s method. If we just use these meth-
ods on the polynomial generated by the RLibm approach at
the end of the process, it may not produce correctly rounded
results for all inputs (and other representations/rounding
modes), as described in Section 6.

Hence, we propose an integrated iterative process in the
RLibm pipeline that consists of the following steps. First, we
generate a candidate polynomial with the RLibm approach.
Second, we use the coefficient adaptation procedure or the
parallel recursive evaluation for the candidate polynomial.
Third, we check if the fast polynomial evaluation satisfies
the rounding intervals for all inputs. Fourth, when there are
certain inputs for which evaluating the polynomial on them
produces a result outside the rounding interval, we constrain
the rounding intervals for them and repeat the above process.
This process that generates and adapts the polynomial and
then verifies and constrains the rounding intervals enables
us to incorporate fast polynomial evaluation procedures in
the RLibm approach, which relies on a linear programming
(LP) based formulation.

Our method is motivated by the fact that rounding the
polynomial coefficients from exact rational arithmetic gen-
erated by an LP solver to double precision, during the verifi-
cation step of RLibm, is already a non-linear process. Since
RLibm has been able to produce correctly rounded versions
of several elementary functions despite this non-linearity,
our insight is to piggy-back the fast polynomial evaluation
procedure with the generate-check-constrain loop to it. Algo-
rithm 2 provides a sketch of our iterative process within the
RLibm pipeline, which is also pictorially shown in Figure 1.

Generating the candidate polynomial. We generate
the candidate polynomial exactly similar to the RLibm method
described in Section 2. Our objective is to generate correctly
rounded results for all representations from 10-bits to a 32-bit
float and for all rounding modes in the IEEE standard. Hence,
we create a polynomial for a 34-bit representation with the
round-to-odd mode. Similarly, the rounding intervals are
for the round-to-odd oracle result. Range reduction, output

1 Function AdaptPolynomial(𝑓 , 𝑋 , 𝑅𝑅H, 𝑂𝐶H):
2 𝑌 ← ∅

/* Compute the rounding interval */

3 foreach (𝑥,T) ∈ 𝑋 do
4 𝑦 ← 𝑅𝑁T (𝑓 (𝑥))
5 [𝑙, ℎ] ← RoundingInterval(𝑦, T, H)
6 𝑌 ← (𝑥, [𝑙, ℎ])
7 end
8 L ← ReducedIntervals(𝑌 , 𝑅𝑅H, 𝑂𝐶H)
9 𝑖 ← 0

10 while 𝑖 < 𝑁 do
11 𝑝𝑜𝑙𝑦 ← RlibmLPSolve(L, 𝑑))
12 𝑎𝑝𝑜𝑙𝑦 ←

AdaptCoeffsOrParallelFMA(𝑝𝑜𝑙𝑦)

13 foreach (𝑥, [𝑙, ℎ]) ∈ L do
14 if 𝑃𝑜𝑙𝑦𝐸𝑣𝑎𝑙 (𝑎𝑝𝑜𝑙𝑦, 𝑥, 𝑑) ∉ [𝑙, ℎ] then
15 L ← ConstrainInterval(𝑥,L)
16 end
17 end
18 end
19 return 𝑎𝑝𝑜𝑙𝑦

Algorithm 2: A sketch of our procedure to adapt the coeffi-
cients of polynomial approximations with modifications to the
RLibm approach for a function 𝑓 given a set of inputs 𝑋 in the
largest representation that we wish to support (T) (i.e., 32-bit
float in our prototype). Range reduction (𝑅𝑅H) and output
compensation (𝑂𝐶H) are performed in representation H (i.e., H
is double precision in our prototype). The maximum number
of iterations in our process is specified by 𝑁 . We represent
the oracle round-to-odd result obtained by rounding the real
value of 𝑓 (𝑥) to representation T by 𝑅𝑁T (𝑓 (𝑥)). The function
RoundingInterval computes the round-to-odd result’s round-
ing interval. The function ReducedIntervals computes the
reduced inputs and infers the reduced intervals. The function
RlibmLPSolve generates a single polynomial or a piecewise
polynomial that satisfies the constraints of all inputs. The func-
tion AdaptCoeffsOrParallelFMA adapts the coefficients of the
candidate polynomial based on Knuth’s coefficient adaptation
procedure or the parallel recursive evaluation with Estrin’s
method. The function ConstrainInterval shrinks the round-
ing intervals for those inputs that evaluate to a result outside
the rounding interval with the adapted polynomial.

compensation, and coefficient adaptation are performed in
double precision. We use range reduction to create reduced
inputs and infer the reduced intervals. Subsequently, we use
RLibm’s algorithm for solving a system of linear inequalities
of low dimensions to obtain the candidate polynomial.

Incorporating coefficient adaptation and parallel re-
cursive evaluation. Once we have the candidate polyno-
mial, we perform coefficient adaptation using the procedure
described in Section 3 or the parallel recursive polynomial

101

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

evaluation with fma operations described in Section 4. Dur-
ing Knuth’s coefficient adaptation, for candidate polynomials
of degree 4, we use the closed form formula to adapt the co-
efficients. For candidate polynomials of degree 5 or degree 6,
we solve a cubic equation to compute the adapted coeffi-
cients. We use an external cubic solver in double precision.
For parallel recursive evaluation with Estrin’s method, we
explore variants with and without fma operations.

Checking the result of fast polynomial evaluation.
After generating the candidate polynomial with fast polyno-
mial evaluation, we check if the adapted polynomial, when
evaluated on a reduced input, produces a value outside the
corresponding rounding interval. We identify all such points.
Lines 13-17 in Algorithm 2 perform this step.

Constraining intervals. If the adapted polynomial, when
evaluated on a reduced input, produces a value outside the
rounding interval, we constrain the rounding interval as fol-
lows. Let us consider the constraint, (𝑥 ′, [𝑙 ′, ℎ′]) ∈ L, where
𝑥 ′ is the reduced input, 𝑙 ′ is the lower bound of the rounding
interval, and ℎ′ is the upper bound of the rounding inter-
val. If evaluating the adapted polynomial on 𝑥 ′ produces a
value that is smaller than the lower bound (i.e., 𝑙 ′), then we
constrain the rounding interval by setting the new lower
bound to the value succeeding 𝑙 ′ in double precision. This
causes the RLibm polynomial generator to generate new coef-
ficients for the candidate polynomial. Similarly, if evaluating
the adapted polynomial on 𝑥 ′ produces a value that is larger
than the upper bound of the interval constraint (i.e. ℎ′), then
we set the new upper bound to the value preceding ℎ′ in
double precision. This also forces the RLibm polynomial gen-
erator to generate a new candidate polynomial with different
coefficients.

We repeat this process of generating a new candidate
polynomial with the refined constraints until it satisfies all
constraints or exceeds a user-specified number of iterations.
When the RLibm method generates a piecewise polynomial,
we adapt the coefficients of each piece with this process.

6 Experimental Results
We describe the results of our experiments for checking the
correctness and performance of our polynomial approxima-
tions for elementary functions.

6.1 Prototype and Methodology
We extended the publicly available RLibm prototype to build
a polynomial generator with adapted coefficients and parallel
recursive evaluation. In this process, we created a collection
of correctly rounded elementary functions for six functions
(i.e., 𝑒𝑥 , 2𝑥 , 10𝑥 , 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥)). Recently, we
have also developed fast polynomial evaluation methods for
trigonometric functions.

To perform evaluation for this paper, we created three new
versions of each correctly rounded elementary function (𝑒𝑥 ,

2𝑥 , 10𝑥 , 𝑙𝑛(𝑥), 𝑙𝑜𝑔2 (𝑥), and 𝑙𝑜𝑔10 (𝑥)) that incorporates our
fast polynomial evaluation techniques into RLibm, which we
call RLibm-Knuth, RLibm-Estrin, and RLibm-Estrin+FMA. A
single polynomial approximation for each function produces
the correctly rounded result for the 34-bit FP representation
that has 8-bits for the exponent with the round-to-odd mode.
It produces correctly rounded results for all FP representa-
tions starting from 10-bits to 32-bits for all five rounding
modes in the IEEE standard.

Our prototype uses the MPFR library [14] and RLibm’s
algorithm to compute the oracle round-to-odd value of 𝑓 (𝑥)
for each input 𝑥 . It uses an LP solver with exact rational
arithmetic, SoPlex, to solve constraints. We use range reduc-
tion and output compensation from the RLibm project [2, 22,
23, 26]. We perform range reduction, polynomial evaluation,
and output compensation using double precision.

Methodology: We compare the three new versions of
our elementary functions with the default version of the
functions in the RLibm project. The functions in the RLibm
project produce correctly rounded results for all 𝑛-bit FP
representations, where 10 ≤ 𝑛 ≤ 32, and all five rounding
modes. We do not use mainstream libraries (i.e., GLIBC’s
libm, and Intel’s libm) in this paper because they do not
produce correctly rounded results for all inputs.

We conducted our experiments on a 2.10GHz Intel Xeon
Gold 6230R server with 192GB of RAM running Ubuntu 20.04
that has both Intel turbo boost and hyper-threading disabled
to minimize perturbation. The test harness for comparing
performance is built using the gcc-9.3.0 compiler with -O3
-frounding-math -fsignaling-nans flags. For measuring
the performance, we use rdtscp to count the number of cy-
cles taken to compute the result for each input. Subsequently,
we aggregate these counts for computing the total time taken
for computing the elementary function for all inputs.

6.2 Properties of the Generated Polynomial
Approximations

Table 1 provides details on the polynomial approximations
generated by our method (i.e., three versions: RLibm-Knuth,
RLibm-Estrin, and RLibm-Estrin+FMA) in comparison to
RLibm. Among the 6 elementary functions, constraints for
𝑙𝑜𝑔2 (𝑥) form a full-rank system. Hence, we generate a single
polynomial of degree 5. Other functions are not full-rank,
we identify some minimal number of special case inputs
that require explicit handling. Both 2𝑥 and 10𝑥 use a single
polynomial of degree-5 with few special case inputs since
the system of linear equations is not full-rank. The memory
usage required by RLibm and our method are very similar
for these functions, although our implementation is faster.
For 𝑙𝑛(𝑥) and 𝑙𝑜𝑔10 (𝑥), we could not obtain polynomial ap-
proximations that are faster than those in RLibm by using
Knuth’s coefficient adaptation procedure.

For 𝑒𝑥 , RLibm uses a piecewise polynomial with two pieces
to minimize the degree of the polynomial approximations

102

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

Table 1. Details of polynomial approximations generated by RLibm, RLibm-Knuth, RLibm-Estrin, and RLibm-Estrin+FMA.

𝑓 (𝑥) # of
poly.

ex 2
2x 1
10x 1

ln(x) 2
log2 (x) 1
log10 (x) 4

RLibm

Max poly.
degree

of
special
inputs

4,5 3,0
5 3
5 4

4,4 4,6
5 0

4,4,4,5 0,1,2,0

RLibm-Knuth

Max poly.
degree

of
special
inputs

4,4 5,4
5 2
5 3

N/A N/A
5 0

N/A N/A

RLibm-Estrin

Max poly.
degree

of
special
inputs

4,4 5,3
5 2
5 3

4,4 5,7
5 0

4,4,4,4 0,1,3,3

RLibm-Estrin+FMA

Max poly.
degree

of
special
inputs

4,4 3,3
5 1
5 4

4,4 5,6
5 0

4,4,4,4 0,1,2,2

for each subdomain. We do not adapt the first polynomial,
which is of degree-4, as we noticed an increase in the number
of special case inputs from 3 to 5 with polynomial adapta-
tion. However, for the second subdomain, our method pro-
duces a polynomial of degree-4, in contrast to the polynomial
of degree-5 generated by RLibm. Similar to RLibm-Knuth,
RLibm-Estrin and RLibm-Estrin+FMA versions also reduced
the degree of the resulting polynomials. Further, they also re-
duced the number of special case inputs compared to RLibm-
Knuth. This shows that our method can sometimes decrease
the degree of the polynomial also, apart from reducing the
number of multiplications. Furthermore, the use of fma oper-
ations in RLibm-Estrin+FMA version reduces rounding error
and decreases the number of special case inputs.

For 𝑙𝑛(𝑥), RLibm generates a piecewise polynomial with
2 pieces. Our RLibm-Estrin version generates a piecewise
polynomial with 2 pieces but has one more special case input
for each piece. Using the fma operation reduces the number
of special case inputs in the RLibm-Estrin+FMA version. For
𝑙𝑜𝑔10 (𝑥), RLibm generates a piecewise polynomial with 4
pieces. Our versions, RLibm-Estrin and RLibm-Estrin+FMA,
reduce the degree of the resulting pieces, which improves
performance.

6.3 Ability to Produce Correctly Rounded Results
Mainstream libraries such as GLIBC’s libm and Intel’s libm
do not produce correctly rounded results for all inputs. They
produce several million incorrect results even for a 32-bit
float with the float version of the functions. Their double
versions are better in producing correctly rounded results
for the 32-bit float representation but still do not produce
correctly rounded results for all inputs for the six functions
that we consider in this paper.

In contrast, RLibm and versions proposed in this paper,
RLibm-Knuth, RLibm-Estrin, and RLibm-Estrin+FMA, pro-
duce correctly rounded results for all 𝑛-bit FP representa-
tions, where 10 ≤ 𝑛 ≤ 32, with 8-bit exponent and all five
rounding modes with a single polynomial approximation.

Adapting RLibm polynomials as a post-process: We
observed an increase in the number of special case inputs

Table 2. Speedup achieved by implementations in RLibm-
Knuth, RLibm-Estrin, and RLibm-Estrin+FMA in comparison
to RLibm.

𝑓 (𝑥)
Speedup of Speedup of Speedup of

RLIBM-Knuth RLIBM-Estrin RLIBM-Estrin-
vs RLIBM vs RLIBM FMA vs RLIBM

ex 2.9% 13.7% 25.3%
2x 7.9% 19.7% 31.2%
10x 7.5% 17.9% 27.3%

ln(x) N/A 14.3% 20.6%
log2 (x) 4.4% 17.6% 22.7%
log10 (x) N/A 9.1% 15.9%

that are required to ensure correctly rounded results for all
inputs if the coefficients of the polynomial approximations
from RLibm were adapted as a post-process. For example,
RLibm uses a degree-5 polynomial for 10𝑥 with 4 special case
inputs. Adapting the coefficients of this polynomial produces
incorrectly rounded results for 4 additional inputs that are
different from the 4 special cases, requiring 8 special cases
altogether. In contrast, our RLibm-Knuth version produces
an adapted polynomial of degree-5, where only 3 inputs
need to be treated as special cases in total, and produces
correctly rounded results for all inputs. Similarly, RLibm uses
a polynomial of degree-5 for 2𝑥 , where 3 inputs are treated
as special cases in order to produce correctly rounded results
for all inputs. Simply adapting this polynomial produces
incorrectly rounded results for 3 additional inputs that are
different from the 3 special cases, requiring 6 special cases
altogether. RLibm-Knuth, in contrast, produces an adapted
degree-5 polynomial, where only 2 inputs are treated as
special cases in total to produce correctly rounded results
for all inputs.

6.4 Performance Improvement with Fast Polynomial
Evaluation

Figure 6 and Table 2 report the improvement in performance
obtained with our fast polynomial evaluation methods in

103

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

Figure 6. Speedup of the polynomial approximations gener-
ated by RLibm-Knuth, RLibm-Estrin, and RLibm-Estrin+FMA
methods in comparison to functions in the RLibm project.

comparison to functions in the RLibm project. On average,
the RLibm-Estrin+FMA method generates implementations
that are 24% faster when compared to functions in the RLibm
project. In contrast, the RLibm-Estrin method generates im-
plementations that are 15% faster than the functions in the
RLibm project. The functions generated by the RLibm-Knuth
method are only 4% faster than the functions in the RLibm
project. The better performance of RLibm-Estrin and RLibm-
Estrin+FMA functions highlights the benefits of parallel exe-
cution using the instruction-level parallelism on the machine.
Further, the use of fma operations improves performance
with a reduction in the degree of the polynomial and with a
reduction in the number of overall operations.

In summary, our fast polynomial evaluation techniques
enable the generation of single polynomial approximations
that not only produce correct results for multiple representa-
tions and multiple rounding modes but are also significantly
faster than the default functions in the RLibm project.

7 Related Work
Advances in range reduction techniques [4, 11, 30–33] made
it feasible to approximate elementary functions [12, 14, 16,
28, 34]. Many correctly rounded math libraries have also
been developed [2, 12, 22, 23, 26, 34]. We refer the reader to
Muller’s seminal book [27] for a detailed survey. Below, we
briefly review the most closely related prior work.

CR-LIBM [12, 13] is a correctly rounded math library for
double precision, that provides implementations for four out
of the five rounding modes in the IEEE standard. It uses
Sollya [10] for generating near mini-max polynomial ap-
proximations. CR-LIBM computes provable error bounds

on polynomial evaluation using interval arithmetic [9]. CR-
LIBM’s results can suffer from double rounding errors when
rounded down to 32-bit floating point values [2, 22, 23, 26].

The CORE-MATH project [29] is also building a collection
of fast 32-bit floating point functions. It uses the worst-case
inputs needed for correct rounding and uses the error bound
required for those inputs while generating a mini-max poly-
nomial with Sollya [10]. The functions in the CORE-MATH
project also use fma operations. The functions in the CORE-
MATH project produce correctly rounded results for a spe-
cific representation. When the result of the function is double
rounded to a target representation that has fewer than 32-
bits, it produces incorrect results.

We build on our prior work on the RLibm project [2, 22,
23, 26], which approximates the correctly rounded result
using an LP formulation. We use RLibm’s range reduction,
output compensation functions, and the idea of creating a
single polynomial approximation that produces correctly
rounded results for multiple representations and rounding
modes from RLibm-all [26]. We use the fast randomized algo-
rithm recently proposed for fast polynomial generation with
RLibm [2]. Our main contribution in this paper is a method
for integrating fast polynomial evaluation techniques, such
as Knuth’s procedure for adapting polynomial coefficients,
Estrin’s method, and Estrin’s method with fused multiply-
add operations, inside RLibm’s polynomial generation pro-
cess for producing polynomial evaluations that are faster
than Horner’s method, while guaranteeing correctly rounded
results for all inputs and all rounding modes.

8 Conclusion and Future Work
This paper explores the problem of faster polynomial eval-
uation with the RLibm approach using Knuth’s coefficient
adaptation procedure and parallel recursive polynomial eval-
uation with fma operations. We show that simply changing
polynomial evaluation at the end as a post-process is not
sufficient to guarantee correctly rounded results for all in-
puts. Thus, we propose to integrate the procedure for faster
polynomial evaluation in RLibm’s polynomial generation
process. The resulting polynomials with 32-bit float inputs
are not only correct, but also faster than state-of-the-art li-
braries. We plan to explore this method for other elementary
functions as future work.

Acknowledgments
We thank Steve Cannon for suggesting us to explore FMAs
with the RLibm approach on Twitter. This material is based
upon work supported in part by the National Science Foun-
dation under Grant No. 1908798 and Grant No. 2110861 and a
research gift from Intel Corporation. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

104

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

A Artifact Description
Our artifact with the correctly rounded functions and the
polynomial generator for them is available open source and
publicly available at https://github.com/rutgers-apl/cgo23-
artifact. It is available with the MIT license. The artifact
includes: (1) 24 correctly rounded implementations for six
elementary functions using Horner’s method, the coefficient
adaptation procedure by Knuth, Estrin’s method, and Estrin’s
method with fused multiply-add operations for polynomial
evaluation, (2) correctness testing framework for the 24 func-
tions, (3) performance testing framework to demonstrate the
performance improvements over RLibm, and (4) polynomial
generator for generating the polynomials using the Estrin’s
method with fused multiply-add operations.

A.1 Setup

Requirements. To replicate our experiments, we need a
Linux machine with gcc compiler on x86-64 machine. To
accurately reproduce our performance experiments, it is rec-
ommended to disable turbo-boost and hyper-threading in the
BIOS. To run the polynomial generator, it is recommended to
have a machine with at least 16 GB of RAM. We need about
50 GB of storage if all the auxiliary files are unpacked. You
also need Python2 to run the scripts.

Installation. There are four main things that are neces-
sary to download the artifact. First, download the sources
from the github repository as follows:
git clone
https://github.com/rutgers-apl/cgo23-artifact.git

Second, download the oracle files for the 6 elementary func-
tions at https://go.rutgers.edu/m6ex2hnc using the browser
and save them to a directory. Let us call the directory: OR-
ACLE. We will use these oracle files to test the correctness
of the 24 functions. One can use the MPFR library to in-
dividually test the correctness. However, the process takes
a very long time (close to a day). Hence, we provide the
pre-generated oracle files.

Use the gunzip command to unzip the oracle files in the
ORACLE directory. Each unzipped oracle file is 12GB. We
recommend unzipping only the oracle files corresponding
to the specific function being tested.

For example, unzip the oracle files for Log2 as follows:

cd <ORACLE>
gunzip Log2Oracle.gz
cd ..

Third, download the interval files for the 6 functions
for the polynomial generator at https://rutgers.box.com/s/
aeaclmvnez8z0rjjsvcspoflslcu1nof. These can be generated
using the RLibm-ALL infrastructure. However, it would take
a long time. Hence, we provide these interval files. Let us
call the directory with these interval files: INTERVALS. Use

the gunzip command to unzip the intervals file in the INTER-
VALS directory. Each unzipped file can be up to 5GB. We
recommend unzipping only the interval file corresponding
to the function being tested.

For example, unzip the interval files for Log2 as follows:
cd <INTERVALS>
gunzip Float34ROLog2Intervals.gz
cd ..

Fourth, you need to download Soplex-4.0.1 to run the poly-
nomial generator. Download Soplex-4.0.1 using the browser
at https://go.rutgers.edu/6oxgah4a. Untar Soplex-4.0.1 as fol-
lows:
tar -xvf soplex-4.0.1.tar.gz
cd soplex-4.0.1
make clean
make
export SOPLEX_INCLUDE=<SOPLEX_PATH>/src/
export SOPLEX_LIB=<SOPLEX_PATH>/build/lib/libsoplex.a
cd ..

Now, we are ready to replicate the results.

A.2 Reproducing Results

Correctness test. You can test the correctness of all the
functions generated from our libraries using the correctness
test infrastructure as follows:
cd cgo23_artifact/libm
make
cd ../correctness_test
make

To test out the default RLibm function, you can execute
the following command, which checks if the implementation
produces correctly rounded results for all inputs.
./Log2 <ORACLE>/Log2Oracle

For testing 𝑙𝑜𝑔2𝑓 with the coefficient adaptation proce-
dure proposed by Knuth for polynomial evaluation, you can
execute the following command:
./Log2-adapt <ORACLE>/Log2Oracle

For testing 𝑙𝑜𝑔2𝑓 with Estrin’s method for polynomial
evaluation, you can execute the following command:
./Log2-estrin <ORACLE>/Log2Oracle

To test 𝑙𝑜𝑔2𝑓 with Estrin’s method along with fma op-
erations for the polynomial evaluation and to check if it
produces correct results for all inputs, you can execute the
following command:
./Log2-estrin-fma <ORACLE>/Log2Oracle

You should see an output like the following, which indi-
cates that the function produces correct results for all inputs
and for multiple representations:
Wrong results: 000 (0)
rlibm-latest wrong result: 0

105

https://github.com/rutgers-apl/cgo23-artifact
https://github.com/rutgers-apl/cgo23-artifact
https://go.rutgers.edu/m6ex2hnc
https://rutgers.box.com/s/aeaclmvnez8z0rjjsvcspoflslcu1nof
https://rutgers.box.com/s/aeaclmvnez8z0rjjsvcspoflslcu1nof
https://go.rutgers.edu/6oxgah4a

CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada Mridul Aanjaneya and Santosh Nagarakatte

It can take up to 10 minutes for testing each implementa-
tion as described above. Similarly you can test out the other
functions.

Performance. We provide an automated script to test the
performance of RLIBM-Knuth, RLIBM-Estrin, and RLIBM-
ESTRIN-FMA with respect to the default RLibm implemen-
tations. To run the performance testing framework, execute
the following command:
cd cgo23_artifact/performance_test
sh runRLIBMAll.sh

It automatically executes all the 24 implementations of the
6 functions and creates text files with the timing data. This
script takes close to 40 minutes to complete the execution. To
see similar results as reported in the paper, it is necessary to
run the script on a machine with hyper-threading and turbo-
boost disabled. It is advised to not execute other programs
simultaneously with the script.

After the script completes, you can run the analysis script
that prints out the speedup with various configurations as
follows:
python SpeedupOverRLIBM.py

It will print out the output as follows:
Speedup of RLIBM-Knuth over RLIBM
log: 0.00%
log2: 4.03%
log10: 0.00%
exp: 3.00%
exp2: 7.85%
exp10: 7.27%
Average speedup of RLIBM-Knuth over RLIBM: 3.65%
Speedup of RLIBM-Estrin over RLIBM
log: 12.59%
log2: 16.89%
log10: 8.87%
exp: 12.73%
exp2: 17.80%
exp10: 17.54%
Average speedup of RLIBM-Estrin over RLIBM: 14.36%
Speedup of RLIBM-Estrin-FMA over RLIBM
log: 17.82%
log2: 21.05%
log10: 15.23%
exp: 22.55%
exp2: 28.74%
exp10: 25.01%
Average speedup of RLIBM-Estrin-FMA over RLIBM: 21.66%

Generating Polynomials with the RLIBM-Estrin-FMA
method. We illustrate the process of generating polynomi-
als by incorporating Estrin’s method with FMA operations
within the RLIBM polynomial generation framework. To use
the polynomial generator, it needs reduced intervals gen-
erated using the RLibm framework, which we provide as
intervals. It also requires Soplex installed with the the SO-
PLEX_INCLUDE and SOPLEX_LIB environment variables

set as described above. We illustrate polynomial generation
for the Log2 function.

To generate the polynomial for Log2 with Estrin’s method
with FMA operations, execute the following commands:
cd cgo23_artifact/polynomial_generator
make
./polygen-estrin-fma log2-estrin-fma.txt
<INTERVALS>/Float34ROLog2Intervals

The configurations for Log2 polynomials that we gener-
ate are in the log2-estrin-fma.txt file. At the end, the
polynomial generator prints out the polynomial.

Log2 is a full-rank system. There is a single polynomial
with no special inputs. Other systems run for a large number
of iterations and the goal is to find a polynomial with the
minimum number of points. Hence, it is recommended to
redirect the output of the polynomial generator to a file.
Those functions can take close to 3-4 hours to perform such
an exhaustive search.

References
[1] Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2021. RLIBM-

Prog: Progressive Polynomial Approximations for Correctly Rounded
Math Libraries. arXiv:2111.12852 Rutgers Department of Computer
Science Technical Report DCS-TR-758.

[2] Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. Pro-
gressive Polynomial Approximations for Fast Correctly Rounded Math
Libraries. In 43rd ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’22). https://doi.org/10.1145/3519939.
3523447

[3] Mridul Aanjaneya and Santosh Nagarakatte. 2022. Artifact for "Fast
Polynomial Evaluation for Correctly Rounded Elementary Functions
using the RLIBM Approach". https://doi.org/10.5281/zenodo.7369395

[4] Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2009. Formally Verified
Argument Reduction with a Fused Multiply-Add. In IEEE Transactions
on Computers, Vol. 58. 1139–1145. https://doi.org/10.1109/TC.2008.216

[5] Sylvie Boldo and Guillaume Melquiond. 2005. When double rounding
is odd. In 17th IMACS World Congress. Paris, France, 11.

[6] Sylvie Boldo and Guillaume Melquiond. 2008. Emulation of a FMA
and Correctly Rounded Sums: Proved Algorithms Using Rounding
to Odd. IEEE Transations on Computing 57, 4 (April 2008), 462–471.
https://doi.org/10.1109/TC.2007.70819

[7] Nicolas Brisebarre and Sylvvain Chevillard. 2007. Efficient polynomial
L∞-approximations. In 18th IEEE Symposium on Computer Arithmetic
(ARITH ’07). https://doi.org/10.1109/ARITH.2007.17

[8] Nicolas Brisebarre, Jean-Michel Muller, and Arnaud Tisserand. 2006.
Computing Machine-Efficient Polynomial Approximations. In ACM
ACM Transactions on Mathematical Software, Vol. 32. Association for
Computing Machinery, New York, NY, USA, 236–256. https://doi.org/
10.1145/1141885.1141890

[9] Sylvain Chevillard, John Harrison, Mioara Joldes, and Christoph
Lauter. 2011. Efficient and accurate computation of upper bounds
of approximation errors. In Theoretical Computer Science, Vol. 412.
https://doi.org/10.1016/j.tcs.2010.11.052

[10] Sylvain Chevillard, Mioara Joldes, and Christoph Lauter. 2010. Sollya:
An Environment for the Development of Numerical Codes. In Math-
ematical Software - ICMS 2010 (Lecture Notes in Computer Science,
Vol. 6327). Springer, Heidelberg, Germany, 28–31. https://doi.org/10.
1007/978-3-642-15582-6_5

[11] William J Cody and William M Waite. 1980. Software manual for
the elementary functions. Prentice-Hall, Englewood Cliffs, NJ. https:

106

https://arxiv.org/abs/2111.12852
https://doi.org/10.1145/3519939.3523447
https://doi.org/10.1145/3519939.3523447
https://doi.org/10.5281/zenodo.7369395
https://doi.org/10.1109/TC.2008.216
https://doi.org/10.1109/TC.2007.70819
https://doi.org/10.1109/ARITH.2007.17
https://doi.org/10.1145/1141885.1141890
https://doi.org/10.1145/1141885.1141890
https://doi.org/10.1016/j.tcs.2010.11.052
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1007/978-3-642-15582-6_5
https://doi.org/10.1137/1024023
https://doi.org/10.1137/1024023

Fast Polynomial Evaluation for Correctly Rounded Elementary Functions . . . CGO ’23, February 25 – March 1, 2023, Montréal, QC, Canada

//doi.org/10.1137/1024023
[12] Catherine Daramy, David Defour, Florent Dinechin, and Jean-Michel

Muller. 2003. CR-LIBM: A correctly rounded elementary function
library. In Proceedings of SPIE Vol. 5205: Advanced Signal Processing
Algorithms, Architectures, and Implementations XIII, Vol. 5205. https:
//doi.org/10.1117/12.505591

[13] Catherine Daramy-Loirat, David Defour, Florent de Dinechin,
Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-Michel
Muller. 2006. CR-LIBM A library of correctly rounded elemen-
tary functions in double-precision. Research Report. Laboratoire
de l’Informatique du Parallélisme. https://hal-ens-lyon.archives-
ouvertes.fr/ensl-01529804

[14] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,
and Paul Zimmermann. 2007. MPFR: A Multiple-precision Binary
Floating-point Library with Correct Rounding. ACM Trans. Math.
Software 33, 2, Article 13 (June 2007). https://doi.org/10.1145/1236463.
1236468

[15] David Goldberg. 1991. What Every Computer Scientist Should Know
About Floating-point Arithmetic. In ACM Computing Surveys, Vol. 23.
ACM, New York, NY, USA, 5–48. https://doi.org/10.1145/103162.
103163

[16] Claude-Pierre Jeannerod, Hervé Knochel, Christophe Monat, and
Guillaume Revy. 2011. Computing Floating-Point Square Roots via
Bivariate Polynomial Evaluation. IEEE Trans. Comput. 60. https:
//doi.org/10.1109/TC.2010.152

[17] William Kahan. 2004. A Logarithm Too Clever by Half. https://people.
eecs.berkeley.edu/~wkahan/LOG10HAF.TXT

[18] Donald E. Knuth. 1998. The Art of Computer Programming Volume 2:
Seminumerical Algorithms. Addison-Wesley.

[19] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. 1998.
Toward correctly rounded transcendentals. IEEE Trans. Comput. 47, 11
(1998), 1235–1243. https://doi.org/10.1109/12.736435

[20] Jay Lim. 2021. Novel Polynomial Approximation Methods for Generating
Correctly Rounded Elementary Functions. Ph. D. Dissertation. Rutgers
University.

[21] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2020. A Novel Approach to Generate Correctly
Rounded Math Libraries for New Floating Point Representations.
arXiv:2007.05344 Rutgers Department of Computer Science Technical
Report DCS-TR-753.

[22] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Na-
garakatte. 2021. An Approach to Generate Correctly Rounded Math
Libraries for New Floating Point Variants. Proceedings of the ACM
on Programming Languages 6, POPL, Article 29 (Jan. 2021), 30 pages.
https://doi.org/10.1145/3434310

[23] Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly
Rounded Math Libraries for 32-bit Floating Point Representations. In
42nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’21). https://doi.org/10.1145/3453483.3454049

[24] Jay P Lim and Santosh Nagarakatte. 2021. RLIBM-32: High Perfor-
mance Correctly Rounded Math Libraries for 32-bit Floating Point
Representations. arXiv:2104.04043 Rutgers Department of Computer
Science Technical Report DCS-TR-754.

[25] Jay P. Lim and Santosh Nagarakatte. 2021. RLIBM-ALL: A
Novel Polynomial Approximation Method to Produce Correctly
Rounded Results for Multiple Representations and Rounding Modes.
arXiv:2108.06756 [abs] Rutgers Department of Computer Science
Technical Report DCS-TR-757.

[26] Jay P. Lim and Santosh Nagarakatte. 2022. One Polynomial Approxima-
tion to Produce Correctly Rounded Results of an Elementary Function
for Multiple Representations and Rounding Modes. Proceedings of
the ACM on Programming Languages 6, POPL, Article 3 (Jan. 2022),
28 pages. https://doi.org/10.1145/3498664

[27] Jean-Michel Muller. 2016. Elementary Functions: Algorithms and Im-
plementation. Sprinder, 3rd edition.

[28] Eugene Remes. 1934. Sur un procédé convergent d’approximations
successives pour déterminer les polynômes d’approximation. Comptes
rendus de l’Académie des Sciences 198 (1934), 2063–2065.

[29] Alexei Sibidanov, Paul Zimmermann, and Stéphane Glondu. 2022. The
CORE-MATH Project. In ARITH 2022 - 29th IEEE Symposium on Com-
puter Arithmetic. virtual, France. https://hal.inria.fr/hal-03721525

[30] Shane Story and Ping Tak Peter Tang. 1999. New algorithms for
improved transcendental functions on IA-64. In Proceedings 14th IEEE
Symposium on Computer Arithmetic. 4–11. https://doi.org/10.1109/
ARITH.1999.762822

[31] Ping-Tak Peter Tang. 1989. Table-Driven Implementation of the Ex-
ponential Function in IEEE Floating-Point Arithmetic. ACM Trans.
Math. Software 15, 2 (June 1989), 144–157. https://doi.org/10.1145/
63522.214389

[32] Ping-Tak Peter Tang. 1990. Table-Driven Implementation of the Loga-
rithm Function in IEEE Floating-Point Arithmetic. ACM Trans. Math.
Software 16, 4 (Dec. 1990), 378–400. https://doi.org/10.1145/98267.
98294

[33] P. T. P. Tang. 1991. Table-lookup algorithms for elementary functions
and their error analysis. In [1991] Proceedings 10th IEEE Symposium on
Computer Arithmetic. 232–236. https://doi.org/10.1109/ARITH.1991.
145565

[34] Abraham Ziv. 1991. Fast Evaluation of Elementary Mathematical
Functions with Correctly Rounded Last Bit. ACM Trans. Math. Software
17, 3 (Sept. 1991), 410–423. https://doi.org/10.1145/114697.116813

Received 2022-09-02; accepted 2022-11-07

107

https://doi.org/10.1137/1024023
https://doi.org/10.1117/12.505591
https://doi.org/10.1117/12.505591
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
https://doi.org/10.1109/TC.2010.152
https://doi.org/10.1109/TC.2010.152
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://doi.org/10.1109/12.736435
https://arxiv.org/abs/2007.05344
https://doi.org/10.1145/3434310
https://doi.org/10.1145/3453483.3454049
https://arxiv.org/abs/2104.04043
https://arxiv.org/abs/2108.06756
https://doi.org/10.1145/3498664
https://hal.inria.fr/hal-03721525
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1109/ARITH.1999.762822
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/63522.214389
https://doi.org/10.1145/98267.98294
https://doi.org/10.1145/98267.98294
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1109/ARITH.1991.145565
https://doi.org/10.1145/114697.116813

	Abstract
	1 Introduction
	2 The RLibm Approach
	2.1 Key Insights of the RLibm Approach
	2.2 Single Polynomial Approximation for Multiple Representations and Rounding Modes

	3 Polynomial Coefficient Adaptation
	3.1 Coefficient Adaptation for Polynomials of Degree 4
	3.2 Coefficient Adaptation for Polynomials of Degree 5
	3.3 Coefficient Adaptation for Polynomials of Degree 6

	4 Estrin's Method
	5 The RLibm Approach with Fast Polynomial Evaluation
	6 Experimental Results
	6.1 Prototype and Methodology
	6.2 Properties of the Generated Polynomial Approximations
	6.3 Ability to Produce Correctly Rounded Results
	6.4 Performance Improvement with Fast Polynomial Evaluation

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	A Artifact Description
	A.1 Setup
	A.2 Reproducing Results

	References

