Only for the personal use of students registered in CS 514, Spring 2020 at Rutgers University. Redistribution out of this class is strictly prohibited.

CS 514: Advanced Algorithms II – Sublinear Algorithms	Rutgers: Spring 2020
Lecture 10: Practice Problem	
March 31, 2020	

Problem. In Lecture 10, we designed a streaming algorithm for the k-center clustering problem when points $p_1, \ldots, p_n \in \{1, \ldots, \Delta\}^d$ are arriving one by one in the stream. For any $\varepsilon \in (0, 1)$, the algorithm achieves a $(2 + \varepsilon)$ -approximation by storing $O(k \cdot \frac{\log D}{\varepsilon})$ points where $D = \sqrt{d} \cdot \Delta$ is the maximum possible value for the optimum solution. Our goal in this problem is to improve the space complexity of this algorithm at a cost of increasing its approximation ratio by a constant factor.

Design a streaming algorithm for the k-center clustering problem that achieves an O(1)-approximation by storing only O(k) points throughout the stream. Can you reduce the approximation ratio to $(2 + \varepsilon)$ approximation again by storing only $O(k/\varepsilon)$ points instead?

Hint: The original approach in the lecture was based on two steps: (i) Designing an O(k)-space intermediate streaming algorithm that given a parameter $\tau \in [1, D]$, either outputs a clustering C with cost at most $2 \cdot \tau$, or outputs that the optimal solution has cost more than τ ; (ii) then we did a simple geometric search by running the algorithm above for $O(\frac{\log D}{\varepsilon})$ choices of $\tau \in \{1, (1 + \varepsilon), (1 + \varepsilon)^2, \ldots, D\}$ in parallel.

Modify the second step by performing the geometric search sequentially by updating the current guess for τ on the fly whenever it is smaller than the optimum value.