CS 514: Advanced Algorithms IT — Sublinear Algorithms Rutgers: Spring 2020

Lecture 10
April 03, 2020
Instructor: Sepehr Assadi Scribe: Chen Wang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Clustering: An Introduction

Consider the following problem: you are given some data points with no additional knowledge on them
other than observations (e.g. values, distributions, manifold). In this case, how can you characterize the
similarities and differences between each of them? A natural way one can adopt is to ‘group’ them. For
example, if you are given a bunch of candy bars and potato chips, you will usually put them into their
respective boxes without external instructions. This kind of decision is based purely on observations (e.g.
appearance, flavor), and the same idea leads us to the clustering algorithms.

In clustering algorithm, we are given a bunch of points py,pa,--- ,pn € R?, and we want to group ‘similar’
points to the same cluster. Here, the ‘similarity’ is characterized by the distance between points with certain
metrics. Furthermore, in the sense of ‘grouping’, we aim to find K centers C7,C5,--- ,Ck such that if we
assign each point to its closest center, the distance metric will be minimize. Formally, the above process can
be given as the following:

e Given a set of points P = {p1,---,p,} C R? and unknown centers C1,Cy,--- ,Cx € R%

e For each point p;, define the nearest center as C(,,) = argmingec,cxy 1P = Cll-

e Minimize the cumulative distance with certain metric Y7, [|p; — Cp,)

K-means
K-median

Figure 1: Clustering with K = 3 for K-center, K-means, and K-median clustering objectives.

An illustration of clustering can be shown as figure 1. Depending on the metric || - || we are using, there
are different types of clustering. The commonly-used clustering methods include K-center, K-median, and
K-means. Their respective optimization objective can be given as the following:

e K-Center. The optimization target is the maximum distance between the picked point and the points
in the cluster:
Cy,---,C0g = argmin max|p — Cypyll2
{C1,,Cr} peEP
e K-Median. The optimization target is the median distance between the picked point and the points
in the cluster:

Cy,--,Cg = argmin lp— Cipll2
{Cl’m’cK}peZP (P)

e K-Means. The optimization target is the square of the Euclidean distance between the clustering
center and the points in the cluster:

Ci,--+,Cxg = argmin Y _|lp—Cll3

{1, Cxc} ocp

Notice that the notation C’(.) instead of C(.) denotes that the clustering center is not necessarily any
given point.

In this lecture, we only concern the problem of K -center clustering. Notice that the techniques to address
K-means and K-median are somehow different from the techniques in K-center. For a reference, one can
refer to [1].

2 Warm-up: A 2-Approximation Algorithm for k-Center

We demonstrate a 2-approximation algorithm in this section. Let us first clarify the goals and notions we
are going to use. We use OPT to denote the (minimum) max,ep [[p — C;|| by the real optimal K-center

clusters Cy,C3,- -+ ,Ck. Our goal is to find some clusters C1,---,Ck such that:

_C <9.
I;lealg(np O(p)” <2-0PT

The algorithm follows a simple intuition: since we want to bound the maximum distance between each point
and its clustering center, we can consider ‘deal with the most stubborn one’ at each round and continuously
assign clustering centers to the points that are furthest from the ‘frontier’. Moreover, notice that the any
estimated clustering center C; should be in an OPT-range of some optimal cluster C;. Thus, if we can show
that any point covered by C; can also be covered by C; or some even-better estimated clusters, we will get
a 2-approximation algorithm.

Now we formally give the algorithm as the following:

Algorithm APPROX-K-CENTER: A 2-approximate K-center clustering algorithm.
1. Pick an arbitrary point p; as o
2. For k=2:K

(a) Pick the point with the furthest distance e.g. p = max,ep ||p — C’(p) |2
(b) Let p be Cy,

We now analyze the simple algorithm and show that it will return a 2-approximation of the K-center
clustering in polynomial time.

Claim 1. Algorithm APPROX-K-CENTER will return a 2-approximation of the K -center clustering.
Proof. Suppose the underlying ground-truth clusters are Cy, C3, ---, C}. Then for any point p in C}, we
should have ||p — C}]2 < -OPT (the ‘radius’).

Algorithm APPROX-K-CENTER can have two scenarios:

e APPROX-K-CENTER picks exactly one cluster C; from each C75. In this case, any point p covered by
C; will be covered by C; with [lp — Cil|2 < ||[p — Cf[l2 + [|C} — Cifl2 < 2- OPT.

e APPROX-K-CENTER picks two clusters from the same cluster. Suppose APPROX-K-CENTER picks
C;i and Cy, from C7, and WLOG suppose Cy, is picked after C;. Let us analyze the moment C is picked:

Since the algorithm always pick the furthest point, for any other point p € P/ {C’k}, we have

lp = Cipyllz < Ik — Cigopy ll2

< ||Cx — Cill2
<|ICk = Cill2 + 11C; = Cilla
<2-0PT (since both C), and C; are in C;‘)

O

Claim 2. Algorithm APPROX-K-CENTER runs in polynomial time (e.g. O(K -n-d), where n is the number
of points and d is the number of dimensions).

Proof. This is straightforward to see as the algorithm only run K iterations; And at each iteration, it takes
O(n - d) time to compute the furthest point. O

We refer to the above algorithm as APPROX-K-CENTER in this notes as it will be used as a black-box in
the remaining parts.

Remark. Notice that an important property of the above algorithm is it runs in polynomial time. The
K-center clustering algorithm is itself NP-hard (at least as hard as NP); Moreover, it can be proven
that unless P = NP, neither can we solve (1 + ¢)-approximation (¢ € (0,1)) for K-center clustering in
polynomial time.

3 Streaming Clustering Algorithms: Coreset Approximation

We now turn to our main problem: steaming clustering. In this model, the points p,p2,--- ,p, € R? are
arriving in a streaming manner. We aim to design algorithms that can output K clustering centers by
the end of the stream with a good approximation. In addition to the usual assumptions, in the steaming
clustering model, we also assume the value of each dimension is a positive integer and is bounded. Formally,

this can be denoted as:
Pi = {1727 7A}d

where A is the upper bound of the value on each dimension. Notice that in this way, we can store each data
point in O(dlog(A)) bits.

A naive way to solve this problem is to store all the points and perform APPROX-K-CENTER afterwards.
The space complexity of this algorithm will therefore be O(n - d - log(n)), which is polynomial in n and d,
which is not sublinear. As usual, in the streaming algorithm setup, we are interested in finding algorithms
with sublinear space.

Remark. It is a little slippery to talk about the best possible approzimation factor in streaming clus-
tering. The tricky part here is that in a streaming model, the time complexity is not explicitly bounded.
Thus, even we can show a (1 + ¢)-approximation for K-center is unlikely to be possible in polynomial
time, we may get (1 + €)-approximate algorithms in the streaming setting. Nevertheless, we do not
pursue this direction in this lecture, and the algorithm we developed here are all of polynomial time.

3.1 Coreset Approximation

We are going to show one type of technique, namely coresets, that can help develop streaming clustering
algorithm with sublinear space. The precise definition of a coreset is somehow tedious, but one can compre-
hend it as a ‘sufficiently representative subset’ of a given set. That is to say, a coreset will only contain a
certain selected subset of bunch of data points, and the points are selected based on some metrics to preserve
the characteristics. An illustration of the coresets can be shown as Figure 2.

P1 P2 P
* P11,P12, . P1d * P11,P12, ., P1d ¢ P11,P12, . P1d
® P21,P22, .., P2d * P21,P22, ... P2d ¢ P21,P22, .., Pd
* Psat1,Psz,..,Pad ¢ Pat,Paz..Pad | L. * P3t1,Ps2,..,Pad
* P41,Paz, .., Pad ® Pa1,Paz, .., Pad * P41,Paz, .., Pad
. 951952 o Psd . 5;1.,Psz,..,Psd . psTPsZ o Psd
Yl Bl A e L
* 911,912, .., 91d * 911,012, .., 91d * AG11,012, ..,
* Q21,922,..,02d ® Q21,022,924 | e ® Q21,022 ..,
* 931,932, .., %3d ¢ 931,932, .., 93d ® 031,032, ...,
Q Q2 Q3
Figure 2: An example of coresets with size 3. The sets Py, Ps, - -+, Py contain different points; and the Red,
Blue and Green points are picked by ALG to construct different coresets @1, Q2,- -+ , Qq-

In the sense of ‘preserving characteristics’, we define the metric as the ‘stretch’ on the clustering distances.
Formally, we call a coreset Q1,Qa2, - -+ , Q¢ as an a-approzimation coreset if the clusters C1,Co, - -+ , C'x based
on Q1,Q2, -+, Q¢ is an a-approximation of the clusters C7,C5, - ,C} on points Py, Ps, -+, Pp:

max -C <a- max —Cr
QG{Ql,“wQe}Hq (q)||2 - pe{P ..Awp[}Hp (P)H2

1,

It is worthy to mention that the idea of coreset is somehow similar to the linear sketch in the sparse/compressed
sensing (Lecture 6). The difference is that in the linear sketch, we performed a linear project; while here we
perform a subset selection.

For pedagogical reasons, suppose we are given an algorithm ALG-1 that outputs coreset with size r and for
now we do not care about guarantees on the distance preservation. We first design the following algorithm
by using ALG-1 as a blackbox:

Algorithm Coreset Streaming Clustering 1: A framework of streaming clustering with coresets.
1. Add arriving data points p to P; until ||P;|lo = S.

2. For every time || P;|lo = S:

(a) Construct a coreset (; with ALG-1 and store.
(b) Discard P;, set i =i + 1.

3. Get coreset {Q1,Q2, -+ ,Qu}.
4. Run APPROX-K-CENTER on the coreset.

The algorithm looks extremely simple, and below we give the lemmas for its space complexity and correctness
that will complete the framework of the algorithm.

n

Lemma 3. The space complezity of the above algorithm is O(S + 5 -).

Proof. Through the algorithm, we maintain a single chunk of points P; and & coresets since the coreset
will be constructed and saved every S points. We assume the size of every coreset is r, so the overall space
complexity is O(S + & - 7). O

Lemma 4. Let points in the coreset q € UleQi be centers for K-center clustering and denote them with
C(Q), If we have:

¥pe U P, [p—CQl2 <2-OPT
then {Q;}i_, is a 4-approzimate coreset.

Proof. This statement means that if the coreset can cover the points with a ‘radius’ of 2 - OPT, then the
clustering center of the coresets (C(.)) will be able to cover all the points with a ‘radius’ of 4 - OPT. To see

this argument, we can first decompose the distance between p and C’(p):
Ip = Copll < lIp = €&, + G2, = C |
<2-0PT+ ||C~'(Cf)) - C’(p) I (By assumption)

Now the only work is to prove Hég)) — C'(p) || <2-OPT. Notice that the C’g)) are actually the ¢ points and

é(p) is their center, so we can directly invoke Claim 1 to conclude the proof. O

3.2 APPROX-K-CENTER for the Coresets

Upon proving Lemma 4, keen readers might have already noticed a way to implement the coreset construction
to have a 4-approximation streaming clustering algorithm — we can just run APPROX-K-CENTER on P;
and pick the clustering centers as the coreset. One may also wonder if we can simply invoke Claim 1 again
to prove ||p — C’((i) l2 < 2-OPT. Unfortunately, it turns out we need to prove this separately, as the direct
guarantee is only ‘local’” in terms of P; instead of ‘global’.

Claim 5. If we use APPROX-K-CENTER as the ALG-1 in Algorithm Coreset Streaming Clustering
1, then there is: y
lp—C@lla <2-OPT

Proof. We can again use the same strategy of the proof in Claim 1 with some minor modifications. For each
true cluster C}, the points in the coreset has two scenarios:

e There exists some point ¢ = C'JQ € Uf_,Q; such that q € C;. In this case, any point p covered by C}
will be covered by CN']Q with [|p — éjQ||2 <lp—Cil2+1C} - C~'JQ||2 <2-0PT.

e For all ¢ = CN’jQ € Uf_,Q;, we have ¢ ¢ C}. Since we are picking K gs each time, if for C}; no ¢ value
is within its cluster, then it means we have two ¢s in the same cluster, thus the proof can be done in
the same way of the case 2 of Claim 1.

Taking together the above results, now we can get the following theorem:

Theorem 6 (4-approximation streaming clustering). There exists a 4-approzimation algorithm for streaming
clustering with points py,--- ,pp € {1,2,--- , A} with the space complexity of O(v/nk - d -log(n)) bits.

Proof. We are going to use the conclusions in Lemmas 3 and 4 and Claim 5. Notice now with the APPROX-K-
CENTER algorithm as coreset construction, we can get a 4-approximation algorithm already. Also consider
the space complexity of O(S + % - r), and now r = K. If we let S = VnK, then this bound will become
O(\/ﬁ) We also remark that with the arithmetic inequality, this is the best space complexity we can get
based on this algorithm O

4 More Efficient Streaming Clustering Algorithms

We now have a O(v/nk) space complexity algorithm. This is a big improvement with respect to the naive
poly(n, k,d) algorithm; However, in the regime of streaming models, this type of space complexity is not
very satisfactory. In this section, we show two strategies to further improve the space complexity.

4.1 Multi-level Coresets — Trade Approximation for Efficiency

In the previous section, we have shown that with the APPROX-K-CENTER algorithm to construct coresets,
one can implement another APPROX-K-CENTER over the obtained coresets. Now, we can also apply the
coreset to multiple levels — namely, upon we have collected S points, we will run APPROX-K-CENTER
to get a coreset; we will collect multiple coresets, and upon we have collected S coresets, we run another
APPROX-K-CENTER to get a ‘second-level coresets’. We continue this process until it reaches the level we
want.

For 2 levels of coresets, we need to maintain O(S) points on the first level, O(K - S) first-level coresets, and
O(Zs - K) coresets for the final clustering. The summation of the three terms will meet its minimum when
S = O(n%), where the space complexity will become O(K - n%). Notice that by performing such type of
multi-level coreset, we also traded the approximation factor — the distance bound will be doubled upon we
add the new layer.

In general, this idea can be formulated as the following statement.

Proposition 7 (Multi-level coreset Streaming Clustering). With the APPROX-K-CENTER algorithm as the

coreset construction algorithm, there exists an 4% -approximate algorithm with space complexity of O(nﬁr1 .
K -d-log(A)) bits , where L is the number of coresets constructions.

We omit the proof of this proposition due to the limit of space and the similarities with the proof of Algorithm
Coreset Streaming Clustering 1.

4.2 K-Center Testing for Streaming Clustering

So far, apart from bounding the number of bits for each element, we have not leverage the condition of
p € {1,2,--- ,A}d. Recall what we did in Lecture 7: in that lecture, we used a geometric search to
approximate the number of distinct elements in a stream. The lesson we learned is, if the quantity of
the desired value is discrete, bounded, and an approximation of the quantity is sufficient, we can leverage

the power of geometric testing and output the answer that ‘crosses the threshold’ between two contrasting
outputs. We now give another algorithm based on the above idea, and it has a much better approximation
factor and space complexity.

Consider the following problem as our test:
Problem 1 (K-center Testing). Given a stream of points p1,pa,--- ,pp € R% and parameter 7. Output

K-center clustering results as:

1. If max, ||p — C’(p) | <2-T, then return the clustering centers {C;}1,.

2. Otherwise, return OPT > T.

Again, for pedagogical reasons, let us first assume we have an algorithm ALG-2 such that it will correctly
solve the K-center Testing problem. Now, we can use ALG-2 to design an algorithm that solves the K-center
clustering problem:

Algorithm Coreset Streaming Clustering 2: A framework of streaming clustering with geometric
tests.

1. Let the parameter list T = {1, (1 +¢), (1 +¢)%--- ,10g1;.)(A)}.
2. Run ALG-2 in parallel for each T € T for arriving stream p1,--- , pp.

3. Output the smallest answer with clustering results (instead of ‘OPT > T7).

Lemma 8. Suppose ALG-2 will solve the K -center Testing problem with the space complezity b bits, then
the above algorithm gives a 2 - (1 + ¢)-approximation of streaming K -center clustering with O(% -b) bits
space complexity.

Proof. The space complexity is straightforward to prove: since we have O(%) rounds at most, and each
round can be solved with space complexity b, if we run each round in parallel, the total space complexity
will be O(28&8) . p) bits.

The proof of correctness goes as follows: suppose the (i 4 1)-th is the last index for OPT > T. That is, for
T = (1+4¢)*, ALG-2 returns OPT > T3 and for T' = (1 4 &)™, ALG-2 returns {C;}/X; such that c. Also,

notice that the algorithm returns correctly at T' = (1 +¢)*, thus OPT > (1+¢)". Taking the above together,
we have:

—Chl<2.T=(1 i+l
gleagl\P Cipll < (1+¢)

2-(14+¢)-(1+¢)
2-(1+¢)-OPT

IN

which concludes the proof. O

An algorithm solves K-center Testing with K - d -log(n) space

Upon now, we are ready for everything other than the ALG-2 to actually solve the problem. We now give
ALG-2 as the following:

ALG-2: Correctly answer the K-center Testing problem.
1. Let C = 0.
2. For each arriving p;, if ||p; — Cpyl| > 2 T, VC eC, then add p; to C (e.g. C=CU {p:}).

. If at any point, |C| > k, then output OPT > T.

w

4. Otherwise, return C.

Claim 9. If OPT < T, then ALG-2 returns {C; }/<, with max,cp ||p — é’(p)H < 2T'; otherwise, ALG-2 returns
OPT >T.

Proof. We can easily prove that if the algorithm returns, it must have max,ep ||p — C'(p) | < 2T as the Line 2

specified. Thus, if we can prove under the algorithm, |C| > k only if OPT > T, then we are done with the
proof.

Consider prove by contradiction. Suppose now OPT < T and we run into |C| > k at some point. That means
we have (K 4 1) points with mutual distance greater than 27. Now since we assume OPT < T, then no
ground-truth cluster C; can have more than 1 point picked, as otherwise we will have at most 2T distance.
However, we picked (K + 1) point with only K clusters, which violates the pigeonhole principle. Thus, if
|C| > k there must be OPT > T. O

Claim 10. ALG-2 runs with the space complexity of O(K - d -log(A)) bits.

Proof. This is straightforward to show as we store at most K points, and each point only takes O(dlog(A))
bits to store. Also, we remark that the time for this algorithm is polynomial. O

Putting together what we have shown, we can conclude the section with the following formal theorem:

Theorem 11 (2(1+-¢)-approximation streaming clustering). There exists a 2-(1+¢)-approximation algorithm
2

for streaming clustering with points py,--- ,pn € {1,2,--- , A} with the space complexity of O(K -d- %)

bits.

The proof of correctness simply follows the combination of Lemma 8 and Claim 9. The proof of space
complexity can be done by plugging Claim 10 into Lemma 8.

References

[1] R. Xu and D. Wunsch. Survey of clustering algorithms. IFEE Transactions on Neural Networks,
16(3):645-678, 2005. 2

	1 Clustering: An Introduction
	2 Warm-up: A 2-Approximation Algorithm for k-Center
	3 Streaming Clustering Algorithms: Coreset Approximation
	3.1 Coreset Approximation
	3.2 APPROX-K-CENTER for the Coresets

	4 More Efficient Streaming Clustering Algorithms
	4.1 Multi-level Coresets – Trade Approximation for Efficiency
	4.2 K-Center Testing for Streaming Clustering

