
CS 419: Computer Security

Paul Krzyzanowski

Week 3: Asymmetric Cryptography
 & Integrity

© 2024 Paul Krzyzanowski. No part of this
content may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Key Distribution

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 2

Communicating with symmetric cryptography
• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

Key distribution must be secret. Otherwise
– Messages can be decrypted by the adversary
– Users can be impersonated

Alice

EK(P) DK(C)

Bob

3February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Problems With Keys In Symmetric Cryptography
Key Management
• Potentially a lot of keys to track

• Every communicating group of users needs a key

Key Distribution
• How do you communicate with someone you’ve never met?

• You cannot send them the secret key
if the communication line is not secure

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 4

Alice Bob

KAB

Alice Bob
KABC

Charles

KABCKABC

Alice Charles

KAC

Bob Charles

KBC

Key Distribution

Secure key distribution is the biggest
problem with symmetric cryptography

5February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Public Key Cryptography

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 6

Public-key algorithm
Two related keys:

 C = EK1(P) P = DK2(C)

 C′ = EK2(P) P = DK1(C′)

Examples:
RSA, Elliptic curve algorithms
DSS (digital signature standard)

7

K1 is a public key
K2 is a private key

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Trapdoor functions
Public key cryptography relies on trapdoor functions

Trapdoor function
– Easy to compute in one direction
– The inverse is difficult to compute without extra information

Example:
96171919154952919 is the product of two prime #s. What are they?

But if you’re told that one of them is 100225441
 … then it’s easy to compute the other: 959555959

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 8

RSA Public Key Cryptography
Ron Rivest, Adi Shamir, Leonard Adleman created the first public key
encryption algorithm in 1977

Each user generates two keys:
Private key (kept secret)
Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers
Keys are functions of a pair of large (~300 digits) prime numbers

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 9

RSA algorithm: key generation
1. Choose two random large prime numbers p, q

2. Compute the product n = pq and 𝜙(n) = (p - 1)(q - 1)
n will be presented with the public & private keys. Length(n) is the key length

3. Choose the public exponent, e, such that:
1 < e < 𝜙(n) and gcd(e, 𝜙(n)) = 1 [e and (p - 1)(q - 1) are relatively prime]

4. Compute the secret exponent, d such that:
 ed = 1 mod 𝜙(n)
 d = e-1 mod ((p - 1) (q - 1))

5. Public key = (e, n)
 Private key = (d, n)
 Discard p, q, 𝜙(n)

10February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

See https://www.di-mgt.com.au/rsa_alg.html

RSA Encryption

Key pair: public key = (e, n)
 private key = (d, n)
Encrypt
– Divide data into numerical blocks < n
– Encrypt each block:
 c = me mod n

Decrypt
 m = cd mod n

11February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

RSA security
The security of RSA encryption rests on the difficulty of factoring a
large integer

 Public key = { modulus, exponent }, or {n, e}

• The modulus is the product of two primes, p, q

• The private key is derived from the same two primes

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 12

Weak RSA Public Keys
March 14, 2022

• Older software generated RSA keys that can
be broken instantly with commodity
hardware

• SafeZone library doesn't randomize the
prime numbers well
– Used to generate RSA keys
– After selecting one prime #, the second one is in

close proximity to the first

• Keys generated with primes that are too
close together can be broken with Fermat's
factorization method, described in 1643

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 13

https://arstechnica.com/information-technology/2022/03/researcher-uses-600-year-old-algorithm-to-crack-crypto-keys-found-in-the-wild/

Weak RSA Public Keys
• Product of two large primes can be written as

 N = (a-b)(a+b)
– where a is the middle between the two primes
– b is the distance from the middle to each of the primes

• If the primes are close, then a is close to √N

• Attack: guess a by starting from √N and then incrementing the guess
– Calculate b2 = a2 - N
– If the result is a square then we guessed correctly
– Calculate the factors p, q as p=a+b, q=a-b

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 14

Elliptic Curve Cryptography
Elliptic curves

 y2 = x3 + ax + b mod p

Using discrete numbers, pick
– A prime number as a maximum (modulus)
– A curve equation
– A pre-defined base point on the curve (generator, G)
– A random private key, k
– Public key is derived from the private key,

the base point, and the curve, P = k * G
• This is an efficient point multiplication process

To compute the private key from the public,
– We would need an elliptic curve discrete logarithm function
– This is difficult and is the basis for ECC’s security

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 15

Catalog of elliptic curves
https://en.wikipedia.org/wiki/Elliptic_curve

See https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc#
Also https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography

ECC vs. RSA
• RSA is still a widely used public key cryptosystem (but fading)
– Mostly due to inertia & widespread implementations – it had a 27-year head start
– Trusted, well-tested deployments
– Trust in the algorithm

(there was initial skepticism over the choice of curves and trust in the NIST, who approved them; the
NSA tried to push an insecure random number generator)

– Simpler implementation

• ECC offers higher security with fewer bits than RSA
– ECC is faster for key generation & encryption
• The private key is any random number within a certain range (e.g., a 512-bit integer)
• Encryption is about 10x faster than RSA

– Uses less memory
– NIST defines 15 standard curves for ECC
• But many implementations support only a couple (P-256, P-384)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 16

http://https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.keylength.com/en/4/

Key length
Unlike symmetric cryptography, not every number is a valid key with RSA

Comparable complexity:
– 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
– 15360-bit RSA = 512-bit elliptic curve = 256-bit symmetric cipher

For long-term security
The European Union Agency for Network and Information Security (ENISA) and the National
Institute for Science & Technology (NIST) recommend:
AES: 256-bit keys RSA: 15,360-bit keys ECC: 512 bit-keys

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 17

Communication with public key algorithms
Different keys for encrypting and decrypting
– No need to worry about key distribution

18February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms

19

(Alice’s private key: Ka) (Bob’s private key: Kb)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

RSA isn’t good for communication
Calculations are very expensive relative to symmetric algorithms

Common speeds:

AES ~1500x faster to decrypt; 40x faster to encrypt than RSA

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 20

Algorithm Bytes/sec
AES-128-ECB 148,000,000

AES-128-CBC 153,000,000
AES-256-ECB 114,240,000

RSA-2048 encrypt 3,800,000
RSA-2048 decrypt 96,000

Public key algorithms are not used for communication
• Vulnerability to known plaintext attacks (or guessing)
– Content must be broken into smaller blocks since each block is treated like a number. An attacker can

encrypt a wide set of predicted content with the recipient's public key and then look for matches in the
ciphertext.
• If I send "Yes" to you, I need to encrypt it with your public key. The attacker can encrypt "Yes", "No", and any other

expected content with that same public key and see what matches the content I send. If there's a predicted chunk of
a message, the attacker can spot it.

• Some algebraic relationships may be preserved
– Some algebraic relationships that exist between plaintext content may exist with public key algorithms.

This can provide an attacker with insights on the relationship between content

• ECC is faster than RSA and uses shorter keys
– Still slower than symmetric algorithms
– ECC public key generation is efficient compared with RSA but still requires math (point multiplication):

see https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 21
See: https://andrea.corbellini.name/2023/01/02/ec-encryption/

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

Key Exchange

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 22

Diffie-Hellman Key Exchange
Key distribution algorithm
– Allows two parties to share a secret key over a non-secure channel

– Not public key encryption

– Based on difficulty of computing discrete logarithms in a finite field compared
with ease of calculating exponentiation

Allows us to negotiate a secret common key without fear of
eavesdroppers

23February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Diffie-Hellman Key Exchange
• All arithmetic performed in a

field of integers modulo some large number

• Both parties agree on
– a large prime number p
– and a number a < p

• Each party generates a public/private key pair

 Private key for user i: Xi

 Public key for user i: Yi =

24

piX moda
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Diffie-Hellman Key Exchange
• Alice has secret key XA
• Alice sends Bob public key YA
• Alice computes

• Bob has secret key XB
• Bob sends Alice public key YB

K = (Bob’s public key) (Alice’s private key) mod p

25

pYK AX
B mod=

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Diffie-Hellman Key Exchange
• Alice has secret key XA
• Alice sends Bob public key YA
• Alice computes

• Bob has secret key XB
• Bob sends Alice public key YB
• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p

26

pYK BX
A mod=pYK AX

B mod=

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Diffie-Hellman Key Exchange
• Alice has secret key XA
• Alice sends Bob public key YA
• Alice computes

• expanding:

• Bob has secret key XB
• Bob sends Alice public key YB
• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’

27

pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=

pYK AX
B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Diffie-Hellman simple example

• Alice’s secret key XA = 300

• Alice’s public key YA = 57300 mod p = 282

• Alice computes

• Bob’s secret key XB = 25

• Bob’s public key YB = 5725 mod p = 1046

• Bob computes

Given p=1151, α=57, YA=282, YB=1046, you cannot get 105

28

pYK AX
B mod= pYK BX

A mod=

CS 419 © 2024 Paul Krzyzanowski

Assume p=1151, α=57

= 1046300 mod p = 28225 mod p

K = 105 K = 105

February 16, 2024

Hybrid Cryptosystems

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 29

Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext and algebraic attacks
– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt

than AES-256

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 30

K EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 31

Communication with a hybrid cryptosystem

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K

EK(P) DK(C)

Alice Bob
Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 32

Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

EK(P) DK(C)

Alice Bob
Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 33

Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

DK(Cʹ) EK(Pʹ)

Forward Secrecy

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 34

Private keys need to be protected

Suppose an attacker steals Bob’s private key
– Future messages can be compromised
– The attacker can also go through past messages & decrypt old session keys

Security rests entirely on the secrecy of Bob's private key
– If Bob's private key is compromised, all recorded past traffic can be decrypted

Pick a session key &
encrypt it with the Bob's public key

Bob decrypts the session key
with his private key

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 35

Forward Secrecy
Forward secrecy
– Compromise of long-term keys does not compromise past session keys
– There is no one secret to steal that will compromise multiple messages

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 36

Achieving Forward Secrecy
Use ephemeral keys for key exchange + session keys for communication

Diffie-Hellman key exchange is commonly used for key exchange
– Generate a set of keys per session
– Use the derived common key as the encryption/decryption key … or as a key to encrypt a session key
– Not recoverable as long as private keys are thrown away

Unlike RSA keys, key generation in Diffie-Hellman is extremely efficient

Keys must be ephemeral
Client & server will generate new Diffie-Hellman parameters for each session – all will be thrown away after the
session

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 37

Diffie-Hellman is preferred over RSA for key exchange to achieve forward secrecy.
Generating Diffie-Hellman keys is a rapid, low-overhead process.

EK(P) DK(C)

Alice Bob

Bob’s D-H public key: YB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K

Communication with a hybrid cryptosystem (DHKE)

DK(Cʹ) EK(Pʹ)

Alice's D-H public key: YA

Create a random Diffie-Hellman key pair: XA, YA Create a random Diffie-Hellman key pair: XB, YB

𝐾 = 𝑌!
"!mod	p

𝐾 = 𝑌#
""mod	p

Cryptographic systems: summary
• Symmetric ciphers
– Based on SP-networks (usually) = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions: easy to compute in one direction, difficult to compute in the other

direction without special information (the trapdoor)

• Hybrid cryptosystem
– Pick a random session key + public key algorithm for key exchange
– Use a symmetric key algorithm to encrypt traffic back & forth
– Forward secrecy: establish session key via ephemeral keys

• Key exchange algorithms (more to come later)
– Diffie-Hellman
– Public key

• Perfect secrecy
– Ephemeral keys + Session key

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 39

Enables secure communication without
knowledge of a shared secret

Looking ahead

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 40

RSA cryptography in the future
• Based on the difficulty of factoring products of two large primes

• Factoring algorithms get more efficient as numbers get larger
– As the ability to decrypt numbers increases, the key size must therefore grow

even faster
– This is not sustainable (especially for embedded devices)

• ECC is a better choice for most applications

41February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Quantum Computers & Cryptography
Once (if) useful quantum computers can be built, they can
– Factor efficiently
• Shor’s algorithm factors numbers exponentially faster
• RSA will not be secure anymore
– Find discrete logarithms & elliptic curve discrete logarithms efficiently
• Diffie-Hellman key exchange & ECC will not be secure

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 42

Not all is bad
Symmetric cryptography is largely immune to attacks
Some optimizations are predicted (Grover’s algorithm): crack a symmetric cipher in
time proportional to the square root of the key space size: 2n/2 vs. 2n

–Use 256-bit AES to be safe

2016: NSA called for a migration to “post-quantum cryptographic algorithms”
 … but no agreement yet on what those will be
2020: Narrowed submissions down to 7 finalists & 8 alternates
2023: Four quantum-resistant finalists announced
2024: NIST post-quantum cryptographic standard expected to be finalized

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 43

https://csrc.nist.gov/projects/post-quantum-cryptography

https://www.nist.gov/news-events/news/2020/07/nists-post-quantum-cryptography-program-enters-selection-round

Quantum-proofing cryptography
Quantum computing is not faster at everything
Only four types of problems are currently identified where quantum computing offers an
advantage

Researchers have been developing algorithms that are be made more efficient with quantum
computing

CS 419 © 2024 Paul Krzyzanowski 44

https://www.scientificamerican.com/article/new-encryption-system-protects-data-from-quantum-computers/

31108953
104910828

3027417464
2376520867
2430217482

1190018662
2598220447
3006531459
804531264

1122428373
Which 3 numbers add
up to 5656746864?

Example: Add 3 out of a set of 10 numbers
• Give the sum to a friend and ask them to determine

which numbers were added
• Try this if someone picks 500 out of 1,000 numbers

with 1,000 digits each

February 16, 2024

Stay tuned…
• 2016: NSA called for a migration to “post-quantum cryptographic

algorithms”

• July 2020: Narrowed submissions down to 7 finalists & 8 alternates

Solution families
1. Lattice-based
2. Code-based
3. Multivariate

Four quantum-resistant algorithms were selected

NIST post-quantum cryptographic standard expected to be finalized in 2024

CS 419 © 2024 Paul Krzyzanowski 45February 16, 2024

Message Integrity

47February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

McCarthy’s Spy Puzzle (1958)
The setting:

• Two countries are at war

• One country sends spies to the other country

• To return safely, spies must give the border guards a password

Conditions

• Spies can be trusted

• Guards chat – information given to them may leak

48February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

McCarthy’s Spy Puzzle
Challenge
– How can a border guard authenticate a person without knowing the password?

– Enemies cannot use the guard’s knowledge to introduce their own spies

49February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Solution to McCarthy’s puzzle
Michael Rabin, 1958

• Use a one-way function, B = f (A)
– Guards get B
• Enemy cannot compute A if they know A

– Spies give A, guards compute f(A)
• If the result is B, the password is correct.

• Example function:
– Middle squares
• Take a 100-digit number (A), and square it
• Let B = middle 100 digits of 200-digit result

50February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

One-way functions
• Easy to compute in one direction
• Difficult to compute in the other

Examples:
 Factoring:
 pq = N EASY
 find p,q given N DIFFICULT
 Discrete Log:
 ab mod c = N EASY
 find b given a, c, N DIFFICULT

51

Basis for RSA

Basis for Diffie-Hellman &
Elliptic Curve

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Example of a one-way function: middle squares
Example with a 20-digit number
A = 18932442986094014771
A2 = 358437397421700454779607531189166182441
Middle square, B = 42170045477960753118

Given A, it is easy to compute B
Given B, it is difficult to compute A

“Difficult” = no known short-cuts; requires an exhaustive search

52February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Cryptographic hash functions

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 53

Cryptographic hash functions
Properties
– Arbitrary length input → fixed-length output

– Deterministic: you always get the same hash for the same message

– One-way function (pre-image resistance, or hiding)
• Given H, it should be difficult to find M such that H=hash(M)

– Collision resistant
• Infeasible to find any two different strings that hash to the same value:

 Find M, M’ such that hash(M) = hash(M’)

– Output should not give any information about any of the input
• Like cryptographic algorithms, relies on diffusion

– Efficient
• Computing a hash function should be computationally efficient

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 54

Also called digests or
fingerprints

Hash functions are the basis of integrity
• Not encryption

• Can help us to detect:
– Masquerading:
• Insertion of message from a fraudulent source

– Content modification:
• Changing the content of a message

– Sequence modification:
• Inserting, deleting, or rearranging parts of a message

– Replay attacks:
• Replaying valid sessions

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 55

Hash Algorithms
Use iterative structure like block ciphers do … but use no key

• Example:
– Secure Hash Algorithm, SHA-1
• Designed by the NSA in 1993; revised in 1995
• Used in the NIST Digital Signature Standard (DSS)
• Produces 160-bit hash values
• Chosen prefix collision attacks were demonstrated in May 2019

• Successors
– SHA-2 (2001) – SHA-256, SHA-384, SHA-512
• Produces 224, 256, 384, or 512-bit hashes
• Approved for use with the NIST Digital Signature Standard (DSS)

– SHA-3 (2015)
• Can be substituted for SHA-2
• Improved robustness

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 56

Example: SHA-1 Overview
• Prepare the message
– Append the bit 1 to the message
– Pad message with 0 bits so its length = 448 mod 512
– Append length of message as a 64-bit big endian integer

• Use an Initialization Vector (IV) = 5-word (160-bit) buffer:
 a = 0x67452301 b = 0xefcdab89 c = 0x98badcfe

 d = 0x10325476 e = 0xc3d2e1f0

• Process the message in 512-bit chunks
– Expand the 16 32-bit words into 80 32-bit words via XORs & shifts
– Iterate 80 times to create a hash for this chunk
• Various sets of ORs, XORs, ANDs, shifts, and adds

– Add this hash chunk to the result so far

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 57

See https://www.saylor.org/site/wp-content/uploads/2012/07/SHA-1-1.pdf

SHA-2 Overview

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 58

256-bit
Initialization
Vector (IV)

512-bits of
message

Hash
compression

Next 512-bits
of message

Hash
compression

Last 512-bits
of message

Hash
compression

256-bit hash
Bits defined by the standard

Popular (& formerly popular) Hash Functions
MD5

• 128 bits
• Linux passwords used to use this
• Rarely used now since weaknesses were found

SHA-1

• 160 bits – was widely used: still used as a checksum in Git & torrents
• Google demonstrated a collision attack in Feb 2017

 … Google had to run >9 quintillion SHA-1 computations to complete the attack
 ... but already being phased out since weaknesses were found earlier
• Used for message integrity in GitHub

SHA-2

Believed to be secure
• Designed by the NSA; published by NIST
• Variations: SHA-224, SHA-256, SHA-384, SHA-512
• Linux passwords use SHA-512
• Bitcoin uses SHA-256

SHA-3 Believed to be secure
• 256 & 512 bit

bcrypt
• Blowfish cipher used for bcrypt password hashing in OpenBSD

since 1997
• Phased out in 2023: scrypt and Argon2 are replacements

3DES • Linux passwords used to use this
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 59

Believed to be secure

Believed to be secure

Designed to be slow!

Creating hashes via the openssl command
MD5 hash
echo 'hello, world!'| openssl dgst -md5
MD5(stdin)= 910c8bc73110b0cd1bc5d2bcae782511

SHA-1 hash
echo 'hello, world!'| openssl dgst -sha1
SHA1(stdin)= e91ba0972b9055187fa2efa8b5c156f487a8293a

256-bit SHA-2 hash
echo "hello, world!" | openssl dgst -sha2-256
SHA2-256(stdin)= 4dca0fd5f424a31b03ab807cbae77eb32bf2d089eed1cee154b3afed458de0dc

256-bit SHA-3 hash
echo "hello, world!" | openssl dgst –sha3-256

SHA3-256(stdin)= 5208fd28810f11b7781a86289fb9121ccc754a5bd8260bcfa539163890092c7e

512-bit SHA-3 hash
echo "hello, world!" | openssl dgst –sha3-512
SHA3-512(stdin)=
8fc33b84ff22559082893fdc73f6877e590eb67533441fe5e48cd6d8a11aaf8d6270f82ef437c2c758000d65b09b4511
6b9c0eb3f3162149b13ca98c8cc8c90f

60CS 419 © 2024 Paul KrzyzanowskiFebruary 16, 2024

Hash Collisions
Hashes are collision resistant, but collisions can occur

Pigeonhole principle
– If you have 10 pigeons & 9 compartments,

at least one compartment will have more
than one pigeon

– A hash is a fixed-size small number of bits
(e.g., 256 bits = 32 bytes)

– Every possible permutation of an arbitrary number
of bytes cannot fit into every permutation of 32 bytes!

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 61

wikipedia

Collisions: The Birthday Paradox
How many people need to be in a room such that the probability that
two people will have the same birthday is > 0.5?

Your guess before you took a probability course: 183
This is true to the question of “how many people need to be in a room for the probability that
someone else will have the same birthday as one specific student?”

Answer: 23

62

𝑝 𝑛 = 1	 −
𝑛!) 365

𝑛
365!

Approximate solution for # people required to have a 0.5
chance of a shared birthday, where m = # days in a year 𝑛	 ≈ 2×𝑚×0.5

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

The Birthday Paradox: Implications
• Searching for a collision with a pre-image (known message) is A

LOT harder than searching for two messages that have the same
hash

• Strength of a hash function is approximately ½ (# bits)
– 256-bit hash function has a strength of approximately 128 bits
– But that’s a huge space!
 2128 = 3.4×1038

– It’s not feasible to try that many messages in the hope of finding a collision
• BTW … the odds of winning the Powerball lottery are only 1:2.9×108

63February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Message Integrity
How do we detect that a message has been tampered?

• A cryptographic hash acts as a checksum

• Associate a hash with a message
– We’re not encrypting the message
– We’re concerned with integrity, not confidentiality

• If two messages hash to different values, we are convinced that the
messages are different

H(M) ≠ H(M′)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 64

Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 65

MACs (also called a Keyed Hash)
We rely on hashes to assert the integrity of messages

But an attacker can create a new message & a new hash
 and replace H(M) with H(M′)

So, let’s create a checksum that relies on a key for validation

Message Authentication Code (MAC)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 66

Two forms: hash-based & block cipher-based

HMAC: Hash-based MAC
We can create a MAC from a cryptographic hash function

HMAC = Hash-based Message Authentication Code
HMAC(m, k) = H((opad ⊕ k) || H(ipad ⊕ k) || m))
where

 H = cryptographic hash function

 opad = outer padding 0x5c5c5c5c … (01011100…)

 ipad = inner padding 0x36363636… (00110110…)

 k = secret key

 m = message

 ⊕ = XOR, || = concatenation

Basically, incorporate a key into the message before hashing it
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 67

See RFC 2104

Note the extra hash.
The simple form of an HMAC would simply
be hash(m, k)
The HMAC standard devised this to
strengthen the HMAC against weaker hash
functions.

Block Cipher Based MAC: CBC-MAC
Cipher Block Chaining (CBC) ensures that every encrypted block is a function of all
previous blocks

MAC = final ciphertext block – others are discarded

Examples: AES-CBC-MAC, DES-MAC

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 68

Block cipher

Plaintext0IV = 0

Ciphertext0

⊕

Key Block cipher

Plaintext1

⊕

Key

Block 0 Block 1

Block cipher

PlaintextN

⊕

Key

Block N

Ciphertext1 CiphertextN

Don’t use the same key for the MAC as for encrypting the message
If an adversary gets one of the keys, she will be unable to create either a valid message or a valid hash

CBC-MAC uses
an initialization
vector = 0

Using a MAC

69

Message
m

MAC

HMAC(m, k)

Message
m′

MAC′

Alice Bob

1. Bob receives the Message m’ and a MAC.
2. Knowing the key, k, he generates a MAC for the message: MAC″ = HMAC(m′, k)
3. If MAC′ = MAC″, he’s convinced that the message has not been modified

modification?

MAC″

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Compute HMAC(m′, k):

Both have the shared key, k

Digital Signatures
• MACs rely on a shared key
– Anyone with the key can modify and re-sign a message

• Digital signature properties
– Only you can sign a message, but anyone can validate it

– You cannot cut and paste the signature from one message to another

– If the message is modified, the signature will be invalid

– An adversary cannot forge a signature
• Even after inspecting an arbitrary number of signed messages

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 70

Digital Signature Primitives
1. Key generation

 { secret_key, verification_key } := gen_keys(key_size)

2. Signing
 signature := sign(message, secret_key)

3. Validation
 Isvalid := verify(verification_key, message, signature)

We sign hash(message) instead of the message
– We’d like the signature to be a small, fixed size
– We may not need to hide the contents of the message
– We trust hashes to be collision-free

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 71

Digital Signatures & Public Key Cryptography
Public key cryptography enables digital signatures

secret_key = private key
verification_key = public key

• Alice encrypts a message with her private key

 S = Ea(M)

• Anyone can decrypt it using her public key

 DA(S) = DA(Ea(M)) = M

• Nobody but Alice can create S

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 72

Popular Digital Signature Algorithms
Digital Signature Algorithms combine hashing + encryption into one step

signature: S := Epri_key(H(M))

verification = H(M) ≟ Dpub_key(S)

• DSA: Digital Signature Algorithm
– NIST standard – Uses SHA-1 or SHA-2 hash
– Key pair based on difficulty of computing discrete logarithms

• ECDSA: Elliptic Curve Digital Signature Algorithm
– Variants of DSA that uses elliptic curve cryptography
– Used in bitcoin

• EdDSA: Edwards-curve Digital Signature Algorithm
– Slightly faster than ECDSA

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 73

Alice Bob

Alice generates a hash of the message, H(P)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 75

Digital signatures

H(P)

H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 76

Digital signatures: public key cryptography

S=Ea(H(P))

H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 77

Using Digital Signatures

S=Ea(H(P))

modification?

H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 78

Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

H(P)

Alice Bob

If the hashes match, the signature is valid
⇒ the encrypted hash must have been generated by Alice

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 79

Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?

Digital signatures & non-repudiation

• Digital signatures provide non-repudiation
– Only Alice could have created the signature because only Alice has her private

key

• Proof of integrity
– The hash assures us that the original message has not been modified
– The encryption of the hash assures us that an attacker could not have

re-created the hash

80February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P)
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P)
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 81

Digital signatures: multiple signers

H(P)

DA(S)

H(P)

S=Ea(H(P)
)

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)

Covert AND authenticated messaging
If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a symmetric algorithm

– Encrypt K with the public key of each recipient

– For signing, encrypt the hash of the message with sender’s private key

82February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 83

Covert and authenticated messaging

S=Ea(H(M))

H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 84

Covert and authenticated messaging

S=Ea(H(M))

C=EK(M)

H(P)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 85

Covert and authenticated messaging

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)

H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging

86

S=Ea(H(P))

K K
C1=EB(K)

K
C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles

Note: we do not have forward secrecy by doing this
February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Certificates: Identity Binding

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 87

Public Keys as Identities
• A public signature verification key can be treated as an identity
– Only the owner of the corresponding private key will be able to create the signature

• New identities can be created by generating new random
{private, public} key pairs

• Anonymous identity – no identity management
– A user is known by a random-looking public key
– Anybody can create a new identity at any time
– Anybody can create as many identities as they want
– A user can throw away an identity when it is no longer needed
– Example: your Bitcoin identity = hash(public key)

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 88

Identity Binding
• How does Alice know Bob’s public key is really his?

• Get it from a trusted server?
– What if the enemy tampers with the server?
– Or intercepts Alice’s query to the server (or the reply)?
– What set of public keys does the server manage?
– How do you find it in a trustworthy manner?

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 89

Identity Binding – Another Option
• Have a trusted party sign Bob’s public key

• Once signed, it is tamper-proof
– An attacker cannot generate the signature after modifying the key

• But we need to know it’s Bob’s public key and who signed it
– Create & sign a data structure that
• Identifies Bob
• Contains his public key
• Identifies who is doing the signing

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 90

X.509 Certificates
ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

X.509 v3 Digital Certificate

Certificate data Signature

Subject
Distinguished name Public key

(algorithm & key)

version serial # Signature
algorithm

Issuer
Distinguished

Name

Validity
(from-to)

Signature
(signed by CA)

Issuer = Certification Authority (CA)

User’s name, organization, locality, state, country, etc.
91CS 419 © 2024 Paul KrzyzanowskiFebruary 16, 2024

X.509 Certificates
To validate a certificate

Verify its signature:
1. Get the issuer (CA) from the certificate
2. Validate the certificate’s signature against

the issuer’s public key
– Hash contents of certificate data
– Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key to
masquerade as another person

…if you trust the CA
92CS 419 © 2024 Paul KrzyzanowskiFebruary 16, 2024

Certification Authorities (CAs)
How do you know the public key of the CA?
– You can get it from another certificate! ⇒ this is called certificate chaining

CS 419 © 2024 Paul Krzyzanowski 93

Name: Rutgers University CA

Public key: c1f07f8aac9d…

Issuer: State of NJ CA

Signature: 5c062ee261…

Name: Bob

Public key: abac6cfbd…

Issuer: Rutgers University CA

Signature: 25d0527b9f…

Name: State of NJ CA

Public key: 33346da91…

Issuer: US Certification Authority

Signature: e693eac849…

Name: US Certification Authority

Public key: 9f0f544f163…

Issuer: US Certification Authority

Signature: 20fac7079f0…

Root Certificate

February 16, 2024

Certification Authorities (CAs)
• But trust must start somewhere

You need a public key you can trust – this is the root certificate
– Apple’s Trust Store is pre-loaded with over 160 CA certificates
• Stores non-personal security info; accessed via Keychain

– Windows stores them in the Certificate Store and makes them accessible via the
Microsoft Management Console (mmc)

– Android stores them in Credential Storage

• Can you trust a CA?
– Maybe…

check their reputation and read their Certification Practice Statement (CPS)
– Even trustworthy ones might get hacked (e.g., VeriSign in 2010)

CS 419 © 2024 Paul Krzyzanowski 94February 16, 2024

Key revocation
• Used to invalidate certificates before expiration time
– Usually because of a compromised key
– Or policy changes (e.g., someone leaves a company)

• Certificate revocation list (CRL)
– Lists certificates that are revoked
– Only certificate issuer can revoke a certificate

• Problems
– Need to make sure that the entity issuing the revocation is authorized to do this
– Revocation information may not circulate quickly enough
• Dependent on dissemination mechanisms, network delays & infrastructure

– Some systems may not have been coded to process revocations

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 95

Code Integrity

96February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Review: signed messages

97

Message M

Hash(M) Ea(H(M))

Encrypt with Alice’s private key
= digital signature

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

We can sign code as well
• Validate integrity of the code
– If the signature matches, then the code has not been modified

• Enables
– Distribution from untrusted sources
– Distribution over untrusted channels
– Detection of modifications by malware

• Signature = encrypted hash signed by trusted source
– Does not validate the code is good … just where it comes from

98February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Code Integrity: signed software
• Windows since XP*: Microsoft Authenticode
– SignTool command
– Hashes stored in system catalog or signed & embedded in the file
– Microsoft-tested drivers are signed

• macOS
– codesign command
– Hashes & certificate chain stored in file

• Also Android & iOS

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 99

*Windows XP had partial support for Authenticode; it did not support signed drivers.

Code signing: Microsoft Authenticode
• A format for signing executable code (dll, exe, cab, ocx, class files)

• Software publisher:
– Generate a public/private key pair
– Get a digital certificate from a certification authority (CA) that is enrolled in the Microsoft Trusted Root

Certificate Program
– Generate a hash of the code to create a fixed-length digest
– Encrypt the hash with your private key
– Combine digest & certificate into a Signature Block
– Embed Signature Block in executable package

• Microsoft SmartScreen:
– Manages reputation based on download history, popularity, anti-virus results

• Recipient:
– Call WinVerifyTrust function to validate:
• Validate certificate, decrypt digest, compare with hash of downloaded code

February 16, 2024 CS 419 © 2024 Paul Krzyzanowski 100

Per-page hashses
• Integrity check when program is first loaded (this takes time)

• Check a hash for a page when it is needed (demand paging)
– This is efficient (pages are small; checking a hash is quick)

Per-page hashes can be disabled optionally on both Windows and macOS

101February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

Windows code integrity checks
• Implemented as a file system driver
– Works with demand paging from executable
– Check hashes for every page as the page is loaded

• Hashes stored in system catalog or embedded in file along with X.509
certificate

• Check integrity of boot process
– Kernel code must be signed or it won’t load
– Drivers shipped with Windows must be certified or contain a certificate from

Microsoft

102February 16, 2024 CS 419 © 2024 Paul Krzyzanowski

The End

February 16, 2024 103CS 419 © 2024 Paul Krzyzanowski

