
Testing Cross-Platform Mobile App
Development Frameworks

Nader Boushehrinejadmoradi, Vinod Ganapathy, Santosh Nagarakatte, Liviu Iftode
Department of Computer Science, Rutgers University
{naderb,vinodg,santosh.nagarakatte,iftode}@cs.rutgers.edu

Abstract—Mobile app developers often wish to make their
apps available on a wide variety of platforms, e.g., Android, iOS,
and Windows devices. Each of these platforms uses a different
programming environment, each with its own language and APIs
for app development. Small app development teams lack the
resources and the expertise to build and maintain separate code
bases of the app customized for each platform. As a result,
we are beginning to see a number of cross-platform mobile
app development frameworks. These frameworks allow the app
developers to specify the business logic of the app once, using the
language and APIs of a home platform (e.g., Windows Phone),
and automatically produce versions of the app for multiple target
platforms (e.g., iOS and Android).

In this paper, we focus on the problem of testing cross-
platform app development frameworks. Such frameworks are
challenging to develop because they must correctly translate the
home platform API to the (possibly disparate) target platform
API while providing the same behavior. We develop a differential
testing methodology to identify inconsistencies in the way that
these frameworks handle the APIs of the home and target plat-
forms. We have built a prototype testing tool, called X-Checker,
and have applied it to test Xamarin, a popular framework that
allows Windows Phone apps to be cross-compiled into native
Android (and iOS) apps. To date, X-Checker has found 47 bugs
in Xamarin, corresponding to inconsistencies in the way that
Xamarin translates between the semantics of the Windows Phone
and the Android APIs. We have reported these bugs to the
Xamarin developers, who have already committed patches for
twelve of them.

I. I

Over the last several years, we have witnessed a number
of advances in mobile computing technology. Mobile devices
are now available in a variety of form factors, such as glasses,
watches, smartphones, tablets, personal robots, and even cars.
These devices come equipped with powerful processors, ample
storage, and a diverse array of sensors. Coupled with advances
in operating systems and middleware for mobile devices,
programmers can now avail rich programming APIs to build
software (“apps”) that leverage these advances in hardware.
Modern app markets contain hundreds of thousands of apps,
and the number and diversity of apps available to end-users
has further contributed to the popularity of mobile devices.
These advances in hardware and software have made mobile
devices viable replacements for desktop computers.

At the same time, we are also witnessing a fundamental
shift in the practice of software development due largely
to the dynamics of mobile app development. Until a few
years ago, the task of developing software (targeting mainly
desktop computers) was mostly confined to teams of software
engineers, either in the open-source community or at IT
companies. In contrast, it is common today for small teams

or even individuals to build and distribute software via mobile
app markets. Such teams, or individuals, may lack the expertise
and experience of a large team of developers and often
face economic and time constraints during app development.
Nevertheless, mobile app development teams aim to maximize
revenue by making their apps available on a wide variety of
mobile devices, i.e., those running software stacks such as
Android, iOS, and Windows. Apps that are available for a
wide variety of mobile devices can reach a large user base,
and can therefore generate more revenue either through app
purchases or via in-app advertisements.

One way to build apps for different mobile platforms is to
create customized versions of apps for each platform, e.g., a
separate version of the app for Android, iOS and Windows
devices. However, this approach leads to multiple versions of
the app’s code-base, which are difficult to maintain and evolve
over time. Therefore, developers are increasingly adopting
cross-platform mobile app development frameworks. These
frameworks allow developers to program the app’s logic once
in a high-level language, and provide tool-support to allow the
app to execute on a number of mobile platforms.

There are two broad classes of cross-platform frameworks
available today. The first class, which we call Web-based
frameworks, allows developers to build mobile apps using
languages popularly used to build Web applications, such as
HTML5, JavaScript, and CSS. Examples of such frameworks
include Adobe PhoneGap/Cordova [1], Sencha [7] and IBM
MobileFirst [3]. Developers specify the app’s logic and user
interface using one or more of the Web-development lan-
guages. However, these languages do not contain primitives to
allow apps to access resources on the phone, e.g., peripherals
such as the camera and microphone, the address book, and
phone settings. Thus, Web-based frameworks provide sup-
porting runtime libraries that end-users must download and
execute on their mobile devices. Mobile apps interface with
these libraries to access resources on the mobile devices—
such mobile apps are also popularly called hybrid mobile apps.
Web-based frameworks allow developers to rapidly prototype
mobile apps. However, these frameworks are ill-suited for
high-performance apps, such as games or those that use
animation. The expressiveness of the resulting mobile apps is
also limited to the interface exported by the runtime libraries
offered by the frameworks.

The second class, which we call native frameworks, ad-
dresses the above challenges. Examples of such frameworks
include Xamarin [8], Apportable [2], MD2 [6, 31], and the
recently-announced cross-platform bridges to be available on
Windows 10 [30, 40]. These frameworks generally support a
home platform and one or more target platforms. Developers
build mobile apps as they normally would for the home plat-

Fig. 1. Overall operation of a cross-platform mobile app development framework, using Xamarin as a concrete example. Developers build apps as they would
for the Windows Phone, in C# using calls to the API of the Windows Phone SDK. This code can directly be compiled to Windows Phone apps using the Visual
Studio toolchain. Xamarin allows developers to use the same source code to build native Android or iOS apps. Xamarin provides compatibility libraries that
translate Windows SDK API calls in the code to the relevant API calls of the underlying Android and iOS SDKs.

form, and leverage the framework’s support to automatically
produce apps for the target platforms as well. For example, the
home platform for Xamarin is Windows Phone, and developers
build apps using C# and the API of the Windows Phone SDK.
The Xamarin framework allows developers to automatically
build Android and iOS apps using this code base. Likewise, the
home platform for Apportable is iOS. Developers build apps
using Objective-C and the iOS SDK, and leverage Apportable
to produce Android apps from this code base. One of the main
highlights of the Microsoft Build Developer Conference held
in April/May 2015 was the announcement that the upcoming
release of Windows 10 will contain interoperability bridges
that allow Android and iOS developers to easily port their
apps to the Windows 10 platform [30, 40]. These bridges
allow Android (or iOS) apps written in Java (or Objective-C)
and programmed to use calls from the Android (or iOS) SDK
to transparently execute atop Windows 10 devices. While the
technical details of this platform are forthcoming as of this
paper’s publication, it is reasonable to assume that the bridges
will incorporate a compatibility library to bridge the Android
(or iOS) SDK and the Windows 10 SDK. In this paper, we
will focus on native frameworks for cross-platform mobile
app development. Figure 1 shows the typical workflow of app
development using a native framework. We use Xamarin as a
concrete example, but the same general workflow applies to
all such native frameworks.

When an app developer uses native frameworks, he implic-
itly expects the apps to behave consistently across the home
and target platforms. Realizing this expectation depends to a
large extent on the fidelity with which the native framework
translates the API calls to SDK of the home platform to the
corresponding SDK of the target platform(s). Unfortunately,
this translation is a complex task because the platform must
correctly encode the semantics of both the home platform
and target platform SDK and the relationship between them.
This complexity translates into bugs in the frameworks. For
example, as of May 2015, Xamarin’s Bugzilla database shows
a history of about 7,100 bugs that are related to cross-platform

issues1, about 2,900 of which are still unresolved (listed as
“open” or “new”). Although initial development of Xamarin
only started in 2011, its code is based on Mono, which started
in 2004 as an open-source implementation of .NET. The fact
that such a large number of bugs exist in a mature and heavily-
used platform (over 500,000 users) such as Xamarin/Mono
point to the complexity of translating between platforms. Other
native frameworks are no exception, either. Apportable’s bug
database, for instance, shows a history of 820 bug reports, 449
of which are still unresolved.

In this paper, we develop an approach to test native
frameworks. Specifically, we aim to discover cases where
the behavior of the application on the home platform is
inconsistent with the behavior of its counterpart on a target
platform. Our approach is based on differential testing [33].
We generate random test cases (using methods described in
prior work [36]), which in our case are mobile apps in the
source language of the home platform. We then use this code
to produce two versions of the app, one for the home platform,
and one for the target platform using the native framework.
We then execute the apps and examine the resulting state
for inconsistent behavior. When two versions of the app are
produced from the same source code, any differences in the
behavior across the versions are indicative of a problem either
in the home platform’s SDK, the target platform’s SDK, or the
way the native framework translates between the two SDKs.

To realize this approach, we must address two issues:

(1) Test Case Generation. The key research challenge in gen-
erating effective test cases is that the space of valid programs
that we can generate as test cases is essentially unbounded.
While we could sample from this space, the probability that
these test cases will induce inconsistent behavior is low.

1There are a total of about 20,300 bugs in the database, related to various
related products offered by Xamarin, e.g., the profiler, the IDE environment,
etc. We do not count those bugs because they are not directly related to cross-
platform issues.

To address this challenge, we observe that the main dif-
ficulty in building cross-platform mobile app development
tools is translating between the semantics of the SDKs of the
home and target platforms. Our test-case generator therefore
produces programs that contain random sequences of invoca-
tions to the home platform’s SDK. We then observe whether
the resulting apps on the home and target platforms behave
consistently. By focusing on the SDK alone, our approach
narrows testing to the most error-prone components of the
cross-platform frameworks.
(2) Test Oracle Design. Each of our test cases is compiled
into a full-fledged app, one each for the home and target
platforms. When we run the corresponding apps, the test oracle
must observe their behaviors to identify inconsistencies. The
main research challenge here is in defining a suitable notion
of “behavior” that can be incorporated into our test oracle.

We address this challenge by observing all data structures
that are reachable from the variables defined in the test cases.
We serialize these data structures into a standard format,
and compare the serialized versions on the home and target
platforms. Assuming that the state of the home and target
platforms is the same before the test cases are executed, the
final state in each platform after the test cases have been
executed must also be the same. If not, we consider this
inconsistent behavior and report an error.

We have prototyped this approach in a tool called X-
Checker, which we have applied to test the Xamarin framework
using Android as the target platform. Using X-Checker, we
have found 47 inconsistencies, which corresponded to bugs
either in Xamarin or the Microsoft SDK (we have reported
these to Xamarin or Microsoft). To date, 12 of these bugs have
also been fixed in the development branch of Xamarin [9–19]
and others are still open.

To summarize, our contributions are:

• We initiate the study of cross-platform mobile app devel-
opment frameworks, and present an analysis of the kinds of
bugs that may arise when these frameworks translate between
the semantics of the programming interfaces of two different
platforms (Section III).
• We present the design of X-Checker, a testing tool for cross-
platform frameworks that uses random differential testing to
expose bugs in these frameworks (Section IV). We also present
a number of practical challenges that we had to overcome in
the implementation of X-Checker (Section V).
• We show the effectiveness of X-Checker by applying it to
Xamarin. Specifically, X-Checker tests Xamarin’s fidelity as it
translates between the Windows Phone and Android platforms.
To date, X-Checker has found 47 bugs, 12 of which have been
fixed after we reported them (Section VI).

II. B N F

In this section, we provide background on native frame-
works using Xamarin as a concrete example. Xamarin allows
the development of native mobile apps for multiple platforms
while aiming to maximize code-reuse across platforms. De-
velopers using Xamarin target their apps to its home platform,
Windows Phone, and can re-use much of the same code to
build native apps for iOS, Android, and Mac. In this section,

Fig. 2. Structure of a cross-platform app written using Xamarin.

we discuss the structure of a cross-platform app written using
Xamarin, and discuss the techniques that Xamarin uses to
allow app logic and data storage code to be written once and
reused across platforms.

A developer using Xamarin can build apps in C#, using
features such as generics, Linq and the parallel task library.
The developer splits the app into two logical pieces (Figure 2):
the application core, which encodes the business logic, and
contains code that is common across all platforms, and user
interface (UI), which is written for each platform and uses
the native UI features of that platform, e.g., buttons, widgets,
and the overall look and feel of the specific platform. The
developer implements the UI layer in C# as well, using native
UI design tools such as Android.Views, MonoTouch.UIKit
for iOS, and XAML, Silverlight and Metro APIs for Windows
Phone. The functionality and layout of the UI elements can be
controlled by the business logic in the application core, e.g., in
determining which button triggers what functionality in the
app. Xamarin is built atop the Mono .NET framework [5],
which provides the core cross-platform implementation of
Microsoft’s .NET framework. C# source code can be compiled
with Xamarin’s compiler to produce a native iOS app, or an
Android app with integrated .NET runtime support. In this
case, the C# code is compiled to an intermediate language,
and packaged with MonoVM configured for just-in-time com-
pilation on Android.

Xamarin aims to provide support to developers to mini-
mize the amount of platform-specific code that is needed to
port an app across platforms. To achieve this goal, one of
the main components of the core of a Xamarin-based app
are cross-platform compatibility libraries, also called portable
class libraries, or PCLs in Xamarin, a technology originally
developed by Microsoft. On Visual Studio and other Microsoft
environments, a PCL is a special type of a project that allows
developers to write code and produce libraries that can be
shared across multiple platforms, such as iOS, Android, and
Windows Phone. To support this, PCLs export an interface of
methods and properties that are portable across platforms, and
developers program to this interface. The app developer en-
codes platform-independent business logic by programming to
this interface. The PCL provides forwarding stubs that ensures
that calls to methods or property accesses are routed to the
correct underlying platform libraries at runtime. The developer

of the PCL typically identifies the interface by choosing a set
of target platforms that the PCL will support. Because different
platforms provide implementations of differing subsets of the
base .NET class library, the PCL interface is typically restricted
to the common .NET functionality that is supported by all the
target platforms.

PCLs play a key role in Xamarin because they serve as
the compatibility layer between two different platforms. As
previously mentioned, about Xamarin’s BugZilla database lists
about 7,100 that are related to PCL. Despite the functionality
provided by the PCLs, some platform-dependent business logic
may be necessary in the application core. For example, PCLs
are still in active development, and if the app developer wishes
to use features that are not currently supported by the PCL, he
has to do so by writing platform-specific code, called shared
assets on Xamarin. It is possible to write this code once and
compile it for all desired target platforms using compiler or
pre-processor directives (e.g., code specific to Android or iOS
would be guarded using a directive such as #ifdef ANDROID
or #ifdef iOS, respectively). Naturally, the goal of projects
such as Xamarin is to increase the coverage provided by their
PCLs, so as to minimize the amount of code that must be
written as shared asset projects.

In addition to the application core, the app also includes UI
code. Currently, UI code is largely platform-specific because
UI elements, e.g., the look and feel of buttons and widgets, are
customized to specific mobile platforms. Nevertheless, there
are ongoing efforts such as Xamarin.Forms to even minimize
the amount of platform-specific UI code.

In this paper, we are primarily concerned with testing the
functionality of the PCLs on Xamarin that provide support for
platform-independent app code. Therefore, the test cases gener-
ated by X-Checker only target the PCL interface. Our test cases
do not directly target the platform-specific UI code. However,
note that many aspects of the layout and functionality of the
UI are controlled by the business logic, which interacts with
the target platform’s SDK via the PCLs. Therefore, by testing
the functionality of the PCLs, we indirectly test the overall
functionality of the app’s execution on the target platform
(including its UI).

III. I B

In this section, we present a few motivating examples of
real inconsistencies that X-Checker found in Xamarin. For our
examples, we use Android as the target platform; the default
home platform is Windows phone. We use these examples to
motivate some design features of X-Checker, and classify the
types of inconsistencies that it can identify.

Figure 3 shows a test case generated by X-Checker. This
code is in C# and uses classes and methods from the Windows
Phone SDK. In this test case, the code first creates two objects,
base and exp, from the Systems.Numerics.Complex class,
and initializes them to 0+0i and 1+0i. On line (8), it uses the
Complex.Pow operation to raise base to the power of exp.

We used the Visual Studio toolkit and the Xamarin frame-
work to produce a Windows Phone app and an Android
app, respectively, and ran the apps on the corresponding
platforms. Both apps execute and return . However, in

(1) using System.Numerics;
(2) Serializer serializer; // Serializer is a data structure serializer.
(3) public class TestCase {
(4) public static int TestMain (MyFileIO serialStream, MyFileIO logStream) {
(5) try {
(6) Complex base = new Complex(0,0);
(7) Complex exp = new Complex(1,0);
(8) Complex res = Complex.Pow(base,exp);
(9) serialStream.append(base.GetType().FullName, serializer.serialize(base));

(10) serialStream.append(exp.GetType().FullName, serializer.serialize(exp));
(11) serialStream.append(res.GetType().FullName, serializer.serialize(res));
(12) return ;
(13) } catch (System.Exception e) {
(14) logStream.append(e.GetType().FullName);
(15) return ;
(16) }
(17) }
(18) }

Fig. 3. A test case that illustrates inconsistent handling of the semantics of
the Windows Phone SDK. The values of res are different in the Windows
Phone and the Xamarin-produced Android versions of this code.

Type Platform 1 Platform 2 Consistency checks Example
(1) X X Check app state Figure 3
(2) × × Check exception code Figure 5
(3) X × Always inconsistent Figure 6

Fig. 4. Different ways in which a test case produced by X-Checker can exhibit
inconsistent behavior when executed on two platforms. X denotes that the test
case returns , while × denotes that the test case returns .

the Windows Phone app, the value of res is 0+0i, while on
the Android app, the value is NAN (not a number). This is
clearly an inconsistency in the way the two apps handled the
semantics of the Complex.Pow operation. Since we reported
this bug on Xamarin’s BugZilla forum, it has been fixed in the
master branch for the next release [17].

In this example, eliciting the inconsistent behavior between
the Windows Phone and the Android versions of the app
requires the calls on lines (6)-(8), with the corresponding data
dependencies. To systematically uncover more examples of
such inconsistencies, X-Checker must therefore generate many
more such test cases by systematically invoking methods from
the API of the Windows Phone SDK with suitable arguments.

When the apps produced from these test cases are executed
on their corresponding platforms, inconsistent behavior may
manifest itself in one of three ways (Figure 4). The first way,
as illustrated in the example in Figure 3, is where the test
case returns on both platforms, but the resulting state
is different. Such inconsistencies are latent in the state of the
apps, in this case, the values of the objects, and are not visible
unless this state is made explicit and compared across the two
versions.

X-Checker achieves this goal by serializing all objects that
are reachable from the variables that are in scope within the
source code of the app. Lines (9)-(11) in Figure 3 show the
objects being serialized and appended to a log. X-Checker
compares the logs produced by the Windows Phone and the
Android versions of the apps to identify inconsistencies. In
this example, serializing the Complex object simply prints
its value to the log. However, X-Checker’s serializer supports
arbitrary data types, and serializes them in a custom format.
The serializer itself is written in C#, with calls to the Windows
Phone SDK, and is included as a library within the native
app. As with all our test cases, we use Xamarin to produce
the Android version of the serialization library. Because X-
Checker’s test cases include calls to the serializer in the source
code of the test case, we expect the serialized versions of
similar objects to also be similar on the Windows Phone and
Android versions.

(1) public class TestCase {
(2) public static int TestMain (MyFileIO serialStream, MyFileIO logStream) {
(3) try {
(4) string s = "test";
(5) Int32 index = -1;
(6) Double val = System.Globalization.CharUnicodeInfo.GetNumericValue(s, index);
(7) return ;
(8) } catch (System.Exception e) {
(9) logStream.append(e.GetType().FullName);

(10) return ;
(11) }
(12) }
(13) }

Fig. 5. A test case that triggers an inconsistent exception behav-
ior. In the Windows Phone version of this code, line (6) throws a
System.ArgumentOutOfRangeException, while on the Xamarin-produced
Android version, it throws a System.IndexOutOfRangeException. For
brevity, we have omitted some code, such as calls to the serializer.

A second way for inconsistencies to manifest is when
a test case returns on both platforms, but the
exceptions thrown are different on both platforms. Figure 5
illustrates a test case in which this scenario occurs. The
call on line (6) throws an exception because the value
of index is negative. However, the Windows Phone
version throws a System.ArgumentOutOfRangeException,
while the Android version throws a
System.IndexOutOfRangeException. In this case, the
Windows Phone and Android versions are inconsistent in
the way they handle the semantics of the GetNumericValue
method. X-Checker therefore logs the exception code, and
compare it across executions of the apps on the two platforms.
This bug has also been fixed in the master branch for the next
release [9].

In cases such as these, where the test cases on both
platforms throw exceptions, the logs only contain the exception
code. In particular, the logs do not contain the serialized data
structures because the calls to the serializer appear before the
return statement, and the exception was raised before
control reached the calls to the serializer. It may be possible
that both the Windows Phone and the Android versions throw
the same exception code, but the state of the data structures
in the apps may have diverged before the code that raised
the exception was executed, which is also an example of
inconsistent behavior. As will be clear when we discuss X-
Checker’s approach to test case generation in Section IV, X-
Checker would have also identified the divergence of state.
In particular, X-Checker uses an iterative test case generation
algorithm that preserves the following property: any prefix of a
method sequence in a test case generated by X-Checker is also
a test case that would have been generated by X-Checker in a
previous iteration. Therefore, if the state is inconsistent after
a call sequence preceding the exception-generating method,
it would have been identified as an inconsistency when the
shorter method sequence was used as a test case.

Note that in Figure 5, the test case executes the code
and catches a generic System.Exception. In practice, it
may be that a developer writing a Windows Phone app,
familiar with the Windows Phone SDK, may write this code
to catch a System.ArgumentOutOfRangeException. If he
uses Xamarin to produce an Android app, it is possible for the
the inconsistent behavior to manifest itself in one of the other
two forms shown in Figure 4.

The final possibility for an inconsistency is when a test
case returns on one platform, and on the
other. Figure 6 shows an example of such a test case. The

(1) using System.Xml;
(2) public class TestCase {
(3) public static int TestMain (MyFileIO serialStream, MyFileIO logStream) {
(4) try {
(5) NameTable nt1 = new NameTable();
(6) NameTable nt2 = new NameTable();
(7) XmlNamespaceManager nsMgr = new XmlNamespaceManager(nt2); ...
(8) XmlParserContext xpctxt = new XmlParserContext(nt1, nsMgr , ...); ...
(9) return ;

(10) } catch (System.Exception e) {
(11) logStream.append(e.GetType().FullName);
(12) return ;
(13) }
(14) }
(15) }

Fig. 6. A test case that triggers an exception in the Windows Phone version.
The constructor on line (8) throws an XmlException because nsMgr is
independent of nt1. This test case executes without throwing an exception
on the Xamarin-produced Android version.

XmlParserContext constructor in line (8) expects its sec-
ond argument (nsMgr) to be created from the first argument
(nt1). However, in this case, nsMgr is created from another
object nt2. As a result, this constructor call must throw an
XmlException according to Microsoft’s documentation, and
it does on the Windows Phone version. However, on the
Android version the constructor executes without throwing an
exception. As with the previous two bugs, this one also has
been fixed by Xamarin developers after we reported it [11].

IV. D X-C

X-Checker aims to find bugs in Xamarin by generating
apps, executing these apps on Windows Phone and Android,
and looking for inconsistencies in them. Thus, X-Checker’s
design consists of two parts, the test case generator and the
inconsistency checker.

Test Case Generation. X-Checker generates test cases that
exercise the programming API used by Windows Phone devel-
opers. As illustrated in Section III, each test case is a sequence
of method calls to this API. The arguments to these calls are
either values with primitive data types, or references to objects
constructed and modified by method calls appearing earlier in
the sequence. The main challenge is to generate meaningful
method sequences that are also effective, i.e., the test case
generator should be able to elicit error cases in Xamarin
without generating too many test cases.

This problem has been investigated in the past in the con-
text of generating unit tests for object-oriented programs, and
tools such as JCrasher [27] and Randoop [36] implement such
test case generation. In particular, Randoop uses a feedback-
directed approach to random test generation and is the basis
for X-Checker’s test generator as well. We now briefly de-
scribe Randoop’s (and therefore X-Checker’s) approach to test
generation.

The test generator accepts as input a list of classes to
be tested, a set of filters and contracts (which are sanity
checks to be performed), and a timeout. Intuitively, the test
generation algorithm iteratively “grows” method sequences
from previously-generated shorter sequences. Suppose that the
test generator has already generated a set of method sequences
as valid test cases. During each iteration, the test generator
picks a method m(T1, . . ., Tn) at random from the list of
classes provided to it as input, and “extends” the existing
method sequences with a call to m (e.g., one way to “extend”
is to append m to the end of the sequence). If the parameters
of m are all of primitive type, then the test generator randomly
selects the values of these parameters from a pool of acceptable

values. If the parameter is a reference to an object, then the test
generator uses an object of suitable type created by a method in
the sequence that m just extended (or passes a reference).
X-Checker then wraps this method sequence with template
code to serialize data structures and to catch exceptions, as
shown in the examples from Section III, to produce the test
cases.

The test generator then executes the newly-generated test
sequences looking for violations of filters and contracts. These
are sanity checks that look for common error cases, such
as test cases that throw an exception, or those that violate
certain invariants (e.g., o.equals(o) not returning). Test
sequences that violate these sanity checks are discarded, and
the remaining test cases are added to the set of valid test cases,
to be extended in future iterations. This process continues till
the specified timeout has expired. This iterative approach is key
to generating effective test cases. It ensures that every prefix
of a valid test sequence is also valid, and that test sequences
that violate simple sanity conditions (e.g., those that throw an
exception) are never extended.

Serializing State and Checking Inconsistencies. For the test
cases generated using the approach above, X-Checker produces
a pair of apps for Windows Phone and Android. It executes
them atop these platforms to observe inconsistent behavior. We
now discuss the design of the serializer, which helps identify
inconsistencies when both apps return , i.e., the first
case in Figure 4. The other two cases are straightforward and
we do not discuss them further.

The serializer recursively traverses object references to
create serialized representations. Intuitively, a serialized rep-
resentation is a set of (key, value) pairs. The key is the name
of a public field of the object. For fields of primitive type
(e.g., bool, int, String), the value is simply the actual value
of the field. For fields that are themselves object references,
the value is a serialized representation of that object. The
example below shows the serialized representation of a linked
list with two entries. The data field of the entries store 1 and
2, respectively.

{(“data”, 1), (“next”, {(“data”, 2), (“next”,)})}

X-Checker’s serializer uses the Json.NET [4] library,
which optionally supports the ability to serialize cyclic data
structures. It does so by keeping track of object references
using an additional identifier. However, in our experience, the
random test cases that we generate do not produce cyclic
heap data structures. We therefore did not enable support for
serializing cyclic data structures in our prototype, and the
serialized object representations are tree-structured as a result.
Note that in the unlikely case that a test case does produce
a cyclic data structure, our serializer would infinitely loop—a
situation we have not encountered to date in our experiments.

X-Checker identifies inconsistencies by comparing seri-
alized representations of objects on the home and target
platforms. Comparison proceeds recursively in a bottom-up
fashion. All the (key, value) pairs storing primitive types must
match, and the tree-structure of the serialized representation
must be the same, i.e., the same keys on both platforms at each
level of the tree. Any mismatches indicate inconsistent state. In
most of the bugs that we found, the mismatches were because

the values diverged (e.g., the complex number example in
Figure 6). However, we also found cases where the fields in
the objects were different on Windows Phone and Android
because a field that was declared to be public on Windows
Phone was a private field in Android, and therefore not listed
in the serialized representation.

As previously discussed, the feedback-directed approach
to test case generation does not extend any method sequences
that violate its filters and contracts, e.g., sequences that throw
an exception when executed. While Randoop was originally
designed for unit-testing object-oriented programs, X-Checker
extends it for cross-platform differential testing. For practical
reasons described in Section V, X-Checker first executes the
test case generator on one platform, where it uses the iterative
approach to output test cases. It then executes these test cases
on the target platform (Android). Thus, X-Checker’s test cases
also preserve the property that only non-exception-generating
test cases are extended in the iterative process.

However, because X-Checker generates all the test cases
on the home platform before executing them on the target
platform, even those test cases that return but pro-
duce inconsistent serialized state across the two platforms are
extended during test generation. As a result, it is possible that
multiple test cases produced by X-Checker may report the
same inconsistency.

Discussion. Differential testing offers an attractive property. If
a test case is executed on two API implementations with the
same initial state, any inconsistency in the final states indicates
a problem in at least one of the API implementations. That is,
differential testing does not produce false positives.

However, in practice, it is possible that an inconsis-
tency does not always correspond to a problem. In our
experiments, we found that such a situation could arise
because of any one of a small number of reasons. First,
some API methods, such as those from System.Random and
System.Time, invoke platform-specific features and return
different values when invoked on different platforms. For
example, the System.Net.Cookie() constructor initializes
Cookie.TimeStamp with the current system time. Unless
the emulation environments that run the apps for both the
home and target platforms are synchronized, this call will
return different values. Second, for some methods, such as
Object.GetHashCode, the documentation specifies that the
behavior of the method varies across platforms. That is, the
HashCode of an object can be different on the home and
target platforms even if the serialized representations of the
object are the same on both platforms. A third source of
false positives was because the Mono runtime included in a
Xamarin-produced Android app uses Mono Assemblies as its
libraries. These libraries have different metadata information
than their Windows Phone counterparts, and any calls that
access this metadata will result in inconsistent serialized state.

Fortunately, it is relatively easy to filter out test cases that
can potentially lead to such false positives. We simply integrate
filters that prevent the test generator from producing method
sequences that contain method calls or field references that
can potentially trigger such false positives. Thus, with just a
few filters to eliminate the causes above (see Figure 7), we
were able to eliminate false positives, thereby ensuring that all

Filtered classes: All methods/variables of this class filtered.
System.Random — Members return random values

Filtered methods: Methods cannot appear in test cases.
System.Type GetType() — Return value may include information from

the underlying C# assembly, which is not
uniform across platforms

System.Int32 GetHashCode() — Documentation specifies that hash code of
similar objects need not be similar across
platforms

Filtered constructors: Constructor cannot appear in test cases.
System.Xml.UniqueId() — Returns a unique GUID, which is not guaran-

teed to be consistent across platforms
Filtered fields/properties: Cannot be accessed in test cases.

System.Net.Cookie.TimeStamp — Value relies on system time at object creation
System.DateTimeOffset.Now — Value relies on system time
System.DateTimeOffset.UtcNow — Value relies on system time
System.DateTime.Now — Value relies on system time
System.DateTime.UtcNow — Value relies on system time
System.DateTime.Today — Value relies on system time
System.Exception.HResult — Value identifies an exception, but documenta-

tion is not conclusive about whether value is
consistent across platforms

Fig. 7. Filters used by X-Checker to avoid generating test cases that produce
false positives.

inconsistencies reported by X-Checker indeed correspond to
real bugs. Note, however, that as with most other testing tools,
our differential testing approach does have false negatives—
i.e., it is not guaranteed to find all possible inconsistencies.

V. P C

In this section, we discuss a few practical issues that we
had to address as we built X-Checker.

Where to Generate Test Cases? The first practical considera-
tion that we addressed was the question of which platform to
use to execute our test generator. One possibility was to use
Windows Phone, Xamarin’s home platform. This requires us
to execute X-Checker directly on a device or emulator running
Windows Phone. However, we found that the environment
on such devices and emulators was somewhat awkward to
use during active development of X-Checker, e.g., to debug
any issues that arose. We therefore decided to develop and
execute X-Checker on a desktop version of Windows (8.1). Our
hypothesis was that the desktop and phone versions would be
largely similar because they use the same .NET code base, and
as a result, we could use the desktop to generate the test cases
and execute them as apps on Windows Phone and Android
devices.

This approach eased development of X-Checker, and for
the most part our hypothesis about the equivalence of the
desktop and phone version of Windows was correct. How-
ever, we found (and reported to Microsoft) a case where
the desktop and phone versions diverged in their semantics.
In particular, the public property CurrencyDecimalDigits
of the class System.Globalization.NumberFormatInfo is
required to be a read-only field according to MSDN docu-
mentation. While the read-only property holds in the desktop
version, the property is mutable in the Windows Phone version.
We also found, using differential testing against Android, a
case where both the desktop and phone version of Win-
dows incorrectly implement the documented semantics for a
given property, while Android’s implementation followed Mi-
crosoft’s documentation. In particular, the property WebName of
System.Text.Encoding.BigEndianUnicode must have the

(a) Windows Phone version (b) Android version

Fig. 8. Screenshots showing the UIs of the test case apps on Windows Phone
and Android.

value UTF-FFFE according to Microsoft’s documentation, but
the desktop and phone version of Windows return UTF-16BE.

PCLs and Test Generation. A second issue that we had to
address was the integration of X-Checker’s test generator and
PCLs. As previously discussed, X-Checker’s test generator
produces test cases for a given input set of classes. It uses
reflection to identify public methods from those classes, the
data types of their arguments and the other properties of
these classes, and uses this information in its test generation
algorithm.

However, PCLs pose a unique problem when used with
X-Checker’s test generator. Recall that PCLs define the in-
terface against which developers can build their applications
without concerning themselves with cross-platform portability
issues. PCLs enable this feature by transparently acting as
forwarders—they route calls from the application layer to the
corresponding library in the platform on which the application
is loaded. Thus, PCLs usually do not contain any of the
executable code of the classes for which they act as an
interface, and merely contain forwarding stub code. As a result
of this feature, when X-Checker’s test generator is provided
with a set of PCL classes as input, it is unable to use reflection
to fetch the complete set of public methods, data types and
properties of the classes for which the PCL acts as a forwarder.

To address this issue, we had to extract the information
required by X-Checker’s test generator by loading PCLs in
a non-executable reflection-only mode. In this mode, PCLs
are not executable, but can be queried using reflection and
return metadata by accessing the corresponding classes on the
platform. We then re-load the PCLs in executable mode, and
use the metadata to iteratively generate and execute test cases.

How to Package Test Cases? Finally, we also had to address
the issue of how to package up the test cases for execution
on the Windows Phone and Android platforms. Each test
case is packaged as a separate class that can be instantiated
and executed. As discussed above, we run the iterative test
generation algorithm on the desktop version of Windows. As
a result, we have all the test cases available for batch execution
on the mobile platforms.

We package all the test cases into a single app each for
execution on the two mobile platforms. Both Windows Phone

and Android require apps to define a UI. We wrote this
UI and the code to interface with the file system (to store
the logs generated when test cases are executed) within a
platform-specific presentation layer, and packaged up the test
cases as platform independent code to be cross-compiled by
Visual Studio and Xamarin. All the test cases generated by
X-Checker can be invoked at the press of a single button on
the app. Figure 8 shows the UIs of the Windows Phone and
Android versions of these apps. The UIs of these apps look
rather different—each app uses buttons and icons unique to
the corresponding mobile platform. However, because our test
cases focus only on the platform-independent PCL classes, the
differences in the UI state do not manifest as divergent state
(and therefore as inconsistencies) during the execution of the
test-cases.

VI. E R

Setup. For our experimental evaluation, we used Xam-
arin.Android version 4.16.0, business edition. We chose Win-
dows 8.1 as the home platform, and Android 4.0.3 (API
level 15) as the target platform. As discussed in Section V,
we generate test cases on a desktop version of Windows,
and then run these cases on Windows Phone and Android
platforms. Both the phone and desktop version of Windows use
.NET version 4.5.51641. We use Visual Studio Ultimate 2013
version 12.0.30501 as the IDE to compile our test cases. This
environment supports a package that integrates the tools for
Windows Phone 8.1 into the controls of Visual Studio. We also
use the same development environment to build the Android
version using Xamarin. In particular, we use the Xamarin
3.5.58.0 extension to enable development for Xamarin.Android
within Visual Studio.

We use emulators to mimic Windows Phone and Android
devices. Microsoft offers a few pre-configured emulation envi-
ronments for Windows Phone: our experiments use Emulator
8.1/WVGA-4inch/512MB configuration. We configured the
Android emulator to match the hardware configurations of the
Windows Phone emulator.

Examples of Inconsistent Behavior. Figure 9 presents the
results of our experiments. To date, we have used X-Checker
to generate 22,465 test cases, which invoke 4,758 methods
implemented in 354 classes across 24 Xamarin DLLs. In
all, we observed 47 unique instances of inconsistent behavior
across Windows Phone and Android. The results also show a
detailed breakdown of these inconsistencies by category, where
the type of the inconsistency is as defined in Figure 4.

In most cases, we were quickly able to quickly confirm us-
ing MSDN and Xamarin documentation that the inconsistency
was indeed a bug in Xamarin. For each type of inconsistency in
Figure 4, the test cases that induced them and the inconsistent
results they produced were largely similar to the examples
described in Section III. We now discuss a few interesting
examples of inconsistencies that we found.

(1) Precision in math libraries. We observed two inconsisten-
cies that were related to precision with which math libraries
used rounding and precision to represent numbers. In one test
case, a call to System.Math.IEEERemainder(double x,
double y) was invoked with x=1.49089193085384E-81
and y=2.22275874948508E-162. The Windows Phone ver-

sion returns a result of 3.33639470813326E-163, while the
Android version produced by Xamarin returns 0.

The second test case was a method sequence with two
calls. The first call, System.Math.Round(Decimal d, int
i, MidpointRounding mode) was invoked in the test case
as System.Math.Round(2, 3, ToEven). According to the
documentation, this call returns the value d rounded with i
fractional digits in the given mode. The Windows Phone ver-
sion returns 2.000 while the Android version returns 2. While
these are equivalent if used in a mathematical calculation, the
second call in the test case converted them to strings using
System.Convert.ToString, which resulted in inconsistent
serialized state. These examples highlight inconsistent han-
dling of floating point arithmetic across platforms.
(2) Ambiguous documentation of exception semantics.
We observed one test case where different exceptions
were raised for the same failing method call because of
ambiguity in the semantics of the exception to be raised.
According to documentation, the NameTable.Add(Char[]
key, int start, int len) call can throw two types
of exceptions. It throws IndexOutOfRangeException
when any one of these three conditions is met: 0>start,
start>key.Length, or len>key.Length. It throws
ArgumentOutOfRangeException if len<0.

In one of our test cases, the values of start and
len were such that 0>start and len<0. For this test
case, both the Windows Phone and desktop versions threw
IndexOutOfRangeException whereas Xamarin’s Android
code threw ArgumentOutOfRangeException. Although both
implementations are correct, the documentation must be clar-
ified to remove this ambiguity.
(3) Documented deviations of behavior. For some methods,
documentation specifies that the behavior of the method will
vary across platforms. Thus, the Xamarin and .NET imple-
mentations of these methods need not be similar. For exam-
ple, consider the constructor for the UriBuilder class. The
documentation specifies that if this class is implemented in a
PCL, then if an invalid URI is provided as the string argument
to the constructor, it must throw a FormatException instead
of a UriFormatException.

We also observed examples where the deviations in be-
havior were not specified formally in the documentation, but
were known to the developers of the platform. One such
example is the method ReadContentAsString from the class
XmlDictionaryReader. When included in a test case, this
method showed inconsistent behavior across the Windows
Phone and Android versions. However, when we tried to
identify the cause of this bug by examining the source code
of the Mono platform (which Xamarin extends to provide a
cross-platform implementation of .NET), we found that it was
marked with a MonoTODO attribute, indicating a known issue
with its implementation.

We were not aware of these documented deviations in
behavior when we tested the methods using X-Checker, and
the resulting differences were reported as inconsistencies.
However, because the documentation (or code comments) did
specify that the inconsistencies were expected across plat-
forms, we do not count these as bugs (and therefore they do
not factor into the 47 inconsistencies reported in Figure 9).
Nevertheless, we feel that for such methods, the deviations

Library #Classes #Methods #Tests #Inconsistencies (by type)
Type 1 Type 2 Type 3

Microsoft.CSharp 6 56 1,848 0 0 0
Microsoft.VisualBasic 17 127 613 0 0 0
System.Collections.Concurrent 10 77 349 0 0 0
System.Collections 29 172 532 0 0 0
System.ComponentModel 5 4 1,578 0 0 0
System.Dynamic.Runtime 29 201 790 1 0 0
System.Globalization 14 288 567 3 3 0
System.Linq 5 172 591 0 0 0
System.Linq.Expressions 44 633 590 1 0 1
System.Net.Http 44 524 746 3 0 3
System.Net.NetworkInformation 1 1 1 0 0 0
System.Net.Primitives 13 105 956 0 1 1
System.Net.Requests 10 122 1,269 0 0 0
System.ObjectModel 16 52 1,573 0 0 0
System.Resources.ResourceManager 4 28 1,333 0 1 0
System.Runtime.Extensions 12 409 946 3 1 1
System.Runtime.Numerics 2 170 1,514 3 0 2
System.Runtime.Serialization.Json 4 37 1,642 1 0 0
System.Runtime.Serialization.Primitives 13 86 1,387 1 0 1
System.Runtime.Serialization.Xml 14 342 420 1 3 1
System.Text.Encoding 5 66 940 1 0 0
System.Text.RegularExpressions 10 103 848 0 0 0
System.Xml.ReaderWriter 24 346 820 2 3 3
System.Xml.XDocument 23 637 612 0 1 1

20 13 14
Total 354 4,758 22,465 47

Fig. 9. Summary of inconsistencies found by X-Checker in various Xamarin libraries. This table shows the number of classes in each library and the number
of methods in these classes. It also shows the number of test cases that X-Checker generated for those libraries, and the number of cases of inconsistent behavior
across platforms. These inconsistencies are sorted by type, as defined in Figure 4.

of behavior should be encoded more explicitly (e.g., as pre-
conditions) rather than being latent in documentation or in
code comments.

Performance. Finally, we report the time taken to run test
cases on our experimental setup. We ran the Windows Phone
and Android emulators on a desktop system running Windows
8.1 professional edition, and equipped with an Intel Core-
i7-3770 running at 3.4GHz, 16GB of RAM. We created an
app that packaged 1000 randomly-generated tests and ran the
Windows Phone and Android versions of this app on both
emulators. The Android emulator took 29.1 seconds to run the
app, while the Windows Phone emulator took 2.7 seconds. The
Android emulator is much slower because it emulates the ARM
architecture atop our Intel platform. In contrast, the Windows
Phone “emulator” uses hyper-V and is implemented as a virtual
machine. The tests used to report the results in Figure 4 were
generated by analyzing each library separately. We configured
our test generator to emit test cases until a timeout of 300
seconds was reached for each library being analyzed.

VII. T V

Our results show the effectiveness of using random dif-
ferential testing at finding bugs in native app development
frameworks. We now summarize the threats to the internal and
external validity of our results.

The main threat to internal validity is in determining
whether an inconsistency discovered by X-Checker is indeed
a symptom of a bug in Xamarin. Although an inconsistency
manifests itself in one of the three different ways outlined
in Figure 4, it may be the result of using a method with
a documented difference in behavior across platforms. We
addressed this threat in two ways. First, as discussed in

Section IV, we created filters for methods with documented
deviations of behavior, so false-positive-generating test cases
are not produced. Second, we studied the results of X-Checker
to understand the cause of the inconsistency. In some cases,
this study lead us to a sentence in the documentation or code
comments where the inconsistency was documented (as dis-
cussed in Section VI). We did not include these inconsistencies
in our overall count shown in Figure 9, and reported the other
inconsistencies to the Xamarin BugZilla forum.

A second threat to internal validity is the “seriousness” of
the bugs found by X-Checker—i.e., does an inconsistency lead
to a serious error in the functioning of an app, or is it just a
minor annoyance? Unfortunately, this aspect is much harder
to evaluate. Our take on the issue is that an inconsistency
is indeed a bug that must be fixed (or suitably documented).
However, the fact that 12 (over 25%) of the inconsistencies that
we found lead to bug-fixes within days of our reports shows
that Xamarin developers did perceive the inconsistencies as
being significant.

The main threat to external validity is the ability of our
approach to generalize to other native frameworks, or even
other aspects of Xamarin (e.g., the compatibility libraries used
to translate between Windows Phone and iOS). We currently
do not have experimental data to answer such questions. Nev-
ertheless, our results with Xamarin PCLs for Android indicate
that inconsistencies arise because of the challenges involved
in translating the semantics of two different mobile platforms.
In particular, an analysis of our results does not indicate
that the kinds of inconsistencies we found are symptomatic
of problems either in Windows Phone or Android alone.
Therefore, we hypothesize that random differential testing of

other native frameworks is quite likely to find similar bugs in
them as well.

VIII. RW

Testing Cross-platform Apps. To our knowledge, our work
is the first on testing cross-platform mobile app development
frameworks. However, there has been prior work on testing
cross-platform apps themselves. The most relevant projects in
this area are X-PERT [25] and FMAP [26]. Both projects start
with the observation that an increasing number of Web applica-
tions create customized views of Web pages, each optimized
for different platforms, e.g., form factors, mobile platforms,
and Web browsers. Yet, end-users expect Web applications
to behave consistently across these platforms. The X-PERT
project aims to detect inconsistencies in the way that Web apps
are displayed by these platforms. Dually, FMAP attempts to
identify similar elements on Web pages that may be rendered
differently on different platforms.

Our work differs from these projects in that it uses incon-
sistencies in apps to identify problems in the app development
frameworks. While our work has primarily targeted APIs used
to support application logic, future work on testing mobile
apps created using Web-based frameworks (e.g., [1, 3, 7])
can possibly use the techniques from X-PERT and FMAP to
identify inconsistencies in the way UI elements are displayed
across platforms.

Aside from testing techniques for cross-platform apps, a
number of recent projects [20–22, 32, 35, 37] have been devel-
oping techniques to test mobile apps. The main goal of these
techniques is to devise effective input generation techniques
for mobile apps, which is challenging because mobile apps
are UI-based and event-driven. Although these projects are not
directly related to our work, the input generation methods that
they develop can potentially be used to identify inconsistencies
in the UIs and UI-handling code of cross-platform apps.

Zhong et al. [42] consider the related problem of test-
ing cross-language API mapping relations. Such a relation
< fS , fT > encodes that a method fS implemented in a library
written in a source language implements the same features as
the method fT written for an equivalent library in a target
language. Zhong et al. also use random differential testing
as the strategy to identify inconsistencies in these relations.
Their findings are similar to ours, and showcase the difficulty
of correctly translating functionality across different platforms
and languages.

Random and Differential Testing. There is a rich literature
on both random testing and differential testing, and both
methods have extensively been used for bug-finding. Fuzz-
random testing, for example, feeds random inputs to ap-
plications under test. Crashing applications are most likely
buggy because they do not handle ill-formed random inputs
properly. This method has been used to find bugs in UNIX
utilities [34] and GUI-based Windows applications [28]. For
object-oriented code, JCrasher [27] generates random unit
tests, and uses crashes to identify buggy class implementations.
Differential testing, originally introduced by McKeeman [33]
has recently found a number of interesting applications in
security (e.g., [23, 24, 39]).

Random and differential testing can be usefully combined
as is evident from our results. This method has previously been
used successfully, for instance, to find bugs in compilers [41].
The authors of Randoop also used this method to test two
versions of the Java development kit, finding a number of bugs
along the way.

Implementing Cross-platform App Frameworks. As already
discussed in Section I, there is significant recent interest
in techniques to develop cross-platform mobile apps. For
this task, the dominant methods are the use of Web-based
frameworks, which support app development in Web-based
languages, and native frameworks, which create apps that
can natively execute on the platform. These frameworks do
much of the leg-work necessary to translate API calls across
platforms. To our knowledge, these translations are created
manually by domain experts. The software engineering re-
search community has proposed methods to automatically
harvest cross-platform API mappings by mining existing code
bases (e.g., [29, 38, 43]). Such techniques could potentially be
used to improve the way that cross-platform app development
frameworks are built.

IX. S FW

Developers are eager to deploy their mobile apps on as
many platforms as possible, and cross-platform mobile app
development frameworks are emerging as a popular vehicle
to do so. However, the frameworks themselves are complex
and difficult to develop. Using X-Checker to test Xamarin,
we showed that differential testing is an effective method
to identify inconsistencies in the way that these frameworks
handle the APIs of the home and target platforms.

While X-Checker has been highly effective, it suffers from
a number of limitations that we plan to remedy in future work.
First, while X-Checker uses random method sequences as test
cases, the arguments to these methods are drawn at random
from a fixed, manually-defined pool. We plan to investigate
techniques to invoke methods with random, yet meaningful
arguments, which would further increase the coverage of the
API during testing. Second, X-Checker has primarily focused
on testing the framework libraries that provide support for the
platform-independent part of cross-platform apps. However,
when end-users interact with apps that have been cross-
compiled, they also expect a similar end-user experience when
interacting with the app’s UI. To ensure this property, we
must test that semantically-similar UI elements on different
platforms elicit the same behavior within the apps on the
corresponding platforms. This will likely require an analysis of
the elements of the UI itself, and recent work on cross-platform
feature matching [26] may help in this regard. Finally, we
plan to extend X-Checker to work with other target platforms
(e.g., Xamarin for iOS) and with other cross-platform app-
development tools.

X. A

We thank the reviewers for their comments and Thomas
Ball for encouraging us to consider Xamarin as our experi-
mental platform. This research was funded in part by NSF
grants 0952128, 1408803 and 1441724.

R
[1] Adobe PhoneGap. http://phonegap.com.
[2] Apportable – Objective-C for Android. www.apportable.com.
[3] IBM MobileFirst platform foundation. http://www-03.ibm.com/

software/products/en/mobilefirstfoundation.
[4] Json.NET – popular high-performance JSON framework for
.NET. http://james.newtonking.com/json.

[5] Mono – Cross-platform, open source .NET framework. http:
//www.mono-project.com.

[6] MyAppConverter – develop once, run anywhere. http://www.
myappconverter.com.

[7] Sencha: HTML5 app development. http://www.sencha.com.
[8] Xamarin – Mobile App Development and App Creation Soft-

ware. http://xamarin.com.
[9] Xamarin Bug 25895. Wrong exception is thrown when calling
System.Globalization.CharUnicodeInfo.GetNumericValue with
invalid index. https://bugzilla.xamarin.com/show bug.cgi?id=
25895.

[10] Xamarin Bug 27901. XmlConvert.ToString returns wrong value.
https://bugzilla.xamarin.com/show bug.cgi?id=27901.

[11] Xamarin Bug 27910. XmlParserContext constructor not throw-
ing XmlException when it should. https://bugzilla.xamarin.com/
show bug.cgi?id=27910.

[12] Xamarin Bug 27922. XmlConvert.ToUnit throwing
wrong/inconsistent exception. https://bugzilla.xamarin.com/
show bug.cgi?id=27922.

[13] Xamarin Bug 27982. Inconsistent behavior in
DynamicAttribute.Equals. https://bugzilla.xamarin.com/
show bug.cgi?id=27982.

[14] Xamarin Bug 28017. NameTable.Add throwing
wrong/inconsistent exception. https://bugzilla.xamarin.com/
show bug.cgi?id=28017.

[15] Xamarin Bug 28123. Inconsistent behavior in
System.Xml.XmlReaderSettings.MaxCharactersInDocument.
https://bugzilla.xamarin.com/show bug.cgi?id=28123.

[16] Xamarin Bug 28134. System.Text.EncoderFallbackException
inconsistent initial state compared to .NET (two inconsistencies
assigned to this bug identifier). https://bugzilla.xamarin.com/
show bug.cgi?id=28134.

[17] Xamarin Bug 28562. Incorrect System.Numerics.Complex.Pow
result. https://bugzilla.xamarin.com/show bug.cgi?id=28562.

[18] Xamarin Bug 28571. Incorrect behavior in
System.Numerics.BigInteger. https://bugzilla.xamarin.com/
show bug.cgi?id=28571.

[19] Xamarin Bug 28572. Incorrect/inconsistent behavior in
System.Numerics.Complex.Divide. https://bugzilla.xamarin.com/
show bug.cgi?id=28572.

[20] S. Anand, M. Naik, H. Yang, and M. Harrold. Automated
concolic testing of smartphone apps. In ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering
(FSE), 2012.

[21] T. Azim and I. Neamtiu. Targeted and depth-first exploration
for systematic testing of Android apps. In ACM Symposium on
Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA), 2013.

[22] P. Brooks and A. Memon. Automated GUI testing guided
by usage profiles. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2007.

[23] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov.
Using Frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In IEEE Sympo-
sium on Security and Privacy (Oakland), 2014.

[24] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song.
Towards automatic discovery of deviations in binary imple-
mentations with applications to error detection and fingerprint
generation. In USENIX Security Symposium, 2007.

[25] S. Choudhary, M. Prasad, and A. Orso. X-PERT: Accurate
identification of cross-browser issues in Web applications. In In-
ternational Conference on Software Engineering (ICSE), 2013.

[26] S. R. Choudhary, M. R. Prasad, and A. Orso. Cross-platform
feature matching for Web applications. In International Sympo-
sium on Software Testing and Analysis (ISSTA), 2014.

[27] C. Csallner and Y. Smaragdakis. JCrasher: An automatic
robustness tester for Java. Software–Practice and Experience,
34(11), 2004.

[28] J. E. Forrester and B. P. Miller. An empirical study of the
robustness of Windows NT applications using random testing.
In USENIX Windows Systems Symposium, 2000.

[29] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring
likely mappings between APIs. In International Conference on
Software Engineering (ICSE), 2013.

[30] S. Guthrie, T. Myerson, and S. Nadella. Day one keynote
presentation, Microsoft Build developer conference, April 2015.
http://channel9.msdn.com/Events/Build/2015/KEY01.

[31] H. Heikotter, T. Majchrzak, and H. Kuchen. Cross-platform
model-driven development of mobile applications with MD2. In
ACM Symposium on Applied Computing (SAC), 2013.

[32] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input
generation system for Android apps. In ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineering
(FSE), 2013.

[33] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1), December 1998.

[34] B. P. Miller, L. Fredriksen, and B. So. An empirical study of
the reliability of UNIX utilities. Communications of the ACM
(CACM), 33(12), December 1990.

[35] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon. GUITAR:
An innovative tool for automated testing of GUI-driven soft-
ware. Journal of Automated Software Engineering, 21(1), 2014.

[36] C. Pacheco, S. K. Lahiri, M. Ernst, and T. Ball. Feedback-
directed random test generation. In International Conference
on Software Engineering (ICSE), 2007.

[37] M. Pradel, P. Schuh, G. Necula, and K. Sen. Event-
break: Analyzing the responsiveness of user interfaces through
performance-guided test generation. In ACM Symposium on
Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA), 2014.

[38] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford. Automated API property inference techniques.
IEEE Transactions on Software Engineering (TSE), 39(5), May
2013.

[39] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov. A
security policy oracle: Detecting security holes using multiple
API implementation. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2011.

[40] C. Velazco. Microsoft invites Android and iOS apps to join
Windows 10, April 2015. http://www.engadget.com/2015/04/
29/android-ios-apps-on-windows-10.

[41] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and under-
standing bugs in C compilers. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI),
2011.

[42] H. Zhong, S. Thummalapenta, and T. Xie. Exposing behavioral
differences in cross-language API mapping relations. In Inter-
national Conference on Fundamental Approaches to Software
Engineering (FASE), 2013.

[43] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang.
Mining API mapping for language migration. In International
Conference on Software Engineering (ICSE), 2010.

http://phonegap.com
www.apportable.com
http://www-03.ibm.com/software/products/en/mobilefirstfoundation
http://www-03.ibm.com/software/products/en/mobilefirstfoundation
http://james.newtonking.com/json
http://www.mono-project.com
http://www.mono-project.com
http://www.myappconverter.com
http://www.myappconverter.com
http://www.sencha.com
http://xamarin.com
https://bugzilla.xamarin.com/show_bug.cgi?id=25895
https://bugzilla.xamarin.com/show_bug.cgi?id=25895
https://bugzilla.xamarin.com/show_bug.cgi?id=27901
https://bugzilla.xamarin.com/show_bug.cgi?id=27910
https://bugzilla.xamarin.com/show_bug.cgi?id=27910
https://bugzilla.xamarin.com/show_bug.cgi?id=27922
https://bugzilla.xamarin.com/show_bug.cgi?id=27922
https://bugzilla.xamarin.com/show_bug.cgi?id=27982
https://bugzilla.xamarin.com/show_bug.cgi?id=27982
https://bugzilla.xamarin.com/show_bug.cgi?id=28017
https://bugzilla.xamarin.com/show_bug.cgi?id=28017
https://bugzilla.xamarin.com/show_bug.cgi?id=28123
https://bugzilla.xamarin.com/show_bug.cgi?id=28134
https://bugzilla.xamarin.com/show_bug.cgi?id=28134
https://bugzilla.xamarin.com/show_bug.cgi?id=28562
https://bugzilla.xamarin.com/show_bug.cgi?id=28571
https://bugzilla.xamarin.com/show_bug.cgi?id=28571
https://bugzilla.xamarin.com/show_bug.cgi?id=28572
https://bugzilla.xamarin.com/show_bug.cgi?id=28572
http://channel9.msdn.com/Events/Build/2015/KEY01
http://www.engadget.com/2015/04/29/android-ios-apps-on-windows-10
http://www.engadget.com/2015/04/29/android-ios-apps-on-windows-10

	Introduction
	Background on Native Frameworks
	Inconsistent Behavior
	Design of X-Checker
	Practical Considerations
	Experimental Results
	Threats to Validity
	Related Work
	Summary and Future Work
	Acknowledgments

