
CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Spring 2020

Lecture 2
January 28, 2020

Instructor: Sepehr Assadi Scribes: Chaitanya Sai Krishna and Vihan Shah

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Sublinear Time Algorithms for Graphs

We are going to study sublinear time algorithms in this and the next couple of lectures. In this lecture, we
will focus on graph algorithms.

1.1 Query Model for Graph Problems

When designing sublinear time algorithms, specifying the exact data model, or rather the query model, is
very important as the algorithm cannot even read the entire input once1. A query model then specifies what
type of queries can be made to the input (often times, we assume a query takes O(1) time).

In the context of graph problems, we typically work with one of the following models: adjacency list model,
adjacency matrix model, or the general query model. In each model, we assume that the graph G(V,E)
has known vertices V = {1, . . . , n} (so ID(v) ∈ {1, . . . , n} for any v ∈ V) but the edges are unknown. Each
model then specifies how one can access the edges of the graph.

Adjacency list query model: The following queries can be answered in O(1) time in this model:

• Degree queries: Given a vertex v ∈ V , output deg(v), namely, the degree of v.

• Neighbor queries: Given a vertex v ∈ V and i ∈ [n], output the i-th neighbor of v or ⊥ if i > deg(v).

By storing the graph in the adjacency list format, we can implement the above query model for algorithms.

Adjacency matrix query model: The following queries can be answered in O(1) time in this model:

• Pair queries: Given two vertices u, v ∈ V , output whether (u, v) is an edge in G or not.

By storing the graph in the adjacency matrix format, we can implement the above query model for algorithms.

General query model for graphs: This model is simply a combination of both models above that allows
all the three queries mentioned above. This query model can be implemented by storing both the adjacency
list and the adjacency matrix of the graph separately.

Remark. The three models above are the most standard models for graph problems. However, some-
times one can consider extensions of these models, for instance, by allowing an extra edge-sample query
that returns an edge uniformly at random from the graph.

1In the classical setting also specifying the input access is important; however, one can typically change different types of
access in time linear in the input size and so this does not form a barrier for classical algorithms.

1

Remark. The query models we discussed so far are considered local queries as they answer “local”
information about the graph (typically functions of only local neighborhood of a single vertex in the
graph). Researchers have also studied global query models for graph problems that answer much more
global information: for instance, given a set S of vertices, return the number of edges with both endpoints
among these vertices. We will talk about global queries later in the course and for now only mention
that power of local and global queries are vastly different; in particular, there are various problems that
can be solved much faster when one has access to these global queries.

2 Estimating Number of Connected Components

We start with one of the most classical problems in the area of sublinear time graph algorithms, namely,
estimating the number of connected components, studied first by Chazelle, Rubinfeld, and Trevisan [1]. The
problem is as follows:

Problem 1 (Estimating number of connected components). Given a graph G(V,E) in the adjacency
list query model, approximation parameter ε ∈ (0, 1), and confidence parameter δ ∈ (0, 1), output an ap-

proximate number of connected components C̃ such that:

Pr
(
|C̃ − C| ≤ εn

)
≥ 1− δ,

where C is actual number of connected components in G.

Remark. The reason why we settled for this type of approximation, namely, additive approximation
(with respect to n) as opposed to multiplicative approximation (having |C̃ −C| ≤ ε ·C instead) or just
aiming for the exact answer is as follows. Basically, one can prove that distinguishing whether a graph
is connected or has two connected components requires Ω(n2) time even with randomization (we will
prove this result later in the course). This suggests that we cannot hope to settle even for multiplicative
approximation (as any better than two approximation algorithm can distinguish these two cases).

A similar reason also holds for allowing randomization: deterministically, we need Ω(n) time even for
additive approximation algorithms.

Before we get to describe the algorithm, we need some definitions.

Definition 1. For any vertex v ∈ V , we define sv as the size of the connected component of v in G, i.e., the
number of vertices (including v) that are in the same connected component as v.

The following claim reduces the task of estimating the number of connected components to computing a
simple function of sv’s for all v ∈ V .

Claim 2. C =
∑
v∈V

1/sv.

Proof. Let D1, . . . , DC denote the connected components of G. Note that V = D1 ∪ . . . ∪DC and Di’s are
disjoint. Thus,

∑
v∈V

1

sv
=

C∑
i=1

∑
v∈Di

1

sv
=

C∑
i=1

∑
v∈Di

1

|Di|
=

C∑
i=1

|Di| ·
1

Di
=

C∑
i=1

1 = C.

2

Our general strategy is now to calculate the sum in Claim 2 to estimate C by sampling a small number of
vertices v and computing sv, which can be done by doing a DFS/BFS from v and counting number of visited
vertices. This strategy at this point however is problematic because when sv is very large, computing all
vertices connected to v can take a long time. An important observation however is that having a large sv
means that contribution of this vertex to the summation above, i.e., 1

sv
, is small and thus almost negligible.

We formalize this in the following.

Claim 3. Define s′v := min(sv, 2/ε) for all v ∈ V ′ and C ′ :=
∑
v∈V

1/s′v. Then, |C − C ′| ≤ ε/2 · n.

Proof. First, observe that for each v ∈ V :

0 ≤ 1

s′v
− 1

sv
≤ ε

2
.

This holds because s′v ≤ sv, sv > 0, and whenever s′v 6= sv, we have that s′v = 2/ε, and sv > 0. By summing
the inequality over all vertices:

C ′ − C =
∑
v∈V

1

S′u
− 1

Su
≤ ε

2
· n,

C ′ − C =
∑
v∈V

1

S′u
− 1

Su
≥ 0

concluding the proof.

Claim 3 ensures that if instead of computing sv, we compute s′v, we can still get a good estimate of C.
However, computing s′v is easier now since we only need to do a DFS/BFS starting from the vertex v and
terminate the search whenever more than 2/ε vertices are found.

Remark. We should point that Claim 3 gives a straightforward deterministic algorithm for this problem
– simply compute s′v for every vertex which takes O(1/ε2) per vertex (see Section 2.2 for details). This
gives anO(n/ε2) time deterministic algorithm which is sublinear in the size of input (which can be Ω(n2))
but not sublinear in the number of vertices. However, we are going to show that using randomization,
one can get a much faster algorithm for this problem.

We are now ready to present the algorithm.

Algorithm:

1. Let k := 2/ε2 · ln (2/δ).

2. For i = 1 to k do the following:

• Sample a vertex vi uniformly at random from v (with replacement).

• For this vi compute Xi := 1
s′vi

by doing a DFS/BFS from vi and truncating the search once 2/ε

vertices are visited.

3. Output C̃ = n/k ·
∑k
i=1Xi.

In order to analyze this algorithm, we use the following additive variant of Chernoff bound2

2It is worth mentioning that the bounds one get from multiplicative Chernoff bound is always at least as good as the additive
version – we thus only use additive Chernoff for simplifying the calculations when possible.

3

Proposition 4 (Additive Chernoff Bound). Let Y1, Y2, . . . , Yk be k independent random variables with
values in [0, 1] and Y =

∑
i Yi. Then, for any b ≥ 1,

Pr[|Y − E [Y] | > b] ≤ 2 · exp

(
−2b2

k

)
.

We now present the proof of correctness and runtime analysis of this algorithm.

2.1 Proof of Correctness

As in the previous lecture, we first compute the expected value of the output, namely, C̃, and show that it is
close to the desired answer and then bound the probability that this random variable deviates significantly
from its expectation.

Claim 5. E
[
C̃
]

= C ′.

Proof. By linearity of expectation, we have,

E
[
C̃
]

=
n

k
·
k∑
i=1

E [Xi] =
n

k
· k · E [X1] (as X1, . . . , Xk are identically distributed)

= n · E [X1] .

We can compute E [X1] as follows:

E [X1] =
∑
v∈V

Pr (v is chosen as v1) · E [X1 | v is chosen as v1] =
1

n
·
∑
v∈V

1

s′v
=

1

n
· C ′,

where the second to last equality is because when we choose v in the algorithm as v1, we set X1 = 1/s′v, and
the last equality is by the definition in Claim 3. The claim now follows from the above two equations.

By Claim 5 (and Claim 3), the output is within the desired range in expectation. We now use Chernoff
bound to bound the probability that it also deviates from its expectation by much.

Claim 6. Pr
(
|C̃ − C ′| ≤ ε

2 · n
)
≥ 1− δ.

Proof. Let us define X =
∑k
i=1Xi. Note that this way C̃ = n

k ·X and E [X] = k
n ·E

[
C̃
]

= k
n ·C

′ by Claim 5.

Moreover,

|C̃ − C ′| ≥ ε

2
· n ⇐⇒ |n

k
·X − n

k
· E [X] | ≥ ε

2
· n ⇐⇒ |X − E [X] | ≥ ε

2
· k.

Finally, X is a sum of k independent random variables Xi’s which are in [0, 1]. Hence, we can apply the
additive Chernoff bound in Proposition 4 with parameter b = ε/2 · k and obtain that,

Pr
(
|X − E [X] | ≥ ε

2
· k
)
≤ 2 · exp

(
−2 · (ε/2)2 · k2

k

)
= 2 · exp

(
−ε

2

2
· k
)

= 2 · exp

(
−ε

2

2
· 2

ε2
· ln (2/δ)

)
≤ 2 · δ/2 = δ. (by the choice of k)

This proves the desired claim.

By Claim 3 we know that C ′ is close to C (deterministically) and by Claim 6, we got that C̃ is close to C ′

with probability 1 − δ. We can combine these two together to conclude the correctness of the algorithm in
the following lemma.

4

Lemma 7. The output C̃ of the algorithm satisfies Pr
(
|C̃ − C| ≤ ε · n

)
≥ 1− δ.

Proof. By Claim 6, with probability 1− δ, we have, |C̃ − C ′| ≤ ε
2 · n. By Claim 3, we have |C ′ − C| ≤ ε

2 · n
(deterministically). Hence, by triangle inequality, we have that with probability 1− δ,

|C̃ − C| ≤ |C̃ − C ′|+ |C ′ − C| ≤ ε

2
· n+

ε

2
· n = ε · n,

finalizing the proof of correctness of the algorithm.

2.2 Runtime Analysis

Given vi, computing s′vi in the algorithm takes O(1/ε2) time because we are going to visit only 2/ε vertices
from vi and thus BFS/DFS will time proportional to number of these vertices plus all edges between them
which is at most O(1/ε2). As such, the total runtime of the algorithm is:

k ·O(
1

ε2
) =

1

ε2
· ln (2/δ) ·O(

1

ε2
) = O(

1

ε4
· ln (1/δ)).

Remark. Notice that this algorithm runs in constant time (independent of the size of the input graph)
whenever ε and δ are fixed constants.

2.3 Concluding Remarks

We saw an algorithm for estimating the number of connected components to within an εn additive approxi-
mation in time O(1

ε4 · ln (1/δ)). This result was first proved by Chazelle, Rubinfeld, and Trevisan in [1] who
used it as a subroutine to estimate the weight of a minimum spanning tree in a graph in sublinear time. We
will visit the MST problem later in the course.

Open question? The algorithm we discussed does not seem to obtain optimal bounds as a function of ε, δ. It
would be interesting to investigate if these bounds can be improved further and/or prove a matching lower
bound for this problem3.

3 Estimating Average Degree

We now switch to another classical problem defined as follows.

Problem 2 (Estimating average degree). Given a graph G in the adjacency list query model, approxi-

mation parameter ε ∈ (0, 1), and confidence parameter δ ∈ (0, 1), output an approximate average degree d̃
such that the following holds:

Pr
(
|d̃− d̄| ≤ εd̄

)
≥ 1− δ,

where d̄ is the average degree of G.

Assumption: In this problem, we are going to assume that d̄ ≥ 14.

It is worth mentioning that the problem of estimating average degree is equivalent to estimating the number
of edges in the graph (since d̄ = 2m

n and n is given).

3Important Note: This problem may have already been solved and a literature search is the first step.
4This assumption is needed to obtain a sublinear time algorithm with multiplicative approximation – consider distinguishing

a graph with no edges from a one with only a single edge.

5

This problem was first studied by Feige [2] who gave a (2 + ε)-approximation sublinear time algorithm using
only degree queries and proved that using only degree queries one cannot obtain a sublinear time algorithm
with better than 2-approximation. Subsequently, Goldreich and Ron [3] gave a (1 + ε)-approximation algo-
rithm for this problem that also used neighbor queries (i.e., in the adjacency list model). A simpler proof of
this result was given by Seshadhri more recently [4]. We will follow the approach of [4] in this lecture note
albeit using a different proof.

3.1 Warm Up: Almost-Regular Graphs

As a warm up, let us consider an easy case where the graph is almost regular, namely, all vertices have
their degree in the interval [d, 10d] for some d known to the algorithm. In general, if we pick a vertex at
random and let X be the degree of this vertex, then the expected value of X is d̄. This is however not
enough to estimate d̄ as X can deviate significantly from its expectation. However, in this particular case of
almost-regular graphs, we can simply repeat this process multiple times and take the average answer.

Algorithm:

1. Let k = 50
ε2 · ln (2/δ).

2. For i = 1 to k do the following:

• Sample a vertex vi uniformly at random (with replacement)

• Let Xi = deg(vi).

3. Output d̃ = 1
k ·
∑k
i=1Xi.

The runtime of this algorithm is O(k) = O(1/ε2 · ln (1/δ)) since sampling and computing degree of each vi
can be done in O(1) time. We now prove the correctness of the algorithm.

Claim 8. E
[
d̃
]

= d̄.

Proof. By linearity of expectation,

E
[
d̃
]

=
1

k
·
k∑
i=1

E [Xi] = E [X1] (as X1, . . . , Xk are identically distributed)

=
∑
v∈V

1

n
· deg(v) = d̄.

d̃ in expectation is d̄ (which is what we want). We now need to show that d̃ does not deviate from its
expectation by much.

Claim 9. Pr(|d̃− d̄| ≤ εd̄) ≥ 1− δ

Proof. Note that d̃ is a sum of independent random variables X1, . . . , Xk; however, we cannot readily apply
Chernoff bound since Xi’s are not in [0, 1]. Instead, we define Zi := Xi/10d and Z =

∑k
i=1 Zi, and thus

d̃ = 10d/k · Z. Hence, by Claim 8, E [Z] = k
10d · d̄. Note that,

|d̃− d̄| ≥ εd̄ ⇐⇒ |10d

k
· Z − 10d

k
E [Z] | ≥ εd̄ ⇐⇒ |Z − E [Z] | ≥ k

10d
· εd̄.

6

Z is a sum of independent random variables in [0, 1] (since deg(v) ≤ 10 · d for all v ∈ V by our simplifying
assumption in the warm up). We apply the Chernoff bound in Proposition 4 with parameter b = k

10d · εd̄:

Pr

(
|Z − E [Z] | ≥ k

10d
· εd̄
)
≤ 2 · exp

(
−2 · k2 · ε2 · d̄2

100 · d2 · k

)
≤ 2 · exp

(
−k · ε

2

50

)
(since d̄ ≥ d by the simplifying assumption)

= 2 · exp

(
− (50/ε2) · ln (2/δ) · ε2

50

)
= δ.

The above two equations conclude the proof.

This gives a simple algorithm for the case of almost-regular graphs that takes only O(1/ε2 · ln (1/δ)) time.

3.2 General Case

We now switch to the general case of the problem. What made our algorithm and analysis really easy in the
case of almost-regular graphs was that no vertex could contribute significantly to the value of d̄ as degrees of
all vertices were close to each other. In the general case however, we need to take care of vertices that have
much higher degree than the remaining ones; if you repeat the above algorithm in this case, the best bound
that follows is O(n/ε2 · ln (1/δ)) (as in any graph the degrees are within at most factor n of each other). But
this is completely trivial as in O(n) time we can simply query degree of all vertices!

In the following, we are going to use the fact that a graph with m edges cannot have “too many” vertices with
“too large” degree, and use this to reduce the “noise” introduced by high degree vertices. For this purpose,
we will assign the edges to their lower-degree endpoint (breaking the ties arbitrarily but consistently) and
show how to use this to reduce the variance of our estimator. We first need some definition.

Definition 10. We define a total ordering≺ on vertices ofG where u ≺ v if and only if either deg(u) < deg(v)
or deg(u) = deg(v) and ID(u) < ID(v) (just to break the ties consistently – here ID(u) refers to the label of
u in {1, . . . , n}). Moreover, for any u ∈ V , we define deg+(u) as the number of neighbors v of u where u ≺ v.

We can now present the algorithm.

Algorithm:

1. Let k = 16
ε2 ·
√
n.

2. For i = 1 to k do the following:

• Sample a vertex vi uniformly at random from the graph.

• Sample a vertex ui ∈ N(v) uniformly at random from the neighbors of v.

• If vi ≺ ui then Xi = 2 · deg(vi) else Xi = 0.

3. return d̃ = 1
k ·
∑k
i=1Xi.

To emphasize the intuition behind the algorithm again, we are sampling an edge (ui, vi) from the graph G,
although not uniformly at random, and count this edge if it is assigned to vi (and scale the random variable
by 2 · deg(vi)), and otherwise ignore this edge.

We now formalize this intuition.

7

Remark. The proof of this result follows a general framework. Design a random variable X (think of
each Xi in the above) where E [X] is equal to the desired output and Var [X] is not “too high”. Then
repeat this process independently sufficiently many times (based on the bound on the variance) to get
random variables X1, . . . , Xk and return Y = average of these random variables as the answer. This
averaging step keeps the expected value of Y the same as expected value of X and hence the same as
the desired answer but reduces the variance of Y (compared to X) by a factor of k. As such, we can
now apply Chebyshev’s inequality and bound the probability of deviation of Y from its expectation (we
need to pick the number of random variables to average, i.e., k, large enough to adjust the probability
bound we get from the Chebyshev’s inequality).

We follow the approach outlined in the remark above. Let X denote the random variable corresponding
to value of each Xi in the for-loop of the algorithm (note that Xi’s are identically distributed). We bound
expectation and variance of X in the following.

Claim 11. E [X] = d̄.

Proof. We have,

E [X] =
∑
v∈V

Pr (v is sampled from V) · E [X1 | v is sampled from V] =
∑
v∈V

1

n
· E [X1 | v is sampled from V]

=
1

n

∑
v∈V

∑
u∈N(v)

Pr (u is sampled in N(v) | v is sampled)E [X1 | u is sampled in N(v) and v is sampled]

=
1

n

∑
v∈V

∑
u∈N(v)∧v≺u

1

deg(v)
· 2 deg(v) (X1 = 2 deg(v) whenever v ≺ u and otherwise is zero)

=
1

n

∑
v∈V

2 · deg+(v) =
2m

n
= d̄, (by definition, deg+(v) counts u ∈ N(v) with v ≺ u)

where we used the fact that
∑
v∈V deg+(v) = m as every edge is counted exactly once (by its lower rank

endpoint) in this sum.

Lemma 12. Var [X] ≤ 4
√

2m · d̄.

Before we prove Lemma 12, we need two intermediate claims. Define H ⊆ V as the set of first
√

2m vertices
with largest rank according to the ordering ≺ (these are the highest degree vertices of G). Also, define
L := V \H to be the remaining vertices. We bound deg+ of vertices in H and deg of vertices in L as follows.

Claim 13. For any v ∈ H, deg+(v) ≤
√

2m.

Proof. By definition, deg+(v) counts the neighbors of v with rank higher than v. Since v itself is among the
first

√
2m highest rank vertices, deg+(v) ≤

√
2m.

Claim 14. For any v ∈ L, deg(v) ≤
√

2m.

Proof. Suppose by contradiction that there is a vertex v ∈ L such that deg(v) >
√

2m. This implies that
all vertices in H have degree at least

√
2m since degrees of every vertex in H is at least as large as any

vertex in L. But by simply summing up the degrees of vertices in H we obtain that the graph needs to have
> 1

2 ·
√

2m ·
√

2m > m edges, a contradiction with m being the number of edges.

We are now ready to bound the variance of X and prove Lemma 12.

8

Proof of Lemma 12. By definition of variance, we have,

Var [X] = E
[
X2
]
− E [X]

2 ≤ E
[
X2
]

=
1

n

∑
v∈V

∑
u∈N(v)∧v≺u

1

deg(v)
· (2 deg(v))2

(the calculation is exactly the same as expectation in Claim 11 by considering X2 = (2 deg(v))2 instead)

=
4

n

∑
v∈V

deg+(v) · deg(v) (by definition of deg+(v))

=
4

n

(∑
v∈H

deg+(v) · deg(v) +
∑
v∈L

deg+(v) · deg(v)

)

=
4

n

(∑
v∈H

√
2m · deg(v) +

∑
v∈L

deg+(v) ·
√

2m

)
(by Claims 13 and 14)

≤ 4
√

2m

n
·

(∑
v∈H

deg(v) +
∑
v∈L

deg(v)

)
= 4 ·

√
2m · d̄.

(as deg+(v) ≤ deg(v) and
∑
v∈V deg(v) = 2m)

We can now finalize the proof of correctness of the algorithm. For that, we need the following simple claim
about variance (alluded to already in the remark about the general approach).

Proposition 15. Let Y = 1
k

∑k
i=1Xi be an average of k independent copies of a random variable X. Then,

Var [Y] =
1

k
·Var [X] .

Proof. We have,

Var [Y] = Var

[
1

k

k∑
i=1

Xi

]
=

1

k2
·Var

[
k∑
i=1

Xi

]
(Var [c ·X] = c2 ·X for any scalar c)

=
1

k2
·
k∑
i=1

Var [Xi] (Var [A+B] = Var [A] + Var [B] for independent random variables A,B)

=
1

k2
· k ·Var [X] =

1

k
·Var [X] .

We can now finalize the proof of correctness.

Lemma 16. For the output d̃ of the algorithm, Pr
(
|d̃− d̄| ≤ ε · d̄

)
≥ 3/4.

Proof. By Claim 11 and linearity of expectation E
[
d̃
]

= d̄. By Lemma 12 and Proposition 15, we further

have Var
[
d̃
]
≤ 4
√
2m
k · d̄. By Chebyshev’s inequality,

Pr
(
|d̃− d̄| ≥ ε · d̄

)
= Pr

(
|d̃− E

[
d̄
]
| ≥ ε · d̄

)
≤

Var
[
d̄
]

ε2 · d̄2
≤ 4
√

2m · d̄
k · ε2 · d̄2

=
4
√

2m · n
k · ε2 · 2m

=
4 · n

k · ε2 ·
√

2m
=

√
n

4 ·
√

2m
(by the choice of k = 16

ε2 ·
√
n)

≤ 1

4
. (by the assumption that d̄ = 2m/n ≥ 1)

9

Lemma 16 implies that the algorithm above gives a (1 ± ε)-approximation to the average degree in O(
√
n
ε2)

time with probability 3/4.

3.3 Amplifying the Probability of Success

So far, we obtained an algorithm for solving the problem with constant probability (specifically 3/4) in

O(
√
n
ε2) time. However, recall that our goal was to have a confidence probability of 1− δ.

One ad-hoc way of fixing this is to change the choice of k in the algorithm to k = 16
ε2 ·
√
n · 1

δ , namely
increase it by a factor of 1/δ. The proof then follows by a very basic modification of Lemma 16. Nevertheless,
this approach, beside being rather naive and ad-hoc, will also result in increasing the time complexity of
the algorithm by O(1/δ) which is not desirable. Instead, we are going to suggest a general approach that
is applicable to almost every problem in a black-box way (and in many other algorithmic problems beside
sublinear algorithms). This is often times referred to as the median trick.

Median Trick. Consider the algorithm discussed in the previous section. In order to boost or amplify its
probability of success, we do the following: (i) Run the algorithm independently for t = 8 ln (2/δ) times and
record the answer of i-th time as Xi; (ii) Return the median of Xi’s as the final answer.

Lemma 17. The output d̄ of the new algorithm satisfies Pr
(
|d̃− d̄| ≤ ε · d̄

)
≥ 1− δ.

Proof. For d̄, the median answer of Xi’s, to be out of the desired range |d̃− d̄| ≤ ε · d̄, one of the following
events should happen:

• Event 1: At least half the Xi’s are smaller than (1− ε) · d̄;

• Event 2: At least half the Xi’s are larger than (1 + ε) · d̄.

We bound the probability of each event now.

Define the indicator random variable Zi ∈ {0, 1} where Zi = 1 if and only if Xi < (1 − ε) · d̄ and define
Z =

∑t
i=1 Zi. By Lemma 16, E [Zi] ≤ 1/4 and thus E [Z] ≤ t/4. Since Z is a sum of independent random

variables in [0, 1], by Chernoff bound in Proposition 4 (with b = t
4),

Pr (Event 1) = Pr

(
Z ≥ t

2

)
≤ Pr

(
|Z − E [Z] | ≥ t

4

)
≤ exp

(
− 2t2

16 · t

)
= exp (− ln (2/δ)) =

δ

2
.

One can similarly define random variables Wi ∈ {0, 1} where Wi = 1 if and only if Xi > (1 + ε) · d̄ and define
W =

∑t
i=1Wi. The same exact argument as above implies that,

Pr (Event 2) = Pr

(
W ≥ t

2

)
≤ Pr

(
|W − E [W] | ≥ t

4

)
≤ δ

2
.

A union bound on the two events now finalizes the proof.

Using the approach above, we can solve the degree estimation problem in O(
√
n
ε2 · ln (1/δ)) with probability

1− δ for any arbitrary δ > 0.

Remark. It is worth emphasizing that the median trick completely treated the algorithm (and analysis)
of the main subroutine from the previous section in a black-box way. One can use this technique to
boost the probability of success of any algorithm (in many different settings) – this is indeed the reason
that for most algorithms, the dependence of resources on δ is almost always O(ln (1/δ)).

10

References

[1] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight in sub-
linear time. SIAM J. Comput., 34(6):1370–1379, 2005. 2, 5

[2] U. Feige. On sums of independent random variables with unbounded variance and estimating the average
degree in a graph. SIAM J. Comput., 35(4):964–984, 2006. 6

[3] O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Struct. Algorithms,
32(4):473–493, 2008. 6

[4] C. Seshadhri. A simpler sublinear algorithm for approximating the triangle count. CoRR, abs/1505.01927,
2015. 6

11

	1 Sublinear Time Algorithms for Graphs
	1.1 Query Model for Graph Problems

	2 Estimating Number of Connected Components
	2.1 Proof of Correctness
	2.2 Runtime Analysis
	2.3 Concluding Remarks

	3 Estimating Average Degree
	3.1 Warm Up: Almost-Regular Graphs
	3.2 General Case
	3.3 Amplifying the Probability of Success

