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Sockets 

• Dominant API for transport layer connectivity 

• Created at UC Berkeley for 4.2BSD Unix (1983) 

• Design goals 

– Communication between processes should not depend on whether 

they are on the same machine 

– Communication should be efficient 

– Interface should be compatible with files 

– Support different protocols and naming conventions 

• Sockets is not just for the Internet Protocol family 
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Socket 

Socket = Abstract object from which messages are sent 

and received 

• Looks like a file descriptor 

• Application can select particular style of communication 

– Virtual circuit, datagram, message-based, in-order delivery 

• Unrelated processes should be able to locate 

communication endpoints 

– Sockets can have a name 

– Name should be meaningful in the communications domain 
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Connection-Oriented (TCP) socket operations 
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Create a socket 

Name the socket 

(assign local address, port) 

Connect to the other side 

read / write byte streams 

close the socket 

Create a socket 

Name the socket 

(assign local address, port) 

Set the socket for listening 

Wait for and accept a 

connection; get a socket for 

the connection 

close the socket 

read / write byte streams 

close the listening socket 

Client 
Server 

socket 

bind 

connect 

read/write 

close 

socket 

bind 

listen 

accept 

read/write 

close 

close 

Connectionless (UDP) socket operations 
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Create a socket 

Name the socket 

(assign local address, port) 

Send a message 

Receive a message 

close the socket 

Create a socket 

Name the socket 

(assign local address, port) 

close the socket 

Send a message 

Receive a message 

Client Server 

socket 

bind 

sendto 

recvfrom 

close 

socket 

bind 

recvfrom 

sendto 

close 

Socket Internals 
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Logical View 

ethernet IP TCP data 

Protocol 

input 

queue 

socket 

Socket layer 

Transport layer 

Network layer 

Network interface (driver) layer 

Device interrupt 
Ethernet 

IP TCP data 

TCP data 

data 
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socket buffer 

same  

socket buffer 

same  

socket buffer 

same  

socket buffer 
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Data Path 

Application writes data to 

socket 

Move packet to transport layer 
[TCP creates packet buffer & 

header] 

Move packet to network layer 

[IP fills in header] 

Packet for 

host? 

Move packet to transport 

layer 

Move packet to socket 

Data goes to application 

buffer 

Look up route 

Move packet to net device 

driver 

[packet goes on send queue] 

Transmit the packet 

Packet received by 

device 

Move packet to network layer 

[IP fills in header] 
Forward 

packet? 

internal external 

drop 

drop 
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From app From  

device 

To app To device 
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copy data from user process to kernel socket buffer 
copy data from device to 

           kernel socket buffer 

OS Network Stack 

System call Interface 

 

Generic network 

interface 
Sockets implementation layer 

Socket-related system calls 

Network Protocols 
TCP/IPv4, UDP/IPv4, TCP/IPv6 

Abstract Device 

Interface 

Device Driver 

“netdevice”, queuing discipline 

Ethernet, Wi-Fi, SLIP 

Transport Layer 

Network Layer IPv4, IPv6  

Link Layer 
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File calls Socket calls 

System call interface 

Two ways to communicate with the network: 

 

 

 

 

 

 

 

A socket structure acts as a queuing point for data being transmitted 

& received 

– A socket has send and receive queues associated with it 

• High & low watermarks 
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Socket-specific call 
(e.g., socket, bind, shutdown) 
• Directed to sys_socketcall (socket.c) 

• Goes to the target function 

File call 
(e.g., read, write, close) 
• File descriptor ≡ socket  

– Sockets reside in the process’s file table 

• Direct parallel of the VFS structure 

– A socket’s f_ops field points to a set of 

functions for socket operations 
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Sockets layer 

• All network communication takes place via a socket 

• Two socket structures – one within another 
1. Generic sockets (aka BSD sockets) – struct socket 

2. Protocol-specific sockets (e.g., INET socket) – struct sock 

• socket structure 
– Keeps all the state of a socket including the protocol and operations that can be 

performed on it 

– Some key members of the structure: 

• struct proto_ops *ops: protocol-specific functions that implement socket operations 

– Common functions to support a variety of protocols: TCP, UDP, IP, raw ethernet, other networks 

– Pointers to protocol functions: bind, connect, accept, listen, sendmsg, shutdown, … 

• struct inode *inode: points to in-memory inode associated with the socket 

• struct sock *sk: protocol-specific (e.g., INET) socket 

– E.g., this contains TCP/IP and UDP/IP specific data for an INET  

(Internet Address Domain)  socket 
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Socket Buffer: struct sk_buff 

• Component for managing the data movement for sockets through the networking layers 

– Contains packet & state data for multiple layers of the protocol stack 

• Don’t waste time copying parameters & packet data from layer to layer of the network 

stack 

• Data sits in a socket buffer (struct sk_buff) 

• As we move through layers, data is only copied twice: 

1. From user to kernel space 

2. From kernel space to the device (via DMA if available) 

 

next prev head data tail end dev dev_rx sk 

IP TCP data 

sk_buff: 

sk_buff sk_buff 

sk_buff sk_buff 

Packet data 

associated device 

source device 

socket 
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Socket Buffer: struct sk_buff 

• Each sent or received packet is associated with an sk_buff: 

– Packet data in data->, tail-> 

– Total packet buffer in head->, end-> 

– Header pointers (MAC, IP, TCP header, etc.) 

• Identifies device structure (net_device) 

– rx_dev: points to the network device that received the packet 

– dev: identifies net device on which the buffer operates 

• If a routing decision has been made, this is the outbound interface 

• Each socket (connection stream) is associated with a linked list of sk_buffs 

Add or remove headers without 

reallocating memory 
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Keeping track of packet data 

head 

data 

tail 

end 

ethernet 

tail room 

Allocate new socket buffer data 

 

 skb = alloc_skb(len, GFP_KERNEL); 

 

No packet data: head = data = tail 
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Example: Prepare an outgoing packet 

Keeping track of packet data 

head 

data 

tail 

end 

head 

room 

tail room 

Make room for protocol headers. 

 

 skb_reserve(skb, header_len) 
 

For IPv4, use sk->sk_prot->max_header 

 

Data size is still 0 
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Keeping track of packet data 

head 

data 

tail 

end 

head 

room 

User data 

tail room 

Add user data 
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Keeping track of packet data 

head 

data 

tail 

end 

head 

room 

TCP 

User data 

tail room 

Add TCP header 
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Keeping track of packet data 

head 

data 

tail 

end 

head room 

IP 

TCP 

User data 

tail room 

Add IP header 
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Keeping track of packet data 

head 

data 

tail 

end 

ethernet 

IP 

TCP 

User data 

Add ethernet header 

 

The outbound packet is complete! 

ethernet 
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Network protocols 

• Define the specific protocols available (e.g., TCP, UDP) 

• Each networking protocol has a structure called proto 

– Associated with an “address family” (e.g., AF_INET) 

– Address family is specified by the programmer when creating the socket 

– Defines socket operations that can be performed from the sockets layer to the 

transport layer 

• Close, connect, disconnect, accept, shutdown, sendmsg, recvmsg, etc. 

• Modular: one module may define one or more protocols 

• Initialized & registered at startup 

– Initialization function: registers a family of protocols 

– The register function adds the protocol to the active protocol list 
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Abstract device interface 

• Layer that interfaces with network device drivers 

• Common set of functions for low-level network device drivers to 

operate with the higher-level protocol stack 
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Abstract device interface 

• Send a packet to a device 

– Send sk_buff from the protocol layer to a device 

• dev_queue_xmit function 

• enqueues an sk_buff for transmission to the underlying driver 

• Device is defined in sk_buff 

– Device structure contains a method hard_start_xmit: driver function for actually 

transmitting the data in the sk_buff 

 

• Receive a packet from a device & send to protocol stack 

– Receive an sk_buff from a device 

• Driver receives a packet and places it into an allocated sk_buff 

• sk_buff passed to the network layer with a call to netif_rx 

• Function enqueues the sk_buff to an upper-layer protocol's queue for processing 

through netif_rx_schedule 
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Device drivers 

• Drivers to access the network device 

– Examples: ethernet, 802.11n, SLIP 

• Modular, like other devices 

– Described by struct net_device 

• Initialization 

– Driver allocates a net_device structure 

– Initializes it with its functions 

• dev->hard_start_xmit: defines how to transmit a packet 

– Typically the packet is moved to a hardware queue 

• Register interrupt service routine 

– Calls register_netdevice to make the device available to the 

network stack 
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Sending a message 

• Write data to socket 

• Socket calls appropriate send function (typically INET) 
– Send function verifies status of socket & protocol type 

– Sends data to transport layer routine (typically TCP or UDP) 

• Transport layer 
– Creates a socket buffer (struct sk_buff) 

– Copies data from application layer; fills in header (port #, options, checksum) 

– Passes buffer to the network layer (typically IP) 

• Network layer 
– Fills in buffer with its own headers (IP address, options, checksum) 

– Look up destination route 

– IP layer may fragment data into multiple packets 

– Passes buffer to link layer: to destination route’s device output function 

• Link layer: move packet to the device’s xmit queue 

• Network driver 
– Wait for scheduler to run the device driver’s transmit code 

– Sends the link header 

– Transmit packet via DMA 
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Routing 

IP Network layer 

Two structures: 

1. Forwarding Information Base (FIB) 

Keeps track of details for every known route 

2. Cache for destinations in use (hash table) 

 If not found here then check FIB. 
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Receiving a message – part 1 

• Interrupt from network card: packet received 

• Network driver – top half 

– Allocate new sk_buff 

– Move data from the hardware buffer into the sk_buff (DMA) 

– Call netif_rx, the generic network reception handler 

• This moves the sk_buff to protocol processing (it’s a work queue) 

• When netif_rx returns, the service routine is finished 

– Repeat until no more packets in the device buffers 

 

• If the packet queue is full, the packet is discarded 

• netif_rx is called in the interrupt service routine 

– Must be quick. Main goal: queue the packet. 
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Receiving a packet – part 2 

Bottom half 

• Bottom half = “softIRQ” = work queues 

– Tuples containing < operation, data > 

• Kernel schedules work to go through pending packet queue 

• Call net_rx_action() 

– Dequeue first sk_buff (packet) 

– Go through list of protocol handlers 

• Each protocol handler registers itself 

• Identifies which protocol type they handle 

• Go through each generic handler first 

• Then go through the receive function registered for the packet’s protocol 
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Receiving an IP packet – part 3 

Network layer 

• IP is a registered as a protocol handler for ETH_P_IP packets 

– Packet header identifies next level protocol 

• E.g., Ethernet header states encapsulated protocol is IPv4 

• IPv4 header states encapsulated protocol is TCP 

 

– IP handler will either route the packet, deliver locally, or discard 

• Send either to an outgoing queue (if routing) or to the transport layer 

 

– Look at protocol field inside the IP packet 

• Calls transport-level handlers (tcp_v4_rcv, udp_rcv, icmp_rcv, …) 

 

– IP handler includes Netfilter hooks 

• Additional checks for packet filtering, port translation, and extensions  
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“Ethernet Protocol: IP” 
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Receiving an IP packet – part 4 

Transport layer 

• Next stage (usually): tcp_v4_rcv() or udp_rcv() 

– Check for transport layer errors 

– Look for a socket that should receive this packet 

(match local & remote addresses and ports) 

– Call tcp_v4_do_rcv: passing it the sk_buff and socket (sock structure) 

• Adds sk_buff to the end of that socket’s receive queue 

• The socket may have specific processing options defined 

– If so, apply them 

• Wake up the process (ready state) if it was blocked on the socket 
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Lots of Interrupts! 

• Assume: 

– Non-jumbo maximum payload size: 1500 bytes 

– TCP acknowledgement (no data): 40 bytes 

– Median packet size: 413 bytes 

• Assume a steady flow of network traffic at: 

– 1 Gbps: ~300,000 packets/second 

– 100 Mbps: ~30,000 packets/second 

• Even 9000-byte jumbo frames give us: 

– 1 Gbps: 14,000 packets per second → 14,000 interrupts/second 

 

One interrupt per received packet 

Network traffic can generate a LOT of interrupts!! 
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Interrupt Mitigation: Linux NAPI 

• Linux NAPI: “New API” (c. 2009) 

• Avoid getting thousands of interrupts per second 

– Disable network device interrupts during high traffic 

– Re-enable interrupts when there are no more packets 

– Polling is better at high loads; interrupts are better at low loads 

 

• Throttle packets 

– If we get more packets than we can process, leave them in the 

network card’s buffer and let them get overwritten (same as 

dropping a packet)  

• Better to drop packets early than waste time processing them 
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The End 
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