

PAP: Reusable passwords

Problem: Open access to the password file

What if the password file isn't sufficiently protected and an intruder gets hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your password on other systems.

Solution:

Store a hash of the password in a file

- Given a file, you don't get the passwords
- Have to resort to a dictionary or brute-force attack
- Example, passwords hashed with SHA-512 hashes (SHA-2)

April 21, 2015

2013-2015 Paul Krzyzanowski

What is a dictionary attack?

November 2013 - Adobe security breach

- 152 million Adobe customer records ... with encrypted passwords
- Adobe encrypted passwords with a symmetric key algorithm
- ... and used the same key for every password!

Top 26 Adobe Passwords

	Frequency	Password		Frequency	Password
1	1,911,938	123456	14	61,453	1234
2	446,162	123456789	15	56,744	adobe1
3	345,834	password	16	54,651	macromedia
4	211,659	adobe123	17	48,850	azerty
5	201,580	12345678	18	47,142	iloveyou
6	130,832	qwerty	19	44,281	aaaaaa
7	124,253	1234567	20	43,670	654321
8	113,884	111111	21	43,497	12345
9	83,411	photoshop	22	37,407	666666
10	82,694	123123	23	35,325	sunshine
11	76,910	1234567890	24	34,963	123321
12	76,186	000000	25	33,452	letmein
13	70,791	abc123	26	32,549	monkey

© 2013-2015 Paul Krzyzanowski

What is a dictionary attack?

· Suppose you got access to a list of hashed passwords

- · Brute-force, exhaustive search: try every combination
- Letters (A-Z, a-z), numbers (0-9), symbols (!@#\$%...)
- Assume 30 symbols + 52 letters + 10 digits = 92 characters
- Test all passwords up to length 8
- Combinations = $92^8 + 92^7 + 92^6 + 92^5 + 92^4 + 92^3 + 92^2 + 92^1 = 5.189 \times 10^{15}$
- If we test 1 billion passwords per second: ≈ 60 days
- But some passwords are more likely than others
 - 1,991,938 Adobe customers used a password = "123456"
- 345,834 users used a password = "password"
- Dictionary attack
- Test lists of common passwords, dictionary words, names
- Add common substitutions, prefixes, and suffixes

What is salt?

- · How to speed up a dictionary attack
- Create a table of precomputed hashes
- Now we just search a table
 - Example: SHA-512 hash of "password" = sQnzu7wkTrgkQZF+0G1hi5Al3Qmzvv0bXgc5THBqi7mAsdd4Xil27ASbRt 9fEyavWi6m0QP9B8IThf+rDKy8hg==
- Salt = random string (typically up to 16 characters)
- Concatenated with the password
- Stored with the password file (it's not secret)
- Even if you know the salt, you cannot use precomputed hashes to search for a password (because the salt is prefixed)
 - Example: SHA-512 hash of "am\$7b22QLpassword", salt = "am\$7b22QL": ntlxjDMnueMWig4dtWOMbaguucW6xV6cHJ+7yNrGvdoyFFRVb/LLqS01/pXS 8xZ+ur7zPO2yn88xcliUPQj7xg==
- You will not have a precomputed hash of "am\$7b22QLpassword"!

PAP: Reusable passwords Authentication: CHAP Problem #2: Network sniffing Challenge-Handshake Authentication Protocol Passwords can be stolen by observing a user's session in person or over a network: challenge < - snoop on telnet, ftp, rlogin, rsh sessions Troian horse hash(challenge, secret) - social engineering client server - brute-force or dictionary attacks OK Solutions: Has shared secret Has shared secret (1) Use one-time passwords The challenge is a nonce (random bits). We create a hash of the nonce and the secret. (2) Use an encrypted communication channel An intruder does not have the secret and cannot do this! © 2013-2015 Paul Krzyzanowski © 2013-2015 Paul Krzyzanowski

- An intruder (sniffing the network) does not have the information to generate the password for future logins
 Needs the seed number (in the card), the algorithm (in the card), and the
- PIN (from the user)
- An intruder who steals your card cannot log in
 Needs a PIN (the benefit of 2-factor authentication)
- An intruder who sees your PIN cannot log in
 Needs the card (the benefit of 2-factor authentication)

Guarding against man-in-the-middle

- Use a covert communication channel
- The intruder won't have the key
- Can't see the contents of any messages
- But you can't send the key over that channel!

Use signed messages

- Both parties can reject unauthenticated messages
- The intruder cannot modify the messages
 Signatures will fail (need to encrypt the hash)

 Public key authentication

 Demonstrate we can encrypt or decrypt a nonce

 • Aice wants to authenticate herself to Bolz

 • Aice generates nonce, S

 • Sends it to Alice

 • Aice encrypts S with her private key (signs it)

 • Sends result to Bob

Built-in trusted	root certificate	s in iOS 8
AAA Certificate Services	CA Disig Root R2	DigiCert Global Root CA
AC Raiz Certicámara S.A.	CNNIC ROOT	 DigiCert Global Root G2
Actalis Authentication Root CA	 COMODO Certification Authority 	 DigiCert Global Root G3
AddTrust Class 1 CA Root	 CRL1 	 DigiCert High Assurance EV Root CA
AddTrust External CA Root	CertiNomis	 DigiCert Trusted Root G4
AddTrust Public CA Root	Certigna	 DigiNotar Cyber CA
AddTrust Qualified CA Root	 Certinomis - Autorité Racine 	 DigiNotar Extended Validation CA
Admin-Root-CA	 Certinomis - Root CA 	 DigiNotar PKloverheid CA Organisatie - G2
AdminCA-CD-T01	Certum CA	 DigiNotar PKloverheid CA Overheid en
AffirmTrust Commercial	 Certurn Trusted Network CA 	Bedrijven
AffirmTrust Networking	 Certurn Trusted Network CA 2 	 DigiNotar Public CA 2025
AffirmTrust Premium	 Chambers of Commerce Root 	 DigiNotar Qualified CA
AffirmTrust Premium ECC	 Chambers of Commerce Root - 2008 	 DigiNotar Root CA
America Online Root Certification Authority 1	 China Internet Network Information 	 DigiNotar Root CA G2
America Online Root Certification Authority 2	2 Center EV Certificates Root	 DigiNotar Services 1024 CA
Apple Root CA	Cisco Root CA 2048	 DigiNotar Services CA
Apple Root Certificate Authority	 Class 2 Primary CA 	 Digisign Server ID (Enrich)
ApplicationCA2 Root	ComSign CA	 DoD CLASS 3 Root CA
Autoridad de Certificacion Firmaprofesional	Common Policy	 DoD Root CA 2
Autoridad de Certificacion Raiz del Estado	 D-TRUST Root Class 3 CA 2 2009 	 E-Tugra Certification Authority
Venezolano	 DST ACES CA X6 	 EASEE-gas CA
Baltimore CyberTrust Root	 DST Root CA X3 	 EBG Elektronik Sertifika Hizmet Sağlayıcısı
Belgium Root CA	 DST Root CA X4 	 ECA Root CA
Buypass Class 2 Root CA	 Deutsche Telekom Root CA 2 	 EE Certification Centre Root CA
Buypass Class 3 CA 1	 Developer ID Certification Authority 	 Echoworx Root CA2
Buypass Class 3 Root CA	 DigiCert Assured ID Root CA 	 Entrust Certification Authority - L1C
CA Disig	 DigiCert Assured ID Root G2 	
CA Disig Root R1	 DigiCert Assured ID Root G3 	Partial list from 475 CAs in http://support.apple.com/kb/HT5012

