
84 COMMUNICATIONS OF THE ACM | FEBRUARY 2018 | VOL. 61 | NO. 2

research highlights

DOI:10.1145/3166064

Practical Verification of Peephole
Optimizations with Alive
By Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr

Abstract
Compilers should not miscompile. Peephole optimiza-
tions, which perform local rewriting of the input pro-
gram to improve the efficiency of generated code, are a
persistent source of compiler bugs. We created Alive, a
domain-specific language for writing optimizations and
for automatically either proving them correct or else
generating counterexamples. Furthermore, Alive can be
automatically translated into C++ code that is suitable for
inclusion in an LLVM optimization pass. Alive is based
on an attempt to balance usability and formal methods;
for example, it captures—but largely hides—the detailed
semantics of the various kinds of undefined behavior.
Alive has found numerous bugs in the LLVM compiler and
is being used by LLVM developers.

1. INTRODUCTION
Compiler optimizations should be efficient, effective,
and correct—but meeting all of these goals is difficult.
In practice, whereas efficiency and effectiveness are rela-
tively easy to quantify, correctness is not. Incorrect com-
piler optimizations can remain latent for long periods of
time; the resulting problems are subtle and difficult to
diagnose since the incorrectness is introduced at a level
of abstraction lower than the one where software develop-
ers typically work.

Random testing7, 20 is one approach to improving the
correctness of compilers; it has been shown to be effec-
tive, but of course testing misses bugs. A stronger form of
insurance against compiler bugs can be provided by a proof
that the compiler is correct (compiler verification) or a proof
that a particular compilation was correct (translation valida-
tion). The state of the art in compiler verification requires
a fresh compiler implementation and many person-years
of proof engineering (e.g., CompCert9), making this
appoach impractical in most production environments.

We developed Alive: a new language and tool for devel-
oping correct peephole optimizations as shown in Figure
1. Peephole optimizations in LLVM are performed by the
instruction combiner (InstCombine) pass. Alive aims for a
design point that is both practical and formal; it allows com-
piler writers to specify peephole optimizations for LLVM’s
Intermediate Representation (IR), it automatically proves
them correct with the help of a Satisfiability Modulo Theory
(SMT) solver (or provides a counterexample), and it auto-
matically generates C++ code that is similar to handwritten
peephole optimizations such as those found in the instruc-
tion combiner. Alive’s main contributions are in identifying
a subset of peephole optimizations that can be automati-
cally verified and in providing a usable formal methods tool

The original version of this paper is titled “Provably
Correct Peephole Optimizations with Alive” and was
published in the proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2015.

based on the semantics of LLVM IR, with support for auto-
mated correctness proofs in the presence of LLVM’s unde-
fined behavior, and with support for code generation.

InstCombine transformations perform numerous alge-
braic simplifications that improve efficiency, enable other
optimizations, and canonicalize LLVM code. InstCombine
optimizations have been a persistent source of LLVM bugs.7, 20

An example InstCombine transformation takes (x ⊕ − 1)
+ C and turns it into (C − 1) − x where x is a variable, ⊕ is
exclusive or, and C is an arbitrary constant as wide as x. If C
is 3333, the LLVM input to this InstCombine transformation
would look like this:

%1 = xor i32 %x, -1
%2 = add i32 %1, 3333

and the optimized code:

%2 = sub i32 3332, %x

In Alive the same optimization is:

%1 = xor %x, -1
%2 = add %1, C
  =>
%2 = sub C-1, %x

The Alive specification is designed to resemble—both
syntactically and semantically—the LLVM transforma-
tion that it describes. It is much more succinct than its

LLVM
C++Code

generator

VerifiedAlive
optimization

Alive toolkit Refinement
conditions

Verifier
OK or

counter-
example

Z3

Figure 1. Overview of Alive. Optimizations expressed in Alive are
automatically verified using the Z3 SMT solver. Verified optimizations
are converted to C++ implementations for use in LLVM.

http://dx.doi.org/10.1145/3166064

FEBRUARY 2018 | VOL. 61 | NO. 2 | COMMUNICATIONS OF THE ACM 85

equivalent C++ implementation, is not expressed in terms
of LLVM’s internal data structures and control flow, and can
be automatically verified by the Alive tool kit. This transfor-
mation illustrates 2 forms of abstraction supported by Alive:
abstraction over choice of a compile-time constant and
abstraction over bitwidth.

So far Alive has helped us discover twenty-three previ-
ously unknown bugs in the LLVM InstCombine transforma-
tions. Furthermore, we have prevented dozens of bugs from
getting into LLVM by monitoring the various InstCombine
patches as they were committed to the LLVM subversion
repository. Several LLVM developers are currently using the
Alive prototype to check their InstCombine transforma-
tions. Alive is open source and it is also available on-line at
http://rise4fun.com/Alive.

2. THE ALIVE LANGUAGEa

We designed Alive to resemble the LLVM IR because our
users—the LLVM developers—are already experts with it.
Alive’s most important features include its abstraction
over choice of constants, over the bitwidths of operands
(Section 2.2), and over LLVM’s instruction attributes that
control undefined behavior (Section 2.4).

2.1. Syntax
An Alive transformation has the form A ⇒ B, where A is the
source template (unoptimized code) and B is the target tem-
plate (optimized code). Additionally, a transformation may
include a precondition. Since Alive’s representation, like
LLVM’s, is based on directed graphs of instructions in Static
Single Assignment (SSA) form, the ordering of non-depen-
dent instructions is irrelevant.

Alive implements a subset of LLVM’s integer and pointer
instructions. It also has limited support for branches: to
avoid loops, they are not allowed to jump backwards. Alive
supports LLVM’s nsw, nuw, and exact instruction attri-
butes that weaken the behavior of integer instructions by
adding undefined behaviors.

Scoping. The source and target templates must have
a common root variable that is the root of the respective
graphs. The remaining variables are either inputs to the
transformation or else temporary variables produced
by instructions in the source or target template. Inputs
are visible throughout the source and target templates.
Temporaries defined in the source template are in scope for
the precondition, the target, and the remaining part of the
source from the point of definition. Temporaries declared
in the target are in scope for the remainder of the target. To
help catch errors, every temporary in the source template
must be used in a later source instruction or be overwritten
in the target, and all target instructions must be used in a
later target instruction or overwrite a source instruction.

Constant expressions. To allow algebraic simplifications
and constant folding, Alive includes a language for con-
stant expressions. A constant expression may be a literal,
an abstract constant (e.g., C in the example on the previous
page), or a unary or binary operator applied to 1 or 2 constant

expressions. The operators include signed and unsigned
arithmetic operators and bitwise logical operators. Alive
also supports functions on constant expressions. Built-in
functions include type conversions and mathematical and
bitvector utilities (e.g., abs(), umax(), width() ).

2.2. Type system
Alive supports a subset of LLVM’s types, such as integers and
pointers. LLVM uses arbitrarily-sized integers, with a sepa-
rate type for each width (e.g., i8 or i57). Alive has limited
support for LLVM’s pointer and array types, and does not sup-
ports structures or vectors. Recent efforts have subsequently
extended Alive with support for floating-point types.14, 16

Unlike LLVM, Alive permits type annotations to be
omitted and does not require values to have a unique type.
This enables succinct specifications of optimizations in
Alive, as many peephole optimizations are not type-spe-
cific. A set of possible types is inferred for each implic-
itly-typed value, and the correctness of an optimization
is checked for each type assignment. Because LLVM has
infinitely many integer types, we set an upper bound of 64
bits for implicitly typed integer values.

2.3. Built-In predicates
Some peephole optimizations use the results of data-
flow analyses. Alive makes these results available using
a collection of built-in predicates such as isPowerOf2(),
MaskedValueIsZero(), and WillNotOverflowSignedAdd().
The analyses producing these results are trusted by Alive:
verifying their correctness is not within Alive’s scope.
Predicates can be combined with the usual logical con-
nectives. Figure 2 shows an example transformation that
includes a built-in predicate in its precondition.

2.4. Undefined behaviors in LLVM
To aggressively optimize well-defined programs, LLVM
has 3 distinct kinds of undefined behavior. Together, they
enable many desirable optimizations, and LLVM aggres-
sively exploits these opportunities.

Undefined behavior in LLVM resembles undefined behav-
ior in C and C++: anything may happen to a program that
executes it. The compiler may simply assume that unde-
fined behavior does not occur; this assumption places a

Pre: C1 & C2 == 0 && MaskedValueIsZero(%V, ~C1)
%t0 = or %B, %V
%t1 = and %t0, C1
%t2 = and %B, C2
%R = or %t1, %t2

%R = and %t0, (C1 | C2)
=>

Figure 2. An example illustrating many of Alive’s features. ( (B ∨ V)
∧ C1) ∨ (B ∧ C2) can be transformed to (B ∨ V) ∧ (C1 ∨ C2) when
C1 ∧ C2 = 0 and when the predicate MaskedValueIsZero(V, ¬C1)
is true, indicating that an LLVM dataflow analysis has concluded
that V ∧ ¬C1 = 0. %B and %V are input variables. C1 and C2 are
constants. %t0, %t1, and %t2 are temporaries. This transformation
is rooted at %R.

a  The latest version of Alive can be found at https://github.com/nunoplopes/alive.

research highlights

86 COMMUNICATIONS OF THE ACM | FEBRUARY 2018 | VOL. 61 | NO. 2

An analogous nuw attribute exists to rule out unsigned
wrap. If an add, subtract, multiply, or left shift operation
with an nsw or nuw attribute overflows, the result is poison.
Additionally, LLVM’s right shift and divide instructions
have an exact attribute that requires an operation to not be
lossy. Table 2 provides the constraints for the instructions to
be poison-free. Developers writing Alive patterns can omit
instruction attributes, in which case Alive infers where they
can be safely placed.

3. VERIFYING OPTIMIZATIONS IN ALIVE
The Alive interpreter verifies a transformation by automati-
cally encoding the source and target, their definedness
conditions, and the overall correctness criteria into SMT
queries. An Alive transformation is parametric over the set
of all feasible types: the concrete types satisfying the con-
straints of LLVM’s type system and not exceeding the default
limit of 64 bits.

In the absence of undefined behavior in the source or
target of an Alive transformation, we can check correct-
ness using a straightforward equivalence check: for each
valuation of the input variables, the value of any variable
that is present in both the source and target must be iden-
tical. However, an equivalence check is not sufficient to
prove correctness in the presence of any of the 3 kinds
of undefined behavior described in Section 2.4. We use
refinement to reason about optimizations in the pres-
ence of undefined behavior. The target of an Alive trans-
formation refines the source template if all the behaviors
of the target are included in the set of behaviors of the
source. That is, a transformation may remove undefined
behaviors but not add them.

When an optimization contains or may produce undef
values, we need to ensure that the target never produces a
value that the source does not produce. In other words, an
undef in the source represents a set of values and the tar-
get can refine it to any particular value, but an undef in the

corresponding obligation on the program developer (or on
the compiler and language runtime, when a safe language
is compiled to LLVM) to ensure that undefined operations
are never executed. An instruction that executes unde-
fined behavior can be replaced with an arbitrary sequence
of instructions. When an instruction executes undefined
behavior, all subsequent instructions can be considered
undefined as well.

Table 1 shows when Alive’s arithmetic instructions have
defined behavior, following the LLVM IR specification. For
example, the udiv instruction is defined only when the
dividend is non-zero. With the exception of memory access
instructions (discussed in the original paper10), instructions
not listed in Table 1 are always defined.

The undefined value (undef in the IR) is a limited form of
undefined behavior that mimics a free-floating hardware regis-
ter than can return any value each time it is read. Semantically,
undef stands for the set of all possible bit patterns for a par-
ticular type; the compiler is free to pick a convenient value for
each use of undef to enable aggressive optimizations. For
example, a 1-bit undefined value, sign-extended to 32 bits,
produces a variable containing either all 0s or all 1s.

Poison values, which are distinct from undefined val-
ues, are used to indicate that a side-effect-free instruction
has a condition that produces undefined behavior. When
the poison value gets used by an instruction with side
effects, the program exhibits true undefined behavior.
Hence, poison values are deferred undefined behaviors:
they are intended to support speculative execution of
possibly-undefined operations. Poison values taint sub-
sequent dependent instructions; unlike undef, poison
values cannot be untainted by subsequent operations.
The subtleties in the semantics of undef and poison val-
ues and its impact on either enabling or disabling optimi-
zations are currently being explored.8

Shift instructions, shl, ashr, and lshr, produce a poi-
son value when their second argument, the shift amount, is
larger than or equal to the bit width of the operation.

Instruction attributes modify the behavior of some
LLVM instructions. The nsw attribute (“no signed wrap”)
makes signed overflow undefined. For example, this Alive
transformation, which is equivalent to the optimization
of (x+1)>x to 1 in C and C++ where x is a signed integer,
is valid:

%1 = add nsw %x, 1
%2 = icmp sgt %1, %x
  =>
%2 = true

Table 1. The constraints for arithmetic instructions to be defined.
<u is unsigned less-than. INT_MIN is the smallest signed integer
value for a given bitwidth.

Instruction Definedness constraint

sdiv a, b b ≠ 0 ∧ (a ≠ INT_MIN ∨ b ≠ −1)
udiv a, b b ≠ 0
srem a, b b ≠ 0 ∧ (a ≠ INT_MIN ∨ b ≠ −1)
urem a, b b ≠ 0

Table 2. The constraints for arithmetic instructions to be poison-free.
>>u and ÷u are the unsigned shift and division operations. B is the
bitwidth of the operands. SExt(a, n) sign-extends a by n bits;
ZExt(a, n) zero-extends a by n bits.

Instruction Constraints for poison-free execution

add nsw a, b SExt(a, 1) + SExt(b, 1) = SExt(a + b, 1)

add nuw a, b ZExt(a, 1) + ZExt(b, 1) = ZExt(a + b, 1)

sub nsw a, b SExt(a, 1) − SExt(b, 1) = SExt(a − b, 1)

sub nuw a, b ZExt(a, 1) − ZExt(b, 1) = ZExt(a − b, 1)

mul nsw a, b SExt(a, B) × SExt(b, B) = SExt(a × b, B)

mul nuw a, b ZExt(a, B) × ZExt(b, B) = ZExt(a × b, B)

sdiv exact a, b (a ÷ b) × b = a

udiv exact a, b (a ÷u b) × b = a

shl a, b b <u B

shl nsw a, b b <u B ∧ (a << b) >> b = a

shl nuw a, b b <u B ∧ (a << b) >>u b = a

ashr a, b b <u B

ashr exact a, b b <u B ∧ (a >> b) << b = a

lshr a, b b <u B

lshr exact a, b b <u B ∧ (a >>u b) << b = a

FEBRUARY 2018 | VOL. 61 | NO. 2 | COMMUNICATIONS OF THE ACM 87

0

() ,

a u b

a b b

a b a u b b a

ι ι ι
δ δ δ ι
ρ ρ ρ ι ι ι ι

= ÷
= ∧ ∧ ≠
= ∧ ∧ ÷ × =

where ÷u is unsigned bitvector division. The unsigned divi-
sion requires the second argument to be non-zero, and the
exact attribute requires %a to be divisible by %b.

Encoding undef values. Undef values represent sets of pos-
sible values. The VC Gen encodes them as fresh SMT variables,
which are collected in a set U. In particular, each reference to
an undef value, direct or indirect, must receive a fresh SMT
variable. The sets collected for the source and target will then
be appropriately quantified over the correctness conditions.

Encoding preconditions. Alive’s precondition sublan-
guage provides comparison operators and a set of named
predicates, along with conjunction, disjunction, and nega-
tion. Aside from the predicates, these have a straightforward
encoding in SMT.

The encoding of named predicates depends on whether
the underlying analysis is precise or is an over- or under-
approximation. For example, the predicate isPower2 is
implemented in LLVM with a must-analysis, that is, when
isPower2(%a) is true, we know for sure that %a is a power
of 2; when it is false, no inference can be made. The VC Gen
encodes the result of isPower2(%a) using a fresh Boolean
variable p, and a side constraint p ⇒ a ≠ 0 ∧ a & (a − 1) = 0.

The encoding of may-analyses is similar. The VC Gen cre-
ates a fresh variable p to represent the result of the analysis
and a side constraint of the form s ⇒ p where s is an expres-
sion summarizing the may-analysis based on the inputs.
For example, a simplified encoding of mayAlias(%a,%b)
is a = b ⇒ p.

Most analyses in LLVM are precise when their inputs are
compile-time constants. Therefore, we encode the result of
these analyses precisely when we detect such cases (done
statically by the VC Gen).

3.2. Correctness criteria
Let φ be the encoding of the precondition, let ιS and ιT be the
values computed by the source and target, respectively, and
similarly let δS, δT, ρS, and ρT be the definedness and poison-
free conditions.

Let I be the set of input variables, P be the Boolean vari-
ables used to encode analyses, and US and UT be the sets of
variables used to encode undef values in the source and tar-
get, respectively.

An Alive optimization is correct if and only if the follow-
ing conditions hold for every feasible type assignment:

1. 

2. 

3. 

The first condition requires the target to be defined whenever
the source is defined. The second condition requires the tar-
get to be poison-free whenever the source is defined and poi-
son-free. The third condition requires the source and target
to compute the same result when the source is defined and
poison-free. The constraints are only required to hold if the

target represents a set of values which must all be refine-
ments of the source. Poison values are handled by ensur-
ing that an instruction in the target template will not yield
a poison value when the source instruction did not, for
any specific choice of input values. In summary, we check
correctness by checking (1) the target is defined when the
source is defined, (2) the target is poison-free when the
source is poison-free, and (3) the target produces a subset
of the values produced by the source when the source is
defined and poison-free.

To determine whether these conditions hold, we ask
an SMT solver to find cases where they are violated. When
found, these counter-examples are reported to the user, as
shown in Figure 3. Conversely, if the SMT solver can show
that no counter-example exists, then the conditions must
hold and the optimization is valid.

3.1. Verification condition generation
Alive’s Verification Condition Generator (VC Gen) encodes
the values, instructions, and expressions in a transforma-
tion into SMT expressions using the theory of bitvectors.
The correspondence between LLVM operations and bitvector
logic is very close, which makes the encoding straightforward.
For each instruction, the interpreter computes 3 SMT expres-
sions: (1) an expression ι for the result of the instruction, (2)
an expression δ indicating whether the instruction is defined,
and (3) an expression ρ indicating whether the result is free of
poison. The first has a type corresponding to the return type of
the instruction. The others are Boolean predicates. All 3 may
contain free variables, corresponding to the uninterpreted
input variables and symbolic constants in the optimization.

Typically, an instruction’s result is encoded by applying
the corresponding bitvector operation to the encoding of
its arguments. Its definedness and poison-free conditions
are the conjunction of the definedness and poison-free
conditions, respectively, of its arguments along with any
specific requirements for that instruction.

For example, consider the   instruction  udiv exact
%a,%b, which is encoded as follows,

Pre: C2 % (1 << C1) == 0
%s = shl nsw %X, C1
%r = sdiv %s, C2
=>

%r = sdiv %X, C2 / (1 << C1)

ERROR: Mismatch in values of i4 %r

Example:
%X i4 = 0xF (15, –1)
C1 i4 = 0x3 (3)
C2 i4 = 0x8 (8, -8)
%s i4 = 0x8 (8, -8)
Source value: 0x1 (1)
Target value: 0xF (15, –1)

Figure 3. Alive’s counterexample for the incorrect transformation
reported as LLVM PR21245.

research highlights

88 COMMUNICATIONS OF THE ACM | FEBRUARY 2018 | VOL. 61 | NO. 2

Example with undef. The following simple optimization
illustrates the nested quantifiers associated with undef:

%r = mul %x, undef
  =>
%r = undef
There is no precondition, and the source and target are
always defined and poison-free, so we need only consider
the third correctness condition:

where u1 and u2 encode the undef values in the source
and target, respectively. The corresponding SMT query is

, which is satisfiable for x = 2, u2 = 1 (because
multiplying by 2 always yields an even number). Thus, this
optimization is incorrect.

3.4. Generating counterexamples
When Alive fails to prove the correctness of a transfor-
mation, it prints a counterexample showing values for
inputs and constants, as well as for each of the preceding
intermediate operations. We bias the SMT solver to pro-
duce counterexamples with bitwidths such as 4 or 8 bits.
It is obvious that large-bitwidth examples are difficult to
understand; we also noticed that, perhaps counter-intui-
tively, examples involving 1- or 2-bit variables are also not
easy to understand, perhaps because almost every value is
a corner case. Figure 3 shows an example.

4. GENERATING C++ FROM ALIVE
Optimizations specified in Alive can be directly trans-
lated into an implementation using the same instruction

precondition is satified, because the optimization will not be
applied otherwise.

Note that the variables used to represent undef values for
the source and target are existentially and universally quan-
tifed, respectively. When an undef term occurs in the target, the
target must refine the source for all possible values the undef
term might take. In contrast, an undef term in the source may
be instantiated with any value which makes the optimization
a refinement. The order of the quantifiers permit undef val-
ues in the source to have different instantiations, depending
on the instantiation of the undef values in the target.

We now state the correctness criteria for an Alive
transformation:

Theorem 1 (Soundness). If conditions 1–3 hold for every
instruction in an Alive transformation (without memory
operations) and for any valid type assignment, then the
transformation is correct.

3.3. Illustration of correctness checking
We illustrate the verification condition generation and
correctness conditions with 2 examples.

Pre: C1 != 0 && C2 %u C1 == 0
%m = mul nuw %a, C1
%r = udiv %m, C2
  =>
%r = udiv %a, C2 /u C1

This is encoded using the following definitions for %r:

Note that rS has propagated the poison-free condition for
%m, and that the target is always poison free. The sets US, UT,
and P are empty, so the correctness conditions are:

The VC Gen tests these conditions by querying an SMT
solver for counterexamples, using the negation of the condi-
tions. These queries are

1. 

2. 

3. 

Since an SMT solver can prove that these formulas are
unsatisfiable, then no counter-examples exist and therefore
the optimization is correct for this type assignment.

Figure 4. An Alive transformation and its corresponding generated
code. The C++ transformation is conditional on 2 match calls,
one for each instruction in the source template, and also on the
precondition. The target template has a single instruction and
creates a new compile-time constant; both of these are directly
reflected in the body of the C++ transformation.

Alive transformation:

Pre: isSignBit(C1)
%b = xor %a, C1
%d = add %b, C2

=>
%d = add %a, C1 ^ C2

Generated C++:

Value *a, *b;
ConstantInt *C1, *C2, *C3;

if (match(I, m_Add(m_Value(b), m_ConstantInt(C2))) &&
match(b, m_Xor(m_Value(a), m_ConstantInt(C1))) &&
C1->getValue().isSignBit()) {

C3 = ConstantInt::get(I->getType(),
C1->getValue() ^ C2->getValue());

I->replaceAllUsesWith(
BinaryOperator::CreateAdd(a, C3, "", I));

}

FEBRUARY 2018 | VOL. 61 | NO. 2 | COMMUNICATIONS OF THE ACM 89

Refinement constraints are either over the BV or QF_BV
(quantified/quantifier-free bitvector) theories. The con-
straints in Section 3.2 are negated before querying the SMT
solver, effectively removing one quantifier alternation.
Therefore, for transformations without undefined values
in the source template, we obtain quantifier-free formulas,
and formulas with a single quantifier otherwise.

6. EVALUATIONb

We translated hundreds of peephole optimizations from
LLVM into Alive. We verified them, and we translated the
Alive optimizations into C++ that we linked into LLVM and
then used the resulting optimizer to build LLVM’s test suite
and the SPEC INT 2000 and 2006 benchmarks. The Alive-
generated C++ code’s compilation time and the perfor-
mance of the resultant code compiled with it is similar to
LLVM’s unverified InstCombine pass.10

6.1. Translating and verifying InstCombine
LLVM’s InstCombine pass rewrites expression trees to
reduce their cost, but does not change the control-flow
graph. During the initial testing of our prototype, we trans-
lated 334 InstCombine transformations to Alive. Of these,
8 could not be proved correct. We reported these erroneous
transformations to the LLVM developers, who confirmed
and fixed them. We re-translated the fixed optimizations to
Alive and proved them correct.

Subsequent efforts have used Alive to validate end-to-end
transformations and extended the Alive language. These
have lead to the discovery of at least fifteen additional bugs.

The buggiest InstCombine file that we found was
MulDivRem, which implements optimizations that have
multiply, divide, and remainder instructions as the root of
expression trees. Out of the 44 translated optimizations, we
found that 6 of them (14%) were incorrect.

The most common kind of bug in InstCombine was the
introduction of undefined behavior, where an optimization
replaces an expression with one that is defined for a smaller
range of inputs than was the original expression. There were 4
bugs in this category. We also found 2 bugs where the value of
an expression was incorrect for some inputs, and 2 bugs where
a transformation would generate a poison value for inputs that
the original expression did not. Figure 5 provides the Alive code
and the bug report numbers for a sample of the bugs that we
discovered during our translation of LLVM InstCombine opti-
mizations into Alive.

Alive usually takes a few seconds to verify the correctness
of a transformation, during which time it may issue hundreds
or thousands of incremental solver calls. Unfortunately, for
some transformations involving multiplication and division
instructions, Alive can take several hours or longer to verify
the larger bitwidths. This indicates that further improve-
ments are needed in SMT solvers to efficiently handle such
formulas. In the meantime, we work around slow verifica-
tions by limiting the bitwidths of operands.

6.2. Preventing new bugs
Several LLVM developers use Alive to avoid introducing wrong-
code bugs. Also, we have been monitoring proposed LLVM

pattern–matching library that InstCombine uses. The imple-
mentation checks whether a code fragment matches the pat-
tern of the source template and whether the precondition
holds. If so, it creates the instructions in the target template,
replacing variables with their corresponding values from the
code fragment. Figure 4 shows an Alive transformation and its
corresponding C++ implementation.

4.1. Translating a source template
The code generator uses LLVM’s pattern-matching library
to create a conditional which tests whether a code fragment
matches the source template. For example, match(I,
m_Add(m_Value(b), m_ConstantInt(C2))) returns true if
the LLVM instruction I adds a value to a constant, and sets the
variables b and C2 to point to its arguments. Matching begins
with the root instruction in the source template and recur-
sively matches operands until all non-inputs have been bound.

4.2. Translating a target template
A new instruction is created for each instruction that is in
the target template but not the source. The root instruction
from the source is replaced by its counterpart in the target.

4.3. Type unification
The LLVM constructors for constant literal values and
conversion instructions require explicit types. In general,
this information will depend on types in the source. As Alive
transformations are parametric over types, and Alive pro-
vides support for explicit and named types, such information
is not readily available. The Alive code generator uses a unifi-
cation-based type inference algorithm to identify appropri-
ate types for the operands and introduces additional clauses
in the if condition to ensure the operands have the appro-
priate type before invoking the transformation. This type
system ensures that the generated code does not produce
ill-typed LLVM code.

The unification proceeds in 3 phases. First, the types of
the operands in the source are unified according to the con-
straints in the source (e.g., the operands of a binary opera-
tor must have the same type) based on the assumption that
source is a well-formed LLVM program. Second, the types
of the operands in the target are similarly unified accord-
ing to constraints of the target. Third, when the operands
of a particular instruction in the target do not belong to the
same class, then an explicit check requiring that the types
are equal is added to the if condition in the C++ code gen-
erated. The explicit check is necessary as the target has type
constraints that cannot be determined by the source alone.

5. IMPLEMENTATION
We implemented Alive in Python and used the Z3 SMT
solver4 to discharge both typing and refinement constraints.
Alive is about 5,200 lines of open-source code.

The number of possible type assignments for a transfor-
mation is usually infinite. To ensure termination, Alive con-
siders integer types up to 64 bits.

b  The version of Alive corresponding to this paper can be found at https://
github.com/nunoplopes/alive/tree/pldi15.

research highlights

90 COMMUNICATIONS OF THE ACM | FEBRUARY 2018 | VOL. 61 | NO. 2

Peephole optimization patterns for a particular Ins
truction Set Architecture (ISA) can be generated from an ISA
specification.3 In contrast to compiler optimizations, opti-
mized code sequences can be synthesized either with peep-
hole pattern generation or through superoptimization.1,5,12,19

Optgen2 automatically generates peephole optimizations.
Like Alive, Optgen operates at the IR level and uses SMT solv-
ers to verify the proposed optimizations. While Alive focuses
on verifying developer-created optimizations, Optgen gener-
ates all possible optimizations up to a specified cost and can
generate a test suite to check optimizations not implemented
in a given compiler. In contrast to Alive, Optgen handles only
integer operations and does not handle memory operations,
poison values, support any operation producing undefined
behavior, or abstraction over bitwidths/types.

Random testing tools7,15,20 have discovered numerous bugs
in LLVM optimizations both for sequential programs and
concurrent programs. These tools are not complete, as was
shown by the bugs we found in optimizations that had previ-
ously been fuzzed.

An alternative approach to compiler correctness is transla-
tion validation17, 18 where, for each compilation, it is proved that
the optimized code refines the unoptimized code. Translation
validation suffers from the drawback of requiring proof machin-
ery to execute during every compilation. Alive aims for once-and-
for-all proof of correctness of a limited slice of the compiler.

patches and trying to catch incorrect transformations before
they are committed to the tree. For example, in August 2014 a
developer submitted a patch that improved the performance
of one of the SPEC CPU 2000 benchmarks by 3.8%—this is
obviously an interesting addition to a compiler. Using Alive,
we discovered that the developer’s initial and second patches
were wrong, and we proved that the third one was correct. This
third and final patch retained the performance improvement
without compromising the correctness of LLVM. Figure 6
shows the initially proposed optimization, a counter-example
demonstrating its invalidity, and the final precondition for
the valid optimization. A recent work has proposed a learning
technique for automatically inferring preconditions, which is
useful to developers debugging an incorrect optimization.13

7. RELATED WORK
Prior research on improving compiler correctness can be
broadly classified into compiler testing tools, formal rea-
soning frameworks for compilers, and Domain Specific
Languages (DSLs). DSLs for compiler optimizations are the
most closely related work to Alive. Among them, Alive is per-
haps most similar to high-level rewrite patterns.6, 11 Alive dif-
fers in its extensive treatment of undefined behavior, which is
heavily exploited by LLVM and other aggressive modern com-
pilers, and its ability to generate code that is similar to LLVM’s
InstCombine pass.

Figure 5. A sample of incorrect InstCombine transformations discovered during the development of Alive.

Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>

%r = sdiv %X, -C

Name: PR20189
%B = sub 0, %A
%C = sub nsw %x, %B
=>

%C = add nsw %x, %A

Name: PR21242
Pre: isPowerOf2(C1)
%r = mul nsw %x, C1
=>

%r = shl nsw %x, log2(C1)

Name: PR21243
Pre: !WillNotOverflowSignedMul(C1, C2)
%Op0 = sdiv %X, C1
%r = sdiv %Op0, C2
=>

%r = 0

Name: PR21245
Pre: C2 % (1<<C1) == 0
%s = shl nsw %X, C1
%r = sdiv %s, C2
=>

%r = sdiv %X, C2/(1<<C1)

Name: PR21255
%Op0 = lshr %X, C1
%r = udiv %Op0, C2
=>

%r = udiv %X, C2 << C1

Name: PR21256
%Op1 = sub 0, %X
%r = srem %Op0, %Op1
=>

%r = srem %Op0, %X

Name: PR21274
Pre: isPowerOf2(%Power) && hasOneUse(%Y)
%s = shl %Power, %A
%Y = lshr %s, %B
%r = udiv %X, %Y
=>

%sub = sub %A, %B
%Y = shl %Power, %sub
%r = udiv %X, %Y

Pre: isPowerOf2(C1 ^ C2)
%x = add %A, C1
%i = icmp ult %x, C3
%y = add %A, C2
%j = icmp ult %y, C3
%r = or %i, %j
=>

%and = and %A, ~(C1 ^ C2)
%lhs = add %and, umax(C1, C2)
%r = icmp ult %lhs, C3

(a)

ERROR: Mismatch in values of i1 %r

Example:
%A i4 = 0x5 (5)
C1 i4 = 0x3 (3)
C3 i4 = 0x7 (7)
C2 i4 = 0x1 (1)
%x i4 = 0x8 (8, -8)
%i i1 = 0x0 (0)
%y i4 = 0x6 (6)
%j i1 = 0x1 (1, -1)
%and i4 = 0x5 (5)
%lhs i4 = 0x8 (8, -8)
Source value: 0x1 (1, -1)
Target value: 0x0 (0)

(b)

Pre: C1 u> C3 &&
C2 u> C3 &&
isPowerOf2(C1 ^ C2) &&
isPowerOf2(-C2 ^ -C1) &&
-C2 ^ -C1 == (C3-C2) ^ (C3-C1) &&
abs(C1-C2) u> C3

(c)

Figure 6. (a) A peephole optimization proposed by the developer. (b) A counterexample found by Alive. (c) A precondition that makes the
optimization valid.

FEBRUARY 2018 | VOL. 61 | NO. 2 | COMMUNICATIONS OF THE ACM 91

for Programming Languages and
Operating Systems (ASPLOS) (1987).

	13.	 Menendez, D., Nagarakatte, S.
Alive-infer: Data-driven precondition
inference for peephole optimizations
in LLVM. In Proceedings of the 38th
annual ACM SIGPLAN conference on
Programming Language Design and
Implementation (2017).

	14.	 Menendez, D., Nagarakatte, S.,
Gupta, A. Alive-FP: Automated
verification of floating point based
peephole optimizations in LLVM. In
Proceedings of the 23rd International
Symposium on Static Analysis (2016).

	15.	 Morisset, R., Pawan, P., Nardelli, F.Z.
Compiler testing via a theory of sound
optimisations in the C11/C++11
memory model. In Proceedings of the
34th ACM SIGPLAN Conference on
Programming Language Design and
Implementation (2013).

	16.	 Nötzli, A., Brown, F. LifeJacket:
Verifying precise floating-point
optimizations in LLVM. In
Proceedings of the 5th ACM SIGPLAN
International Workshop on State Of
the Art in Program Analysis (2016).

	17.	 Pnueli, A., Siegel, M., Singerman,
E. Translation validation. In

Proceedings of the 4th International
Conference on Tools and Algorithms
for Construction and Analysis of
Systems (1998), 151–166.

	18.	 Samet, H. Proving the correctness
of heuristically optimized code. In
Communications of the ACM (1978).

	19.	 Schkufza, E., Sharma, R., Aiken, A.
Stochastic superoptimization. In
Proceedings of the 18th International
Conference on Architectural
Support for Programming
Languages and Operating Systems
(ASPLOS) (2013).

	20.	 Yang, X., Chen, Y., Eide, E., Regehr, J.
Finding and understanding bugs in
C compilers. In Proceedings of the
32nd ACM SIGPLAN Conference on
Programming Language Design and
Implementation (2011).

	21.	 Zhao, J., Nagarakatte, S., Martin,
M.M., Zdancewic, S. Formalizing the
LLVM intermediate representation
for verified program transformations.
In Proceedings of the 39th Annual
ACM SIGPLAN-SIGACT Symposium
on Principles of Programming
Languages (2012).

The CompCert9 compiler for C is an end-to-end verified
compiler developed with the interactive proof assistant
Coq. Vellvm21 reuses the memory model from the CompCert
development and formalizes the semantics and SSA proper-
ties of the LLVM IR to reason about optimizations. Alive’s
treatment of undef values mirrors the treatment in Vellvm.
In contrast to Vellvm, Alive handles poison values and auto-
mates reasoning with an SMT solver.

8. CONCLUSION
We have shown that an important class of optimizations in
LLVM—peephole optimizations—can be formalized in Alive, a
new language that specifies optimizations more concisely than
C++ code, while also supporting automated proofs of correct-
ness. We designed Alive to resemble LLVM’s textual format
while also supporting abstraction over types and constant
values. After an Alive transformation has been proved cor-
rect, it can be automatically translated into C++ that can be
included in an optimization pass. Our first goal was to cre-
ate a tool that is useful for LLVM developers. We believe
this goal has been accomplished, as LLVM developers are
actively using it. Second, we would like to see a large part of
InstCombine replaced with code generated by Alive; we are
still working towards that goal.

Acknowledgments
The authors thank the LLVM developers for their continued
support for the development of Alive, for discussions regard-
ing LLVM IR’s semantics, and for adopting Alive. A special
thanks to David Majnemer for confirming and fixing the
bugs we reported. Eric Eide and Raimondas Sasnauskas
provided valuable feedback on this work. This paper is
based upon work supported in part by NSF CAREER Award
CCF–1453086, NSF Award CNS–1218022, and a Google
Faculty Award.�

© 2018 ACM 0001-0782/18/2 $15.00

References
	 1.	 Bansal, S., Aiken, A. Automatic

generation of peephole
superoptimizers. In Proceedings of
the 12th International Conference
on Architectural Support for
Programming Languages and
Operating Systems (ASPLOS) (2006),
394–403.

	 2.	 Buchwald, S. Optgen: A generator for
local optimizations. In Proceedings of
the 24th International Conference on
Compiler Construction (CC) (2015).

	 3.	 Davidson, J.W., Fraser, C.W.
Automatic generation of peephole
optimizations. In Proceedings of
the 1984 SIGPLAN Symposium on
Compiler Construction (1984).

	 4.	 De Moura, L., Bjørner, N. Z3: An
efficient SMT solver. In Proceedings
of the 14th International Conference
on Tools and Algorithms for the
Construction and Analysis of Systems
(2008), 337–340.

	 5.	 Joshi, R., Nelson, G., Zhou, Y. Denali:
A practical algorithm for generating
optimal code. ACM Trans. Program.
Lang. Syst. 28, 6 (Nov. 2006), 967–989.

	 6.	 Kundu, S., Tatlock, Z., Lerner, S.
Proving optimizations correct
using parameterized program
equivalence. In Proceedings of the
2009 ACM SIGPLAN Conference on
Programming Language Design and

Implementation (2009).
	 7.	 Le, V., Afshari, M., Su, Z. Compiler

validation via equivalence modulo
inputs. In Proceedings of the 35th
ACM SIGPLAN Conference on
Programming Language Design and
Implementation (2014).

	 8.	 Lee, J., Kim, Y., Song, Y., Hur,
C.-K., Das, S., Majnemer, D.,
Regehr, J., Lopes, N.P. Taming
undefined behavior in LLVM. In
Proceedings of the 38th annual
ACM SIGPLAN conference on
Programming Language Design and
Implementation (2017).

	 9.	 Leroy, X. Formal verification of a
realistic compiler. Commun. of the
ACM 52, 7 (2009), 107–115.

	10.	 Lopes, N.P., Menendez, D.,
Nagarakatte, S., Regehr, J. Provably
correct peephole optimizations with
Alive. In Proceedings of the 36th
annual ACM SIGPLAN conference on
Programming Language Design and
Implementation (PLDI) (2015).

	11.	 Lopes, N.P., Monteiro, J. Automatic
equivalence checking of programs with
uninterpreted functions and integer
arithmetic. Int. J. Softw. Tools Technol.
Transf. 18, 4 (2016), 359–374.

	12.	 Massalin, H. Superoptimizer:
A look at the smallest program.
In Proceedings of the 2nd International
Conference on Architectural Support

Nuno P. Lopes (nlopes@microsoft.com),
Microsoft Research, UK.
David Menendez and Santosh
Nagarakatte ({davemm, santosh.

nagarakatte}@cs.rutgers.edu), Rutgers
University, USA.
John Regehr (regehr@cs.utah.edu),
University of Utah, USA.

ECSEE
European Conference

Software Engineering Education

14 and 15
June 2018

Seeon Monastery
Germany

Full Paper
Submission Deadline:

16 March 2018

www.ecsee.eu

Proceedings will be published in:

