
CS 514: Advanced Algorithms II – Sublinear Algorithms Rutgers: Spring 2020

Lecture 1
January 22, 2020

Instructor: Sepehr Assadi Scribe: Sepehr Assadi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1 Introduction to Sublinear Algorithms

As (theoretical) computer scientists, we have long considered algorithms with linear time or space1 as the
golden standard of achievement. After all, it is hard to imagine doing much better as any algorithm for
solving a nontrivial problem needs to at least read or store the entire input once, no? However, in this age
of “big data”, how can we process massive datasets that are so immense that even most basic linear time
or space algorithms can become computationally prohibitive on these inputs? This is the focus of sublinear
algorithms, namely, algorithms whose resource requirements (e.g. time or space) are substantially smaller
than the size of the input that they operate on.

We will study various advanced algorithmic ideas through the lens of sublinear algorithms in this course. In
particular, we consider two most canonical models of sublinear algorithms, namely, sublinear time algorithms
and streaming algorithms, and cover several key algorithmic techniques in these (and related) models, as
well as discuss limitations inherent to computing with constrained resources.

1.1 Introduction to Sublinear Time Algorithms: A Toy Example

Sublinear time algorithms are those algorithms that solve a given problem (exactly or approximately, and
often with the help of randomization) by reading only a minuscule fraction of the input2 and spending only
sublinear time before outputting the solution. In the following, we give a (completely) toy example of a
problem that admits a sublinear time algorithm.

Problem 1 (Finding an even number). Given an array A[1 : n] consisting of a permutation of {1, . . . , n}
for n > 1, output an index i such that A[i] is an even number.

There is of course a trivial O(n) time algorithm for this problem. Iterate over the array until you find an
even number (which is bound to happen for n > 1). However, can we design a sublinear time algorithm for
this problem?

• No if we want a deterministic algorithm that always output the correct answer and always run in
o(n) time. We will see how to prove this formally in a couple of lectures but for now, let us give an
intuitive answer: if the algorithm is deterministic, it can become “unlucky” in the sense that the first
n/2 numbers from the array that it reads are all odd numbers, so it needs to take Ω(n) time to find
an even number. Note: This is not a formal argument and not a proof!

• Yes if we allow a randomized algorithm that always output the correct answer and in expectation runs
in O(1) time. The algorithm is simply as follows: pick a random number p from {1, . . . , n} uniformly
at random (we assume this step can be done in O(1) time); check if A[p] is even or not; repeat until
you find a p where A[p] is even. Since the number of even numbers in {1, . . . , n} is almost a half (±1

1Linear here means asymptotically equal to the input size.
2Typically, one needs to assume query access to the input (say, given query access to the adjacency matrix of a graph) when

working with sublinear time algorithms. We will elaborate more on this in the next lectures.

1

depending on whether n is odd or even), each choice of p finds an even number with probability almost
a half, and hence in expectation we only need to repeat this process O(1) time.

We just saw our first sublinear time algorithm in this course (albeit a straightforward one for a rather silly
problem). Interestingly, even this simple example shows that randomization is almost (but not quite) always
needed for obtaining a sublinear time algorithm. In the remainder of this course, we will examine various
other sublinear time algorithms for problems ranging from graph optimization, property testing, distribution
testing, etc.

1.2 Introduction to Sublinear Space Streaming Algorithms: A Toy Example

Streaming algorithms are those algorithms that solve a given problem (exactly or approximately, and often
with the help of randomization) by reading the input “on the fly” without storing it, namely, by processing
the input in a streaming fashion and using a sublinear memory3. In the following, we give a (completely)
toy example of a problem that admits a sublinear space streaming algorithm.

Problem 2 (Finding a missing number). Given an array A[1 : n − 1] given one by one in a stream (i.e.,
A[1] arrives first, then A[2], then A[3], and so on), consisting of a permutation of {1, . . . , n} minus one
(unknown) missing number i, output the missing number i.

There is of course a trivial O(n) space algorithm for this problem. While iterating over the stream, maintain
an n-bit array B[1 : n] and mark B[A[i]] = 1 when visiting number A[i] of the stream; then, output the
unique j where B[j] = 0. However, can we design an o(n) space streaming algorithm for this problem?

• Yes even if we want a deterministic algorithm that always output the correct answer and always uses
O(log n) bits of space. The algorithm is simply as follows. Maintain a single number M which is
initially zero, and update M ← M + A[i] after visiting the i-th number in the stream. At the end,
output:

n · (n+ 1)

2
−M =

n∑
i=1

i−M =

n∑
i=1

i−
n−1∑
j=1

A[j] = missing number.

Since M ≤ n2, we can store M in O(log n) bits.

Exercise: Prove that Ω(log n) bits are needed for any streaming algorithm for this problem (this is true
for both randomized and deterministic algorithms but you may find it easier to prove it for deterministic
algorithms first).

Again, we just saw our first streaming algorithm in this course. However, it is worth mentioning that
even though this algorithm was able to find the correct answer deterministically, most (but not all) of the
streaming algorithms we are going to see again require randomization and approximation.

1.3 Notions of Approximation and Randomization for Sublinear Algorithms

Conceptually, sublinear algorithms aim to obtain something for almost nothing : this means that they aim
to provide “some information” about a problem at a minuscule cost of resources. We already addressed
the second part, namely, the “almost nothing” part: the resource requirement of the algorithm should be
(potentially much) less than the input size itself. As for the first part of “obtaining something”, this means
that these algorithms need to use both approximation and randomization.

Approximation. There are different notions of approximation one may need to consider for a problem
but two general paradigms are the following:

3We will formalize streaming model later in this course.

2

• “Classical” Approximation: This means that the algorithm outputs an answer which is close to
the actual answer to the problem. For instance, consider the problem of estimating the number of
edges in a graph: we say that an algorithm for this problem outputs an α-approximation (for some
α > 1) if and only if the output m̃ of the algorithm satisfies the following equation (m is the actual
number of edges, i.e., the correct answer):

1

α
·m ≤ m̃ ≤ α ·m.

We elaborate more on this from the next lecture.

• Property Testing Approximation: This is a notion of approximation for decision problems where
the answer is boolean (and hence classical approximation has no real meaning). This means that the
algorithm outputs an answer which is a correct answer not necessarily for the current input, for some
input which is close to the current one. For instance, consider the problem of deciding whether a graph
is planar or not: we say that an algorithm for this problem is an ε-error property tester if and only
if the algorithm outputs the graph is planar on graphs which are planar or can be made planar by
changing only ε fraction of their edges. We will formalize this notion in a couple of lectures.

Roughly speaking one can consider classical approximation as approximation in the output domain (the
output can be changed slightly to make the answer correct) while property testing approximation is approx-
imation in the input domain (the input can be changed slightly to make the answer correct). Each notion
has its own use depending on the application and we will consider both throughout this course.

Randomization. We will also typically need randomization in our algorithms. Usually this means that:

• On any input, the answer is correct (or approximately correct according to definitions above) with
large constant probability, say 9/10; and,

• On any input, the resource requirement of the algorithm is bounded (appropriately) with large constant
probability, say 9/10.

Note that in particular, we still analyze randomized algorithms against worst case inputs.

1.4 Impossibility Results for Sublinear Algorithms

An interesting aspect of studying sublinear algorithms are lower bounds: these are the type of arguments that
lower bound the resource requirement of a certain problem in a particular model (e.g., solving missing number
problem requires Ω(log n) bits in the streaming model) or show that a problem does not admit any sublinear
algorithm. You might be familiar with such reasoning through notion of NP-hardness and other complexity
classes for classical algorithms. However, the types of lower bounds (or rather impossibility results) proven
for sublinear algorithms tend to be very different from NP-hardness results, primarily because for sublinear
algorithms, we can prove unconditional lower bounds (unlike lower bounds for NP-hard problems that are
conditioned on the hypothesis P 6= NP and often much stronger hypotheses).

In this course, we will study query complexity and communication complexity as two primary ways of proving
lower bounds for sublinear time and streaming algorithms, respectively.

2 Background: Probabilistic Analysis

The only background (beside basic familiarity with TCS concepts at the undergraduate level) that we need
for this course is basic tools for probabilistic analysis of algorithms and in particular concentration results.
The rest of this lecture is then dedicated to this topic. We will study these topics through the lens of a
simple toy problem:

3

Problem 3 (Balls in Bins Problem). Consider the following probabilistic experiment: We are give a col-
lection of n balls and n bins. We throw each ball independently to one of the bins chosen uniformly at
random. We define load of a bin as the number of balls thrown to that bin in this experiment. What is the
asymptotically maximum load of a bin in this process with high probability4?

More precisely, our goal is to find the smallest possible upper T (n) (as a function of n) such that with
probability, say, 1− 1/n, the load of every bin in this process is O(T (n)).

Before getting to answer this question, let us fix a single bin, say bin 1, and simply consider the load on this
single bin. Thus we define the following simpler variant of the problem:

Simpler problem: In the balls and bins experiment, what is an upper bound F (n) such that with prob-
ability 1− 1/n, the load of first bin in this process is O(F (n))?5

For the rest of this lecture, we focus on answering this simpler problem and then we will see how the answer
to this problem (almost immediately) solves the original problem as well.

Solution: Define L ∈ {0, . . . , n} as the random variable denoting the load of the first bin in this process.
Our goal is thus to find a function F (n) such that,

Pr (L ≥ F (n)) ≤ 1

n
. (1)

As is often times (= almost always) done in probabilistic analysis of algorithms, this is done in two steps:

1. Bounding the expected value of L, namely, E [L];

2. Bounding the probability that L is “very different” from its expected value6.

Step 1 (Bounding E [L]): What is the expected number of balls in bin one in this process? Let us define
n random variables B1, . . . , Bn where Bi ∈ {0, 1} and Bi = 1 if and only if the i-th ball is thrown to bin
one7. Then, L = B1 + B2 + . . . + Bn and so E [L] = E [B1 + . . .+Bn]. We are going to use the following
extremely important property of expectation, the so-called linearity of expectation:

Fact 1 (Linearity of Expectation). For any two random variables X,Y , E [X + Y] = E [X] + E [Y].

Remark. Linearity of expectation always hold regardless of whether X,Y are independent or not; this
is perhaps the single most important property of expectation which makes analyzing it much simpler
than working with probabilities directly. In a nutshell, linearity of expectation is one of your strongest
allies in analyzing any randomized process!

4With high probability is a term used typically to refer to the probability of 1−1/poly(n), for some arbitrary large polynomial
in n where n denotes the input size – while this may seem imprecise and vague at this point, we will see enough example of
this in this course for you to get familiar with this.

5It is worth emphasizing again: the only difference between this problem and the original one is that we are now interested
in only bounding the load of a single fixed bin, instead of every bin simultaneously.

6After all, we expect a random variable to behave as its expected value – the goal of this step is to transform this qualitative
statement into a quantitative one.

7Such 0/1-random variables are called indicator random variables because they indicate (by getting value of one) when a
particular event happens and otherwise are zero. Indicator random variables are used extensively in analysis of algorithms (and
elsewhere).

4

Using linearity of expectation, we can thus write,

E [L] = E

[
n∑
i=1

Bi

]
=

n∑
i=1

E [Bi] (linearity of expectation)

=

n∑
i=1

Pr (Bi = 1) =

n∑
i=1

1

n
= 1. (each ball is “choosing” bin one with probability 1/n)

We are already done with step 1 of the argument. But bounding expectation is never enough; we should
also make sure that our random variable does not behave very differently from its expectation.

We now get to the second and main part of the argument. We need to ”translate” bounds on expectation to
bounds on the probability. I.e., we want to know the answer to the following question: what is the probability
that L is “very far” from its expectation? This is the focus of concentration results. We are going to consider
three most basic concentration results that are used in the analysis of algorithms (and almost anywhere else
that one uses randomization) and use them to answer this question.

2.1 Concentration Results

Roughly speaking, concentration results bound the deviation probability of a random variable from its
expected value.

Figure 1: Concentration results bound the total probability mass of a distribution that are “far” from mean
value of that distribution (red shaded part). The more information one has about the distribution, the
stronger type of concentration one can prove about the distribution.

2.1.1 Markov Bound

The simplest and most basic variant of concentration results is Markov bound or Markov inequality :

Proposition 2 (Markov Bound). For a non-negative random variable X and t > 0,

Pr (X ≥ t · E [X]) ≤ 1

t
.

Proof. We can use law of total conditional probabilities to have:

E [X] = E [X | X ≥ t · E [X]] · Pr (X ≥ t · E [X]) + E [X | X < t · E [X]] · Pr (X < t · E [X])

≥ t · E [X] · Pr (X ≥ t · E [X]) + 0.
(the first term since we conditioned on X ≥ t · E [X] and the second term since X is non-negative)

This implies Pr (X ≥ t · E [X]) ≤ 1/t as otherwise the RHS above will be larger than the LHS.

5

Markov bound only bounds the upper tail of the distribution8 – the probability that a random variable takes
value t times larger than its expectation is at most 1/t. This is a basic but extremely useful property that is
used extensively. One can alternatively state the Markov bound as follows as well.

Corollary 3. For a non-negative random variable X and b > 0,

Pr (X ≥ b) ≤ E [X]

b
.

Proof. The proof is by simply picking t = b/E[X] in Proposition 2.

Markov bound for balls-and-bins experiment? Let us now apply Markov bound to our balls and bins
experiment to bound F (n). By Markov bound, Pr (L ≥ n · E [L]) ≤ 1/n; hence, applying Markov bound only
allows us to bound the load of a single bin by n, which is completely trivial!

This is not surprising since we did not use any property of the random variable L beside the fact that it
was non-negative. In particular, the same analysis applies to the case where instead of sending the balls
independently, we could pick a single bin uniformly at random and send all balls into that bin. In that case
Markov bound would clearly give the tightest possible bound on F (n). As such, to get better bounds for
our random variable L, we should use our extra knowledge of L.

Remark. Even though Markov bound may sound almost trivial (and it is indeed straightforward), it
is the basis for proving all other concentration inequalities that we use in this course; moreover, Markov
bound is used one way or another in analysis of almost every algorithm.

2.1.2 Chebyshev’s Inequality

We now consider our second concentration inequality: Chebyshev inequality. Unlike Markov bound that
only required a knowledge of the expected value of the random variable to bound its deviation probability,
Chebyshev’s inequality applies to the settings in which we could additionally bound the variance of the
random variable as well. Recall that for a random variable X, variance of X is:

Var [X] := E
[
(X − E [X])2

]
= E

[
X2
]
− (E [X])2.

Chebyshev inequality allows us to bound deviation of a random variable based on its variance.

Proposition 4 (Chebyshev’s Inequality). For any random variable X and t > 0,

Pr (|X − E [X] | ≥ t · E [X]) ≤ Var [X]

E [X]
2 · t2

.

Proof. Define a new random variable Y := (X − E [X])2. Clearly, Y is non-negative. Moreover, |X−E [X] | ≥
t · E [X] if and only if Y = (X − E [X])2 ≥ t2 · E [X]

2
. Hence,

Pr (|X − E [X] | ≥ t · E [X]) = Pr
(
Y ≥ t2 · E [X]

2
)
≤ E [Y]

E [X]
2 · t2

(by Corollary 3)

=
Var [X]

E [X]
2 · t2

. (as E [Y] = Var [X] by definition)

A useful variant of Chebyshev’s inequality is the following.

8Although one can use it to bound the lower tail in special cases as well, but the bounds there are generally very weak.

6

Corollary 5. For a random variable X and b > 0,

Pr (|X − E [X] | ≥ b) ≤ Var [X]

b2
.

Proof. The proof is by simply picking t = b/E[X] in Proposition 4.

Chebyshev’s inequality for balls-and-bins experiment? We now apply Chebyshev’s inequality to
the balls and bins experiment. Recall that L = B1 +B2 + . . .+Bn where Bi is the indicator random variable
for i-th ball to be sent to the first bin. In general, variance is not a linear function (unlike expectation).
However, for independent random variables, variance of the sum is equal to the sum of variances. I.e.,

Claim 6. For independent random variables X,Y , Var [X + Y] = Var [X] + Var [Y].

Proof. We have,

Var [X + Y] = E
[
(X + Y)2

]
− (E [X + Y])2 = E

[
X2 + Y 2 + 2XY

]
− (E [X]

2
+ E [Y]

2
+ 2E [X]E [Y])

= E
[
X2
]
− E [X]

2
+ E

[
Y 2
]
− E [Y]

2
+ 2(E [XY]− E [X]E [Y]) (by linearity of expectation)

= Var [X] + Var [Y] + 0. (as E [XY] = E [X]E [Y] for independent random variables X,Y)

Remark. Let us emphasize again: unlike expectation, variance is not a linear function in general (we
do not have linearity of variance). However, when variance is linear when working with independent
random variables.

Applying Claim 6 to the random variable L = B1 + . . .+ Bn and using the fact that Bi’s are independent,
we have,

Var [L] =

n∑
i=1

Var [Bi] =

n∑
i=1

E
[
B2
i

]
− E [Bi]

2 ≤
n∑
i=1

E
[
B2
i

]
=

n∑
i=1

E [Bi] = n · 1

n
= 1,

where the first equality in the second line is because Bi is an indicator random variable and hence B2
i = Bi

(as 12 = 1 and 02 = 0).

We can now apply Chebyshev’s inequality and obtain that,

Pr
(
|L− E [L] | ≥

√
n · E [L]

)
≤ Var [L]

E [L]
2 · n

≤ 1

n
.

Hence, Chebyshev’s inequality allows us to bound the load of a single bin by
√
n with probability 1 − 1/n,

i.e., set F (n) =
√
n. Unlike the conclusion of Markov bound, this is already non-trivial, but still very far

from the right answer.

2.1.3 Chernoff Bound

We now consider our third and strongest concentration inequality, namely, the Chernoff bound. To be able
to use Chernoff bound for bounding deviation of a random variable X, we need a much stronger knowledge
than variance in Chebyshev’s inequality and expectation in Markov bound; we now need to know that the
random variable X is a sum of bounded-value independent random variables. Formally,

7

Proposition 7 (Chernoff Bound). Suppose X1, . . . , Xn are independent random variables in [0, 1] and
X =

∑
iXi. Then, for any t > 1,

Pr (|X − E [X] | ≥ t · E [X]) ≤ 2 · exp

(
− t · E [X]

3

)
.

Moreover, for any ε ∈ (0, 1],

Pr (|X − E [X] | ≥ ε · E [X]) ≤ 2 · exp

(
−ε

2 · E [X]

3

)
.

Proof of a weaker form. We are not going to give the entire proof of the Chernoff bound as it is somewhat
tedious. However, to provide enough intuition, we will prove a simpler variant of Chernoff (which is actually
sufficient for our balls and bins argument and many other settings as well). In particular, we are going to
make the following simplifying assumption.

Simplifying assumption: Let us assume that each Xi is a Bernoulli random variable9 with mean pi
(instead of arbitrary random variable in [0, 1]). For simplicity, we are also going to only prove the upper tail
of the deviation bound instead of both tails (but the lower tail can be proven symmetrically).

Fix α > 0. Note that X ≥ (1 + ε)E [X] if and only if exp (α ·X) ≥ exp (α · (1 + ε) · E [X]). Define a random
variable Y = exp (α ·X). Using Markov bound on random variable Y , we have,

Pr (X ≥ (1 + ε) · E [X]) = Pr (Y ≥ exp (α · (1 + ε) · E [X])) ≤ E [Y]

exp (α · (1 + ε) · E [X])
(2)

As such, to bound the probability of deviation of X from E [X], we only need to bound E [Y] and then we
can apply Eq (2). We can now upper bound E [Y] as follows:

E [Y] = E [exp (α ·X)] = E

[
exp

(
α ·

n∑
i=1

Xi

)]

= E

[
n∏
i=1

exp (α ·Xi)

]

=

n∏
i=1

E [exp (α ·Xi)] (for independent random variables A,B: E [AB] = E [A] · E [B])

=

n∏
i=1

(1− pi + pi · eα) (by the assumption that Xi is Bernoulli with mean pi)

=

n∏
i=1

(1 + pi · (eα − 1))

≤
n∏
i=1

exp (pi · (eα − 1)) (1 + x ≤ ex for all x)

= exp

(
(eα − 1) ·

n∑
i=1

pi

)
= exp ((eα − 1) · E [X]) .

9Recall that a Bernoulli random variable Z with mean p gets value 1 w.p. p and 0 w.p. 1 − p.

8

Let us now set α = ln (1 + ε) and use Eq (2) to obtain that:

Pr (X ≥ (1 + ε) · E [X]) ≤ exp ((eα − 1) · E [X]− α · (1 + ε) · E [X])

= exp (ε · E [X]− (1 + ε) · ln (1 + ε) · E [X])

=

(
eε

(1 + ε)(1+ε)

)E[X]

. (3)

The bound above is already a very strong form of Chernoff bound (for Bernoulli random variables) – note
also that in this equation, we do not need ε to be in (0, 1). We can simplify this bound to get the bounds we
want in the statement of the Proposition 7 (this will weaker the bound slightly; very rarely this weakening
can be problematic and we may need to use the stronger bound above directly).

We are going to use the following inequality (the proof is omitted) to simplify Eq (3): For any x > 0,

1 + x ≥ ex

1 + x/2
.

By applying this, we have (the proof is again omitted),(
eε

(1 + ε)(1+ε)

)
= exp (ε− (1 + ε) · ln (1 + ε)) ≤ − ε2

2 + ε
.

And thus by Eq (3),

Pr (X ≥ (1 + ε) · E [X]) ≤ exp

(
− ε2

2 + ε
· E [X]

)
.

Both bounds (the upper tail) in the proposition statement now follows from the above by considering ε ≥ 1
and ε < 1 cases separately.

Chernoff bound for balls-and-bins experiment? Finally, let us apply Chernoff bound to L = B1 +
. . . + Bn to obtain a better bound for F (n) in our balls and bins experiment. Since Bi’s are independent
0/1-random variables, by Chernoff bound (first equation of Proposition 7),

Pr (|L− E [L] | ≥ 6 lnn) ≤ 2 · exp (−2 lnn) ≤ 2

n2
.

Hence, Chernoff bound allows us to bound F (n) ≤ 6 lnn+ 1 with probability 1− 2/n2 already. We can also
change the probability to any 1−1/nc for any constant c by changing the leading constant behind lnn term.

2.2 Wrapping Up: The Union Bound

Recall that our goal is to bound T (n), namely, the maximum load of every ball – in the above part however,
we bound the load of any single (fixed) ball. We now extend the argument to answer the former (and main)
question also very easily. This is basically by using the following very simple fact about probabilities, referred
to as the union bound.

Fact 8. For any two events E1, E2, we have Pr (E1 ∪ E2) ≤ Pr (E1) + Pr (E2).

For analyzing the function T (n) in the balls and bins argument, we can simply set T (n) = 12 lnn and use
the argument from the previous section together with a union bound to have that,

Pr (there exists a bin with load more than T (n) = 12 lnn) ≤
n∑
i=1

Pr (bin i has load more than 12 lnn)

≤ n · 2

n4
≤ 1

n
. (for n > 1)

As such, we proved that the maximum load of any ball is O(log n) in this experiment with high probability.

Note: While O(log n) is very close to the “right” answer (asymptotically) for this problem, it is still not
quite the tightest bound. We revisit this in the first problem set.

9

