
CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 1

Operating Systems

17. Sockets

Paul Krzyzanowski

Rutgers University

Spring 2015

1 4/6/2015 © 2014-2015 Paul Krzyzanowski

Sockets

• Dominant API for transport layer connectivity

• Created at UC Berkeley for 4.2BSD Unix (1983)

• Design goals

– Communication between processes should not depend on whether

they are on the same machine

– Communication should be efficient

– Interface should be compatible with files

– Support different protocols and naming conventions

• Sockets is not just for the Internet Protocol family

2 4/6/2015 © 2014-2015 Paul Krzyzanowski

Socket

Socket = Abstract object from which messages are sent

and received

• Looks like a file descriptor

• Application can select particular style of communication

– Virtual circuit, datagram, message-based, in-order delivery

• Unrelated processes should be able to locate

communication endpoints

– Sockets can have a name

– Name should be meaningful in the communications domain

3 4/6/2015 © 2014-2015 Paul Krzyzanowski

Connection-Oriented (TCP) socket operations

April 6, 2015 © 2014 Paul Krzyzanowski 4

Create a socket

Name the socket

(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket

(assign local address, port)

Set the socket for listening

Wait for and accept a

connection; get a socket for

the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

Connectionless (UDP) socket operations

April 6, 2015 © 2014 Paul Krzyzanowski 5

Create a socket

Name the socket

(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket

(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

socket

bind

sendto

recvfrom

close

socket

bind

recvfrom

sendto

close

Socket Internals

6 4/6/2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 2

Logical View

ethernet IP TCP data

Protocol

input

queue

socket

Socket layer

Transport layer

Network layer

Network interface (driver) layer

Device interrupt
Ethernet

IP TCP data

TCP data

data

7

socket buffer

same

socket buffer

same

socket buffer

same

socket buffer

4/6/2015 © 2014-2015 Paul Krzyzanowski

Data Path

Application writes data to

socket

Move packet to transport layer
[TCP creates packet buffer &

header]

Move packet to network layer

[IP fills in header]

Packet for

host?

Move packet to transport

layer

Move packet to socket

Data goes to application

buffer

Look up route

Move packet to net device

driver

[packet goes on send queue]

Transmit the packet

Packet received by

device

Move packet to network layer

[IP fills in header]
Forward

packet?

internal external

drop

drop

8

From app From

device

To app To device

4/6/2015 © 2014-2015 Paul Krzyzanowski

copy data from user process to kernel socket buffer
copy data from device to

 kernel socket buffer

OS Network Stack

System call Interface

Generic network

interface
Sockets implementation layer

Socket-related system calls

Network Protocols
TCP/IPv4, UDP/IPv4, TCP/IPv6

Abstract Device

Interface

Device Driver

“netdevice”, queuing discipline

Ethernet, Wi-Fi, SLIP

Transport Layer

Network Layer IPv4, IPv6

Link Layer

9 4/6/2015 © 2014-2015 Paul Krzyzanowski

File calls Socket calls

System call interface

Two ways to communicate with the network:

A socket structure acts as a queuing point for data being transmitted

& received

– A socket has send and receive queues associated with it

• High & low watermarks

10

Socket-specific call
(e.g., socket, bind, shutdown)
• Directed to sys_socketcall (socket.c)

• Goes to the target function

File call
(e.g., read, write, close)
• File descriptor ≡ socket

– Sockets reside in the process’s file table

• Direct parallel of the VFS structure

– A socket’s f_ops field points to a set of

functions for socket operations

4/6/2015 © 2014-2015 Paul Krzyzanowski

Sockets layer

• All network communication takes place via a socket

• Two socket structures – one within another
1. Generic sockets (aka BSD sockets) – struct socket

2. Protocol-specific sockets (e.g., INET socket) – struct sock

• socket structure
– Keeps all the state of a socket including the protocol and operations that can be

performed on it

– Some key members of the structure:

• struct proto_ops *ops: protocol-specific functions that implement socket operations

– Common functions to support a variety of protocols: TCP, UDP, IP, raw ethernet, other networks

– Pointers to protocol functions: bind, connect, accept, listen, sendmsg, shutdown, …

• struct inode *inode: points to in-memory inode associated with the socket

• struct sock *sk: protocol-specific (e.g., INET) socket

– E.g., this contains TCP/IP and UDP/IP specific data for an INET

(Internet Address Domain) socket

11 4/6/2015 © 2014-2015 Paul Krzyzanowski

Socket Buffer: struct sk_buff

• Component for managing the data movement for sockets through the networking layers

– Contains packet & state data for multiple layers of the protocol stack

• Don’t waste time copying parameters & packet data from layer to layer of the network

stack

• Data sits in a socket buffer (struct sk_buff)

• As we move through layers, data is only copied twice:

1. From user to kernel space

2. From kernel space to the device (via DMA if available)

next prev head data tail end dev dev_rx sk

IP TCP data

sk_buff:

sk_buff sk_buff

sk_buff sk_buff

Packet data

associated device

source device

socket

12 4/6/2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 3

Socket Buffer: struct sk_buff

• Each sent or received packet is associated with an sk_buff:

– Packet data in data->, tail->

– Total packet buffer in head->, end->

– Header pointers (MAC, IP, TCP header, etc.)

• Identifies device structure (net_device)

– rx_dev: points to the network device that received the packet

– dev: identifies net device on which the buffer operates

• If a routing decision has been made, this is the outbound interface

• Each socket (connection stream) is associated with a linked list of sk_buffs

Add or remove headers without

reallocating memory

13 4/6/2015 © 2014-2015 Paul Krzyzanowski

Keeping track of packet data

head

data

tail

end

ethernet

tail room

Allocate new socket buffer data

 skb = alloc_skb(len, GFP_KERNEL);

No packet data: head = data = tail

14 4/6/2015 © 2014-2015 Paul Krzyzanowski

Example: Prepare an outgoing packet

Keeping track of packet data

head

data

tail

end

head

room

tail room

Make room for protocol headers.

 skb_reserve(skb, header_len)

For IPv4, use sk->sk_prot->max_header

Data size is still 0

15 4/6/2015 © 2014-2015 Paul Krzyzanowski

Keeping track of packet data

head

data

tail

end

head

room

User data

tail room

Add user data

16 4/6/2015 © 2014-2015 Paul Krzyzanowski

Keeping track of packet data

head

data

tail

end

head

room

TCP

User data

tail room

Add TCP header

17 4/6/2015 © 2014-2015 Paul Krzyzanowski

Keeping track of packet data

head

data

tail

end

head room

IP

TCP

User data

tail room

Add IP header

18 4/6/2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 4

Keeping track of packet data

head

data

tail

end

ethernet

IP

TCP

User data

Add ethernet header

The outbound packet is complete!

ethernet

19 4/6/2015 © 2014-2015 Paul Krzyzanowski

Network protocols

• Define the specific protocols available (e.g., TCP, UDP)

• Each networking protocol has a structure called proto

– Associated with an “address family” (e.g., AF_INET)

– Address family is specified by the programmer when creating the socket

– Defines socket operations that can be performed from the sockets layer to the

transport layer

• Close, connect, disconnect, accept, shutdown, sendmsg, recvmsg, etc.

• Modular: one module may define one or more protocols

• Initialized & registered at startup

– Initialization function: registers a family of protocols

– The register function adds the protocol to the active protocol list

20 4/6/2015 © 2014-2015 Paul Krzyzanowski

Abstract device interface

• Layer that interfaces with network device drivers

• Common set of functions for low-level network device drivers to

operate with the higher-level protocol stack

21 4/6/2015 © 2014-2015 Paul Krzyzanowski

Abstract device interface

• Send a packet to a device

– Send sk_buff from the protocol layer to a device

• dev_queue_xmit function

• enqueues an sk_buff for transmission to the underlying driver

• Device is defined in sk_buff

– Device structure contains a method hard_start_xmit: driver function for actually

transmitting the data in the sk_buff

• Receive a packet from a device & send to protocol stack

– Receive an sk_buff from a device

• Driver receives a packet and places it into an allocated sk_buff

• sk_buff passed to the network layer with a call to netif_rx

• Function enqueues the sk_buff to an upper-layer protocol's queue for processing

through netif_rx_schedule

22 4/6/2015 © 2014-2015 Paul Krzyzanowski

Device drivers

• Drivers to access the network device

– Examples: ethernet, 802.11n, SLIP

• Modular, like other devices

– Described by struct net_device

• Initialization

– Driver allocates a net_device structure

– Initializes it with its functions

• dev->hard_start_xmit: defines how to transmit a packet

– Typically the packet is moved to a hardware queue

• Register interrupt service routine

– Calls register_netdevice to make the device available to the

network stack

23 4/6/2015 © 2014-2015 Paul Krzyzanowski

Sending a message

• Write data to socket

• Socket calls appropriate send function (typically INET)
– Send function verifies status of socket & protocol type

– Sends data to transport layer routine (typically TCP or UDP)

• Transport layer
– Creates a socket buffer (struct sk_buff)

– Copies data from application layer; fills in header (port #, options, checksum)

– Passes buffer to the network layer (typically IP)

• Network layer
– Fills in buffer with its own headers (IP address, options, checksum)

– Look up destination route

– IP layer may fragment data into multiple packets

– Passes buffer to link layer: to destination route’s device output function

• Link layer: move packet to the device’s xmit queue

• Network driver
– Wait for scheduler to run the device driver’s transmit code

– Sends the link header

– Transmit packet via DMA

24 4/6/2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 5

Routing

IP Network layer

Two structures:

1. Forwarding Information Base (FIB)

Keeps track of details for every known route

2. Cache for destinations in use (hash table)

 If not found here then check FIB.

25 4/6/2015 © 2014-2015 Paul Krzyzanowski

Receiving a message – part 1

• Interrupt from network card: packet received

• Network driver – top half

– Allocate new sk_buff

– Move data from the hardware buffer into the sk_buff (DMA)

– Call netif_rx, the generic network reception handler

• This moves the sk_buff to protocol processing (it’s a work queue)

• When netif_rx returns, the service routine is finished

– Repeat until no more packets in the device buffers

• If the packet queue is full, the packet is discarded

• netif_rx is called in the interrupt service routine

– Must be quick. Main goal: queue the packet.

26 4/6/2015 © 2014-2015 Paul Krzyzanowski

Receiving a packet – part 2

Bottom half

• Bottom half = “softIRQ” = work queues

– Tuples containing < operation, data >

• Kernel schedules work to go through pending packet queue

• Call net_rx_action()

– Dequeue first sk_buff (packet)

– Go through list of protocol handlers

• Each protocol handler registers itself

• Identifies which protocol type they handle

• Go through each generic handler first

• Then go through the receive function registered for the packet’s protocol

27 4/6/2015 © 2014-2015 Paul Krzyzanowski

Receiving an IP packet – part 3

Network layer

• IP is a registered as a protocol handler for ETH_P_IP packets

– Packet header identifies next level protocol

• E.g., Ethernet header states encapsulated protocol is IPv4

• IPv4 header states encapsulated protocol is TCP

– IP handler will either route the packet, deliver locally, or discard

• Send either to an outgoing queue (if routing) or to the transport layer

– Look at protocol field inside the IP packet

• Calls transport-level handlers (tcp_v4_rcv, udp_rcv, icmp_rcv, …)

– IP handler includes Netfilter hooks

• Additional checks for packet filtering, port translation, and extensions

28

“Ethernet Protocol: IP”

4/6/2015 © 2014-2015 Paul Krzyzanowski

Receiving an IP packet – part 4

Transport layer

• Next stage (usually): tcp_v4_rcv() or udp_rcv()

– Check for transport layer errors

– Look for a socket that should receive this packet

(match local & remote addresses and ports)

– Call tcp_v4_do_rcv: passing it the sk_buff and socket (sock structure)

• Adds sk_buff to the end of that socket’s receive queue

• The socket may have specific processing options defined

– If so, apply them

• Wake up the process (ready state) if it was blocked on the socket

29 4/6/2015 © 2014-2015 Paul Krzyzanowski

Lots of Interrupts!

• Assume:

– Non-jumbo maximum payload size: 1500 bytes

– TCP acknowledgement (no data): 40 bytes

– Median packet size: 413 bytes

• Assume a steady flow of network traffic at:

– 1 Gbps: ~300,000 packets/second

– 100 Mbps: ~30,000 packets/second

• Even 9000-byte jumbo frames give us:

– 1 Gbps: 14,000 packets per second → 14,000 interrupts/second

One interrupt per received packet

Network traffic can generate a LOT of interrupts!!

30 4/6/2015 © 2014-2015 Paul Krzyzanowski

CS 416: Operating Systems Design April 6, 2015

© 2014-2015 Paul Krzyzanowski 6

Interrupt Mitigation: Linux NAPI

• Linux NAPI: “New API” (c. 2009)

• Avoid getting thousands of interrupts per second

– Disable network device interrupts during high traffic

– Re-enable interrupts when there are no more packets

– Polling is better at high loads; interrupts are better at low loads

• Throttle packets

– If we get more packets than we can process, leave them in the

network card’s buffer and let them get overwritten (same as

dropping a packet)

• Better to drop packets early than waste time processing them

31 4/6/2015 © 2014-2015 Paul Krzyzanowski

The End

32 4/6/2015 © 2014-2015 Paul Krzyzanowski

